define pyk of mendelson tautology b as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small t unicode small a unicode small u unicode small t unicode small o unicode small l unicode small o unicode small g unicode small y unicode space unicode small b unicode end of text end unicode text end text end define
define tex of mendelson tautology b as text unicode start of text unicode capital m unicode backslash unicode space unicode capital t unicode small a unicode small u unicode small t unicode small o unicode small l unicode small o unicode small g unicode small y unicode backslash unicode space unicode capital b unicode end of text end unicode text end text end define
define statement of mendelson tautology b as system prime s infer all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var d end metavar peano imply metavar var e end metavar ) infer ( ( metavar var e end metavar peano imply metavar var f end metavar ) infer ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) end define
define proof of mendelson tautology b as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var d end metavar peano imply metavar var e end metavar ) infer ( ( metavar var e end metavar peano imply metavar var f end metavar ) infer ( ( axiom prime a one conclude ( ( metavar var e end metavar peano imply metavar var f end metavar ) peano imply ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( metavar var e end metavar peano imply metavar var f end metavar ) peano imply ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) ) modus ponens ( metavar var e end metavar peano imply metavar var f end metavar ) ) conclude ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) cut ( ( axiom prime a two conclude ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) peano imply ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) modus ponens ( metavar var d end metavar peano imply ( metavar var e end metavar peano imply metavar var f end metavar ) ) ) conclude ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) cut ( ( ( rule prime mp modus ponens ( ( metavar var d end metavar peano imply metavar var e end metavar ) peano imply ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) modus ponens ( metavar var d end metavar peano imply metavar var e end metavar ) ) conclude ( metavar var d end metavar peano imply metavar var f end metavar ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,