Logiweb(TM)

Logiweb aspects of mendelson lemma one eight in pyk

Up Help

The predefined "pyk" aspect

define pyk of mendelson lemma one eight as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small l unicode small e unicode small m unicode small m unicode small a unicode space unicode small o unicode small n unicode small e unicode space unicode small e unicode small i unicode small g unicode small h unicode small t unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of mendelson lemma one eight as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode backslash unicode space unicode backslash unicode small t unicode small e unicode small x unicode small t unicode small b unicode small f unicode left brace unicode one unicode period unicode eight unicode right brace unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of mendelson lemma one eight as system prime s infer all metavar var a end metavar indeed ( metavar var a end metavar peano imply metavar var a end metavar ) end define

The user defined "the proof aspect" aspect

define proof of mendelson lemma one eight as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed ( ( axiom prime a one conclude ( metavar var a end metavar peano imply ( ( metavar var a end metavar peano imply metavar var a end metavar ) peano imply metavar var a end metavar ) ) ) cut ( ( axiom prime a one conclude ( metavar var a end metavar peano imply ( metavar var a end metavar peano imply metavar var a end metavar ) ) ) cut ( ( ( inference inference axiom prime a two modus ponens ( metavar var a end metavar peano imply ( ( metavar var a end metavar peano imply metavar var a end metavar ) peano imply metavar var a end metavar ) ) ) modus ponens ( metavar var a end metavar peano imply ( metavar var a end metavar peano imply metavar var a end metavar ) ) ) conclude ( metavar var a end metavar peano imply metavar var a end metavar ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-07-04.UTC:07:55:10.732497 = MJD-53555.TAI:07:55:42.732497 = LGT-4627180542732497e-6