define pyk of mendelson proposition three two h g ii as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small h unicode space unicode small g unicode space unicode small i unicode small i unicode end of text end unicode text end text end define
define tex of mendelson proposition three two h g ii as text unicode start of text unicode capital m unicode backslash unicode space unicode capital p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode backslash unicode space unicode three unicode period unicode two unicode left parenthesis unicode small h unicode right parenthesis unicode underscore unicode left brace unicode left parenthesis unicode small g unicode right parenthesis unicode left parenthesis unicode small i unicode small i unicode right parenthesis unicode right brace unicode end of text end unicode text end text end define
define statement of mendelson proposition three two h g ii as system prime s infer ( ( peano all var y peano var indeed ( ( var x peano var peano succ peano plus ( var y peano var ) ) peano is ( ( var x peano var peano plus ( var y peano var ) ) peano succ ) ) ) infer ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) end define
define proof of mendelson proposition three two h g ii as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( peano all var y peano var indeed ( ( var x peano var peano succ peano plus ( var y peano var ) ) peano is ( ( var x peano var peano plus ( var y peano var ) ) peano succ ) ) ) infer ( ( ( axiom prime a four at ( var z peano var ) ) conclude ( ( peano all var y peano var indeed ( ( var x peano var peano succ peano plus ( var y peano var ) ) peano is ( ( var x peano var peano plus ( var y peano var ) ) peano succ ) ) ) peano imply ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var y peano var indeed ( ( var x peano var peano succ peano plus ( var y peano var ) ) peano is ( ( var x peano var peano plus ( var y peano var ) ) peano succ ) ) ) peano imply ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) ) modus ponens peano all var y peano var indeed ( ( var x peano var peano succ peano plus ( var y peano var ) ) peano is ( ( var x peano var peano plus ( var y peano var ) ) peano succ ) ) ) conclude ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) cut ( ( ( rule prime gen modus ponens ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) conclude peano all var x peano var indeed ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) cut ( ( ( axiom prime a four at ( var y peano var ) ) conclude ( ( peano all var x peano var indeed ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var x peano var indeed ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) ) modus ponens peano all var x peano var indeed ( ( var x peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var x peano var peano plus ( var z peano var ) ) peano succ ) ) ) conclude ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) cut ( ( ( rule prime gen modus ponens ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) conclude peano all var z peano var indeed ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) cut ( ( ( axiom prime a four at ( var x peano var ) ) conclude ( ( peano all var z peano var indeed ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( rule prime mp modus ponens ( ( peano all var z peano var indeed ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) peano imply ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) modus ponens peano all var z peano var indeed ( ( var y peano var peano succ peano plus ( var z peano var ) ) peano is ( ( var y peano var peano plus ( var z peano var ) ) peano succ ) ) ) conclude ( ( var y peano var peano succ peano plus ( var x peano var ) ) peano is ( ( var y peano var peano plus ( var x peano var ) ) peano succ ) ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,