Logiweb(TM)

Logiweb aspects of mendelson corollary one ten pre b in pyk

Up Help

The predefined "pyk" aspect

define pyk of mendelson corollary one ten pre b as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small c unicode small o unicode small r unicode small o unicode small l unicode small l unicode small a unicode small r unicode small y unicode space unicode small o unicode small n unicode small e unicode space unicode small t unicode small e unicode small n unicode space unicode small p unicode small r unicode small e unicode space unicode small b unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of mendelson corollary one ten pre b as text unicode start of text unicode newline unicode capital m unicode one unicode period unicode one unicode zero unicode left parenthesis unicode small b unicode underscore unicode hyphen unicode right parenthesis unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of mendelson corollary one ten pre b as system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) infer ( metavar var b end metavar infer ( metavar var a end metavar infer metavar var c end metavar ) ) ) end define

The user defined "the proof aspect" aspect

define proof of mendelson corollary one ten pre b as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) infer ( metavar var b end metavar infer ( metavar var a end metavar infer ( ( ( ( rule prime mp modus ponens ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) modus ponens metavar var a end metavar ) conclude ( metavar var b end metavar peano imply metavar var c end metavar ) ) cut ( ( ( rule prime mp modus ponens ( metavar var b end metavar peano imply metavar var c end metavar ) ) modus ponens metavar var b end metavar ) conclude metavar var c end metavar ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-07-04.UTC:13:01:21.823959 = MJD-53555.TAI:13:01:53.823959 = LGT-4627198913823959e-6