define pyk of mendelson proposition three two b as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small b unicode end of text end unicode text end text end define
define tex of mendelson proposition three two b as text unicode start of text unicode capital m unicode backslash unicode space unicode capital p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode backslash unicode space unicode three unicode period unicode two unicode left parenthesis unicode small b unicode right parenthesis unicode end of text end unicode text end text end define
define statement of mendelson proposition three two b as system prime s infer all metavar var t end metavar indeed all metavar var r end metavar indeed ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( metavar var r end metavar peano is metavar var t end metavar ) ) end define
define proof of mendelson proposition three two b as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var t end metavar indeed all metavar var r end metavar indeed ( ( axiom prime s one conclude ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var t end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var t end metavar ) ) ) ) cut ( ( ( mendelson tautology a modus ponens ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( ( metavar var t end metavar peano is metavar var t end metavar ) peano imply ( metavar var r end metavar peano is metavar var t end metavar ) ) ) ) conclude ( ( metavar var t end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( metavar var r end metavar peano is metavar var t end metavar ) ) ) ) cut ( ( mendelson proposition three two a conclude ( metavar var t end metavar peano is metavar var t end metavar ) ) cut ( ( ( rule prime mp modus ponens ( ( metavar var t end metavar peano is metavar var t end metavar ) peano imply ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( metavar var r end metavar peano is metavar var t end metavar ) ) ) ) modus ponens ( metavar var t end metavar peano is metavar var t end metavar ) ) conclude ( ( metavar var t end metavar peano is metavar var r end metavar ) peano imply ( metavar var r end metavar peano is metavar var t end metavar ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,