define pyk of lemma prime l three two h two as text unicode start of text unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small l unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small h unicode space unicode small t unicode small w unicode small o unicode end of text end unicode text end text end define
define tex of lemma prime l three two h two as text unicode start of text unicode capital m unicode three unicode period unicode two unicode left parenthesis unicode small h unicode right parenthesis unicode space unicode left parenthesis unicode capital i unicode capital i unicode right parenthesis unicode end of text end unicode text end text end define
define statement of lemma prime l three two h two as system prime s infer ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( var y peano var peano succ peano plus ( var x peano var ) ) ) ) end define
define proof of lemma prime l three two h two as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( mendelson one seven conclude ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) ) ) cut ( ( hypothetical three one s six conclude ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( ( var x peano var peano plus ( var y peano var ) ) peano succ ) ) ) ) cut ( ( lemma prime l three two g conclude ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) cut ( ( ( hypothesize modus ponens ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) conclude ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( hypothetical three one s two modus ponens ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) ) ) conclude ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var ) ) peano succ peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( ( hypothetical three two c modus ponens ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( ( var x peano var peano plus ( var y peano var ) ) peano succ ) ) ) ) modus ponens ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var ) ) peano succ peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) conclude ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( hypothetical three two d modus ponens ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) modus ponens ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) conclude ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( var y peano var peano succ peano plus ( var x peano var ) ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,