define pyk of mendelson lemma three two f as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small f unicode end of text end unicode text end text end define
define tex of mendelson lemma three two f as text unicode start of text unicode capital l unicode capital e unicode capital m unicode capital m unicode capital a unicode space unicode three unicode period unicode two unicode left parenthesis unicode small f unicode right parenthesis unicode end of text end unicode text end text end define
define statement of mendelson lemma three two f as system prime s infer ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) end define
define proof of mendelson lemma three two f as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( axiom prime s nine conclude ( ( peano zero peano is ( peano zero peano plus peano zero ) ) peano imply ( ( peano all var t peano var indeed ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) peano imply peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) ) cut ( ( mendelson lemma three two f base conclude ( peano zero peano is ( peano zero peano plus peano zero ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano zero peano is ( peano zero peano plus peano zero ) ) peano imply ( ( peano all var t peano var indeed ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) peano imply peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) ) modus ponens ( peano zero peano is ( peano zero peano plus peano zero ) ) ) conclude ( ( peano all var t peano var indeed ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) peano imply peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) cut ( ( mendelson lemma three two f induction conclude ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) cut ( ( ( rule prime gen modus ponens ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) conclude peano all var t peano var indeed ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var t peano var indeed ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) peano imply peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) modus ponens peano all var t peano var indeed ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( var t peano var peano succ peano is ( peano zero peano plus ( var t peano var peano succ ) ) ) ) ) conclude peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) cut ( ( ( axiom prime a four at ( var t peano var ) ) conclude ( ( peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) peano imply ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) cut ( ( ( rule prime mp modus ponens ( ( peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) peano imply ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) modus ponens peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) conclude ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,