Logiweb(TM)

Logiweb aspects of lemma prime three two a in pyk

Up Help

The predefined "pyk" aspect

define pyk of lemma prime three two a as text unicode start of text unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small a unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of lemma prime three two a as text unicode start of text unicode capital l unicode three unicode period unicode two unicode space unicode left parenthesis unicode small a unicode right parenthesis unicode apostrophe unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of lemma prime three two a as system prime s infer all metavar var t end metavar indeed ( metavar var t end metavar peano is metavar var t end metavar ) end define

The user defined "the proof aspect" aspect

define proof of lemma prime three two a as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var t end metavar indeed ( ( axiom prime s five conclude ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) ) cut ( ( axiom prime s one conclude ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( metavar var t end metavar peano is metavar var t end metavar ) ) ) ) cut ( ( ( ( lemma mp twice modus ponens ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) peano imply ( metavar var t end metavar peano is metavar var t end metavar ) ) ) ) modus ponens ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) ) modus ponens ( ( metavar var t end metavar peano plus peano zero ) peano is metavar var t end metavar ) ) conclude ( metavar var t end metavar peano is metavar var t end metavar ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-06-30.UTC:07:17:36.765255 = MJD-53551.TAI:07:18:08.765255 = LGT-4626832688765255e-6