Logiweb(TM)

Logiweb aspects of mendelson lemma three two h in pyk

Up Help

The predefined "pyk" aspect

define pyk of mendelson lemma three two h as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small h unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of mendelson lemma three two h as text unicode start of text unicode capital l unicode capital e unicode capital m unicode capital m unicode capital a unicode space unicode three unicode period unicode two unicode left parenthesis unicode small h unicode right parenthesis unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of mendelson lemma three two h as system prime s infer ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) end define

The user defined "the proof aspect" aspect

define proof of mendelson lemma three two h as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( axiom prime s nine conclude ( ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) ) cut ( ( mendelson lemma three two h base conclude ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) ) modus ponens ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) ) conclude ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) cut ( ( mendelson lemma three two h induction conclude ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) cut ( ( ( rule prime gen modus ponens ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) conclude peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) modus ponens peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) conclude peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) cut ( ( ( axiom prime a four at ( var r peano var ) ) conclude ( ( peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) cut ( ( ( rule prime mp modus ponens ( ( peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) modus ponens peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) conclude ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-30.UTC:17:35:23.405074 = MJD-53551.TAI:17:35:55.405074 = LGT-4626869755405074e-6