Logiweb(TM)

Logiweb aspects of transitive imply in pyk

Up Help

The predefined "pyk" aspect

define pyk of transitive imply as text unicode start of text unicode small t unicode small r unicode small a unicode small n unicode small s unicode small i unicode small t unicode small i unicode small v unicode small e unicode space unicode small i unicode small m unicode small p unicode small l unicode small y unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of transitive imply as text unicode start of text unicode capital t unicode capital i unicode small m unicode small p unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of transitive imply as system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply metavar var b end metavar ) infer ( ( metavar var b end metavar peano imply metavar var c end metavar ) infer ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) end define

The user defined "the proof aspect" aspect

define proof of transitive imply as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply metavar var b end metavar ) infer ( ( metavar var b end metavar peano imply metavar var c end metavar ) infer ( ( axiom prime a two conclude ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) cut ( ( axiom prime a one conclude ( ( metavar var b end metavar peano imply metavar var c end metavar ) peano imply ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( metavar var b end metavar peano imply metavar var c end metavar ) peano imply ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) ) modus ponens ( metavar var b end metavar peano imply metavar var c end metavar ) ) conclude ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) modus ponens ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) conclude ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) cut ( ( ( rule prime mp modus ponens ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) modus ponens ( metavar var a end metavar peano imply metavar var b end metavar ) ) conclude ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-30.UTC:17:35:23.405074 = MJD-53551.TAI:17:35:55.405074 = LGT-4626869755405074e-6