Logiweb codex of logic in pyk
Up
Help
ref-0-id-0
logic
ref-0-id-1
double rule prime mp
ref-0-id-2
inference axiom prime a one
ref-0-id-3
rule hypothesize
ref-0-id-4
inference axiom prime a two
ref-0-id-5
inference inference axiom prime a two
ref-0-id-6
hypothetical rule prime mp
ref-0-id-7
double inference inference axiom prime a two
ref-0-id-8
double hypothetical rule prime mp
ref-0-id-9
mendelson lemma one eight
ref-0-id-10
inference mendelson lemma one eight
ref-0-id-11
rule repetition
ref-0-id-12
mendelson exercise one fourtyseven b
ref-0-id-13
mendelson exercise one fourtyseven c
ref-0-id-14
mendelson exercise one fourtyseven e
ref-0-id-15
mendelson lemma one eleven d
ref-0-id-16
hypothetical inference axiom prime a one
ref-0-id-17
hypothetical inference axiom prime a two
ref-0-id-18
hypothetical inference inference axiom prime a two
ref-0-id-19
hypothetical mendelson exercise one fourtyseven b
ref-0-id-20
hypothetical mendelson exercise one fourtyseven c
ref-0-id-21
mendelson lemma one eleven c
ref-0-id-22
mendelson exercise one fourtyeight d
ref-0-id-23
mendelson exercise one fourtyeight e
ref-0-id-24
mendelson exercise one fourtyeight h
ref-0-id-25
mendelson corollary one ten a
ref-0-id-26
mendelson corollary one ten b
ref-0-id-27
inference axiom prime s one
ref-0-id-28
inference inference axiom prime s one
ref-0-id-29
inference axiom prime s two
ref-0-id-30
hypothetical inference axiom prime s two
ref-0-id-31
inference inference axiom prime s nine
ref-0-id-32
rule induction
ref-0-id-33
mendelson proposition three two a
ref-0-id-34
mendelson proposition three two b
ref-0-id-35
inference mendelson proposition three two b
ref-0-id-36
mendelson proposition three two c
ref-0-id-37
inference inference mendelson proposition three two c
ref-0-id-38
hypothetical inference inference mendelson proposition three two c
ref-0-id-39
mendelson proposition three two d
ref-0-id-40
inference inference mendelson proposition three two d
ref-0-id-41
hypothetical inference inference mendelson proposition three two d
ref-0-id-42
mendelson proposition three two f
ref-0-id-43
mendelson proposition three two f i
ref-0-id-44
mendelson proposition three two f ii
ref-0-id-45
mendelson proposition three two g
ref-0-id-46
mendelson proposition three two g i
ref-0-id-47
mendelson proposition three two g ii
ref-0-id-48
mendelson proposition three two h
ref-0-id-49
mendelson proposition three two h i
ref-0-id-50
mendelson proposition three two h ii
ref-0-id-51
hypothesis
ref-0-id-52
instance
ref-0-id-53
conclusion
ref-0-id-54
* macro modus ponens *
ref-0-id-55
* macro first modus ponens * macro second modus ponens *
ref-0-id-56
* hypothetical macro modus ponens *
ref-0-id-57
* hypothetical macro first modus ponens * hypothetical macro second modus ponens var *
ref-0-id-58
line * hypothesis modus ponens * modus ponens * indeed * end line *
ref-0-id-59
line * hypothesis first modus ponens * modus ponens * indeed * end line *
ref-0-id-60
line * hypothesis second modus ponens * modus ponens * indeed * end line *
ref-0-id-61
line * hypothesis double modus ponens * modus ponens * modus ponens * indeed * end line *
ref-0-id-62
line * hypothesis indeed * end line *
ref-0-id-63
line * hypothesis because * indeed * end line *
ref-0-id-64
line * hypothesis raw because * indeed * end line *
The pyk compiler
, version 0.grue.20050603 by
Klaus Grue
,
GRD-2005-07-04.UTC:07:21:12.778995
=
MJD-53555.TAI:07:21:44.778995
=
LGT-4627178504778995e-6