define pyk of lemma tautology one as text unicode start of text unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small t unicode small a unicode small u unicode small t unicode small o unicode small l unicode small o unicode small g unicode small y unicode space unicode small o unicode small n unicode small e unicode end of text end unicode text end text end define
define tex of lemma tautology one as text unicode start of text unicode capital t unicode small a unicode small u unicode small t unicode space unicode one unicode end of text end unicode text end text end define
define statement of lemma tautology one as system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) infer ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) end define
define proof of lemma tautology one as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) infer ( ( axiom prime a two conclude ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) modus ponens ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) conclude ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) cut ( ( ( lemma weaken modus ponens ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) conclude ( metavar var b end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) cut ( ( axiom prime a two conclude ( ( metavar var b end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) peano imply ( ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var b end metavar ) ) peano imply ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) cut ( ( axiom prime a one conclude ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var b end metavar ) ) ) cut ( ( ( ( lemma mp twice modus ponens ( ( metavar var b end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) peano imply ( ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var b end metavar ) ) peano imply ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) modus ponens ( metavar var b end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) modus ponens ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var b end metavar ) ) ) conclude ( metavar var b end metavar peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,