Logiweb(TM)

Logiweb aspects of axiom prime s six hyp in pyk

Up Help

The predefined "pyk" aspect

define pyk of axiom prime s six hyp as text unicode start of text unicode small a unicode small x unicode small i unicode small o unicode small m unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small s unicode space unicode small s unicode small i unicode small x unicode space unicode small h unicode small y unicode small p unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of axiom prime s six hyp as text unicode start of text unicode capital s unicode six unicode apostrophe unicode underscore unicode small h unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of axiom prime s six hyp as system prime s infer all metavar var h end metavar indeed all metavar var a end metavar indeed all metavar var b end metavar indeed ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano plus ( metavar var b end metavar peano succ ) ) peano is ( ( metavar var a end metavar peano plus metavar var b end metavar ) peano succ ) ) ) end define

The user defined "the proof aspect" aspect

define proof of axiom prime s six hyp as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var h end metavar indeed all metavar var a end metavar indeed all metavar var b end metavar indeed ( ( axiom prime s six conclude ( ( metavar var a end metavar peano plus ( metavar var b end metavar peano succ ) ) peano is ( ( metavar var a end metavar peano plus metavar var b end metavar ) peano succ ) ) ) cut ( ( hypothesize modus ponens ( ( metavar var a end metavar peano plus ( metavar var b end metavar peano succ ) ) peano is ( ( metavar var a end metavar peano plus metavar var b end metavar ) peano succ ) ) ) conclude ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano plus ( metavar var b end metavar peano succ ) ) peano is ( ( metavar var a end metavar peano plus metavar var b end metavar ) peano succ ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-07-04.UTC:21:57:57.981341 = MJD-53555.TAI:21:58:29.981341 = LGT-4627231109981341e-6