define pyk of mendelson corollary one ten b as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small c unicode small o unicode small r unicode small o unicode small l unicode small l unicode small a unicode small r unicode small y unicode space unicode small o unicode small n unicode small e unicode space unicode small t unicode small e unicode small n unicode space unicode small b unicode end of text end unicode text end text end define
define tex of mendelson corollary one ten b as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode backslash unicode space unicode backslash unicode small t unicode small e unicode small x unicode small t unicode small b unicode small f unicode left brace unicode one unicode period unicode one unicode zero unicode right brace unicode space unicode small b unicode end of text end unicode text end text end define
define statement of mendelson corollary one ten b as propositional theory infer all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var d end metavar imply ( metavar var e end metavar imply metavar var f end metavar ) ) infer ( metavar var e end metavar infer ( metavar var d end metavar imply metavar var f end metavar ) ) ) end define
define proof of mendelson corollary one ten b as lambda var c dot lambda var x dot proof expand quote propositional theory infer all metavar var d end metavar indeed all metavar var e end metavar indeed all metavar var f end metavar indeed ( ( metavar var d end metavar imply ( metavar var e end metavar imply metavar var f end metavar ) ) infer ( metavar var e end metavar infer ( ( axiom two conclude ( ( metavar var d end metavar imply ( metavar var e end metavar imply metavar var f end metavar ) ) imply ( ( metavar var d end metavar imply metavar var e end metavar ) imply ( metavar var d end metavar imply metavar var f end metavar ) ) ) ) cut ( ( axiom one conclude ( metavar var e end metavar imply ( metavar var d end metavar imply metavar var e end metavar ) ) ) cut ( ( ( ( axiom mp modus ponens metavar var e end metavar ) modus ponens ( metavar var e end metavar imply ( metavar var d end metavar imply metavar var e end metavar ) ) ) conclude ( metavar var d end metavar imply metavar var e end metavar ) ) cut ( ( ( ( axiom mp modus ponens ( metavar var d end metavar imply ( metavar var e end metavar imply metavar var f end metavar ) ) ) modus ponens ( ( metavar var d end metavar imply ( metavar var e end metavar imply metavar var f end metavar ) ) imply ( ( metavar var d end metavar imply metavar var e end metavar ) imply ( metavar var d end metavar imply metavar var f end metavar ) ) ) ) conclude ( ( metavar var d end metavar imply metavar var e end metavar ) imply ( metavar var d end metavar imply metavar var f end metavar ) ) ) cut ( ( ( axiom mp modus ponens ( metavar var d end metavar imply metavar var e end metavar ) ) modus ponens ( ( metavar var d end metavar imply metavar var e end metavar ) imply ( metavar var d end metavar imply metavar var f end metavar ) ) ) conclude ( metavar var d end metavar imply metavar var f end metavar ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050502+ by Klaus Grue,