define pyk of lemma prime l three two d one as text unicode start of text unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small l unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small d unicode space unicode small o unicode small n unicode small e unicode end of text end unicode text end text end define
define tex of lemma prime l three two d one as text unicode start of text unicode capital m unicode three unicode period unicode two unicode left parenthesis unicode small d unicode right parenthesis unicode space unicode left parenthesis unicode capital i unicode right parenthesis unicode end of text end unicode text end text end define
define statement of lemma prime l three two d one as system prime s infer all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) end define
define proof of lemma prime l three two d one as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var t end metavar indeed all metavar var r end metavar indeed all metavar var s end metavar indeed ( ( lemma prime l three two c conclude ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var t end metavar peano is metavar var s end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) cut ( ( ( mendelson corollary one ten b plus plus modus ponens ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var t end metavar peano is metavar var s end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) conclude ( ( metavar var t end metavar peano is metavar var s end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) cut ( ( lemma prime l three two b conclude ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) cut ( ( ( mendelson corollary one ten a modus ponens ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( metavar var t end metavar peano is metavar var s end metavar ) ) ) modus ponens ( ( metavar var t end metavar peano is metavar var s end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) conclude ( ( metavar var s end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var r end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var s end metavar ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,