define pyk of lemma prime three two h base as text unicode start of text unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small h unicode space unicode small b unicode small a unicode small s unicode small e unicode end of text end unicode text end text end define
define tex of lemma prime three two h base as text unicode start of text unicode capital l unicode three unicode period unicode two unicode space unicode left parenthesis unicode small h unicode right parenthesis unicode apostrophe unicode space unicode small b unicode small a unicode small s unicode small i unicode small s unicode end of text end unicode text end text end define
define statement of lemma prime three two h base as system prime s infer ( peano sub quote var t peano var peano is ( peano zero peano plus ( var t peano var ) ) end quote is quote var t peano var peano is ( peano zero peano plus ( var t peano var ) ) end quote where quote var t peano var end quote is quote var t peano var end quote end sub endorse ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) end define
define proof of lemma prime three two h base as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( axiom prime s five conclude ( ( var t peano var peano plus peano zero ) peano is ( var t peano var ) ) ) cut ( ( lemma prime three two f conclude peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) cut ( peano sub quote var t peano var peano is ( peano zero peano plus ( var t peano var ) ) end quote is quote var t peano var peano is ( peano zero peano plus ( var t peano var ) ) end quote where quote var t peano var end quote is quote var t peano var end quote end sub endorse ( ( ( axiom prime a four modus probans peano sub quote var t peano var peano is ( peano zero peano plus ( var t peano var ) ) end quote is quote var t peano var peano is ( peano zero peano plus ( var t peano var ) ) end quote where quote var t peano var end quote is quote var t peano var end quote end sub ) conclude ( ( peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) peano imply ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) peano imply ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) modus ponens peano all var t peano var indeed ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) conclude ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) cut ( ( lemma prime three two c conclude ( ( ( var t peano var peano plus peano zero ) peano is ( var t peano var ) ) peano imply ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) ) cut ( ( ( ( ( lemma mp twice modus ponens ( ( ( var t peano var peano plus peano zero ) peano is ( var t peano var ) ) peano imply ( ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) ) ) ) modus ponens ( ( var t peano var peano plus peano zero ) peano is ( var t peano var ) ) ) modus ponens ( var t peano var peano is ( peano zero peano plus ( var t peano var ) ) ) ) conclude ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) ) cut ( ( axiom prime s nine conclude ( ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) ) cut ( ( ( rule prime mp modus ponens ( ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) peano imply ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) ) modus ponens ( ( var t peano var peano plus peano zero ) peano is ( peano zero peano plus ( var t peano var ) ) ) ) conclude ( ( peano all var r peano var indeed ( ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) peano imply ( ( var t peano var peano plus ( var r peano var peano succ ) ) peano is ( var r peano var peano succ peano plus ( var t peano var ) ) ) ) ) peano imply peano all var r peano var indeed ( ( var t peano var peano plus ( var r peano var ) ) peano is ( var r peano var peano plus ( var t peano var ) ) ) ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,