define pyk of prop three two g rt hyp as text unicode start of text unicode small p unicode small r unicode small o unicode small p unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small g unicode space unicode small r unicode small t unicode space unicode small h unicode small y unicode small p unicode space unicode end of text end unicode text end text end define
define tex of prop three two g rt hyp as text unicode start of text unicode backslash unicode small m unicode small a unicode small t unicode small h unicode small i unicode small t unicode left brace unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode backslash unicode semicolon unicode space unicode three unicode period unicode two unicode left parenthesis unicode small g unicode right parenthesis unicode underscore unicode small h unicode left parenthesis unicode backslash unicode small d unicode small o unicode small t unicode left brace unicode small r unicode right brace unicode comma unicode backslash unicode small d unicode small o unicode small t unicode left brace unicode small t unicode right brace unicode right parenthesis unicode right brace unicode end of text end unicode text end text end define
define statement of prop three two g rt hyp as system prime s infer all metavar var h end metavar indeed ( metavar var h end metavar peano imply ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) end define
define proof of prop three two g rt hyp as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var h end metavar indeed ( ( prop three two g conclude peano all var r peano var indeed peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) cut ( ( ( axiom prime a four at ( var r peano var ) ) conclude ( ( peano all var r peano var indeed peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) peano imply peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var r peano var indeed peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) peano imply peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) ) modus ponens peano all var r peano var indeed peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) conclude peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) cut ( ( ( axiom prime a four at ( var t peano var ) ) conclude ( ( peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) peano imply ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) ) cut ( ( ( ( rule prime mp modus ponens ( ( peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) peano imply ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) ) modus ponens peano all var t peano var indeed ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) conclude ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) cut ( ( hypothesize modus ponens ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) conclude ( metavar var h end metavar peano imply ( ( var r peano var peano succ peano plus ( var t peano var ) ) peano is ( ( var r peano var peano plus ( var t peano var ) ) peano succ ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,