Logiweb(TM)

Logiweb aspects of mendelson proposition three two g i in pyk

Up Help

The predefined "pyk" aspect

define pyk of mendelson proposition three two g i as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small g unicode space unicode small i unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of mendelson proposition three two g i as text unicode start of text unicode capital m unicode backslash unicode space unicode capital p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode backslash unicode space unicode three unicode period unicode two unicode left parenthesis unicode small g unicode right parenthesis unicode backslash unicode space unicode left parenthesis unicode small i unicode right parenthesis unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of mendelson proposition three two g i as system prime s infer peano all var x peano var indeed ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) end define

The user defined "the proof aspect" aspect

define proof of mendelson proposition three two g i as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( axiom prime s five conclude ( ( var x peano var peano succ peano plus peano zero ) peano is ( var x peano var peano succ ) ) ) cut ( ( axiom prime s five conclude ( ( var x peano var peano plus peano zero ) peano is ( var x peano var ) ) ) cut ( ( axiom prime s two conclude ( ( ( var x peano var peano plus peano zero ) peano is ( var x peano var ) ) peano imply ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var x peano var peano plus peano zero ) peano is ( var x peano var ) ) peano imply ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) ) ) modus ponens ( ( var x peano var peano plus peano zero ) peano is ( var x peano var ) ) ) conclude ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) ) cut ( ( mendelson proposition three two d conclude ( ( ( var x peano var peano succ peano plus peano zero ) peano is ( var x peano var peano succ ) ) peano imply ( ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) peano imply ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var x peano var peano succ peano plus peano zero ) peano is ( var x peano var peano succ ) ) peano imply ( ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) peano imply ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) ) ) ) modus ponens ( ( var x peano var peano succ peano plus peano zero ) peano is ( var x peano var peano succ ) ) ) conclude ( ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) peano imply ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) peano imply ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) ) ) modus ponens ( ( var x peano var peano plus peano zero ) peano succ peano is ( var x peano var peano succ ) ) ) conclude ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) ) cut ( ( rule prime gen modus ponens ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) ) conclude peano all var x peano var indeed ( ( var x peano var peano succ peano plus peano zero ) peano is ( ( var x peano var peano plus peano zero ) peano succ ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-07-03.UTC:14:46:55.537781 = MJD-53554.TAI:14:47:27.537781 = LGT-4627118847537781e-6