define pyk of mendelson lemma one eight as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small o unicode small n unicode small e unicode space unicode small e unicode small i unicode small g unicode small h unicode small t unicode end of text end unicode text end text end define
define statement of mendelson lemma one eight as propcalc infer all metavar var a end metavar indeed ( metavar var a end metavar implies metavar var a end metavar ) end define
define proof of mendelson lemma one eight as lambda var c dot lambda var x dot proof expand quote propcalc infer all metavar var a end metavar indeed ( ( axiom two conclude ( ( metavar var a end metavar implies ( ( metavar var a end metavar implies metavar var a end metavar ) implies metavar var a end metavar ) ) implies ( ( metavar var a end metavar implies ( metavar var a end metavar implies metavar var a end metavar ) ) implies ( metavar var a end metavar implies metavar var a end metavar ) ) ) ) cut ( ( axiom one conclude ( metavar var a end metavar implies ( ( metavar var a end metavar implies metavar var a end metavar ) implies metavar var a end metavar ) ) ) cut ( ( ( ( rule mp modus ponens ( metavar var a end metavar implies ( ( metavar var a end metavar implies metavar var a end metavar ) implies metavar var a end metavar ) ) ) modus ponens ( ( metavar var a end metavar implies ( ( metavar var a end metavar implies metavar var a end metavar ) implies metavar var a end metavar ) ) implies ( ( metavar var a end metavar implies ( metavar var a end metavar implies metavar var a end metavar ) ) implies ( metavar var a end metavar implies metavar var a end metavar ) ) ) ) conclude ( ( metavar var a end metavar implies ( metavar var a end metavar implies metavar var a end metavar ) ) implies ( metavar var a end metavar implies metavar var a end metavar ) ) ) cut ( ( axiom one conclude ( metavar var a end metavar implies ( metavar var a end metavar implies metavar var a end metavar ) ) ) cut ( ( ( rule mp modus ponens ( metavar var a end metavar implies ( metavar var a end metavar implies metavar var a end metavar ) ) ) modus ponens ( ( metavar var a end metavar implies ( metavar var a end metavar implies metavar var a end metavar ) ) implies ( metavar var a end metavar implies metavar var a end metavar ) ) ) conclude ( metavar var a end metavar implies metavar var a end metavar ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,