define pyk of mendelson proposition three two h as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small h unicode end of text end unicode text end text end define
define tex of mendelson proposition three two h as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode backslash unicode space unicode backslash unicode small t unicode small e unicode small x unicode small t unicode small b unicode small f unicode left brace unicode three unicode period unicode two unicode right brace unicode backslash unicode space unicode small h unicode end of text end unicode text end text end define
define statement of mendelson proposition three two h as system prime s infer ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) end define
define proof of mendelson proposition three two h as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( mendelson proposition three two h i conclude ( ( var x peano var peano plus peano zero ) peano is ( peano zero peano plus ( var x peano var ) ) ) ) cut ( ( mendelson proposition three two h ii conclude ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( var y peano var peano succ peano plus ( var x peano var ) ) ) ) ) cut ( ( ( rule induction modus ponens ( ( var x peano var peano plus peano zero ) peano is ( peano zero peano plus ( var x peano var ) ) ) ) modus ponens ( ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) peano imply ( ( var x peano var peano plus ( var y peano var peano succ ) ) peano is ( var y peano var peano succ peano plus ( var x peano var ) ) ) ) ) conclude ( ( var x peano var peano plus ( var y peano var ) ) peano is ( var y peano var peano plus ( var x peano var ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,