Logiweb(TM)

Logiweb aspects of mendelson lemma one eleven a in pyk

Up Help

The predefined "pyk" aspect

define pyk of mendelson lemma one eleven a as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small o unicode small n unicode small e unicode space unicode small e unicode small l unicode small e unicode small v unicode small e unicode small n unicode space unicode small a unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of mendelson lemma one eleven a as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode backslash unicode space unicode backslash unicode small t unicode small e unicode small x unicode small t unicode small b unicode small f unicode left brace unicode one unicode period unicode one unicode one unicode right brace unicode space unicode small a unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of mendelson lemma one eleven a as propositional theory infer all metavar var g end metavar indeed ( ( not not metavar var g end metavar ) imply metavar var g end metavar ) end define

The user defined "the proof aspect" aspect

define proof of mendelson lemma one eleven a as lambda var c dot lambda var x dot proof expand quote propositional theory infer all metavar var g end metavar indeed ( ( axiom three conclude ( ( ( not metavar var g end metavar ) imply not not metavar var g end metavar ) imply ( ( ( not metavar var g end metavar ) imply not metavar var g end metavar ) imply metavar var g end metavar ) ) ) cut ( ( mendelson lemma one eight conclude ( ( not metavar var g end metavar ) imply not metavar var g end metavar ) ) cut ( ( axiom one conclude ( ( not not metavar var g end metavar ) imply ( ( not metavar var g end metavar ) imply not not metavar var g end metavar ) ) ) cut ( ( ( ( mendelson corollary one ten b modus ponens ( ( ( not metavar var g end metavar ) imply not not metavar var g end metavar ) imply ( ( ( not metavar var g end metavar ) imply not metavar var g end metavar ) imply metavar var g end metavar ) ) ) modus ponens ( ( not metavar var g end metavar ) imply not metavar var g end metavar ) ) conclude ( ( ( not metavar var g end metavar ) imply not not metavar var g end metavar ) imply metavar var g end metavar ) ) cut ( ( ( mendelson corollary one ten a modus ponens ( ( not not metavar var g end metavar ) imply ( ( not metavar var g end metavar ) imply not not metavar var g end metavar ) ) ) modus ponens ( ( ( not metavar var g end metavar ) imply not not metavar var g end metavar ) imply metavar var g end metavar ) ) conclude ( ( not not metavar var g end metavar ) imply metavar var g end metavar ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050502+ by Klaus Grue,
GRD-2005-06-02.UTC:18:16:36.700631 = MJD-53523.TAI:18:17:08.700631 = LGT-4624453028700631e-6