Logiweb(TM)

Logiweb aspects of mendelson proposition three two f ii in pyk

Up Help

The predefined "pyk" aspect

define pyk of mendelson proposition three two f ii as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small p unicode small r unicode small o unicode small p unicode small o unicode small s unicode small i unicode small t unicode small i unicode small o unicode small n unicode space unicode small t unicode small h unicode small r unicode small e unicode small e unicode space unicode small t unicode small w unicode small o unicode space unicode small f unicode space unicode small i unicode small i unicode end of text end unicode text end text end define

The predefined "tex" aspect

define tex of mendelson proposition three two f ii as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode backslash unicode space unicode backslash unicode small t unicode small e unicode small x unicode small t unicode small b unicode small f unicode left brace unicode three unicode period unicode two unicode right brace unicode backslash unicode space unicode small f unicode backslash unicode space unicode small i unicode small i unicode end of text end unicode text end text end define

The user defined "the statement aspect" aspect

define statement of mendelson proposition three two f ii as system prime s infer ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano succ peano is ( peano zero peano plus ( var x peano var peano succ ) ) ) ) end define

The user defined "the proof aspect" aspect

define proof of mendelson proposition three two f ii as lambda var c dot lambda var x dot proof expand quote system prime s infer ( ( mendelson lemma one eight conclude ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) ) ) cut ( ( axiom prime s six conclude ( ( peano zero peano plus ( var x peano var peano succ ) ) peano is ( ( peano zero peano plus ( var x peano var ) ) peano succ ) ) ) cut ( ( ( inference axiom prime a one modus ponens ( ( peano zero peano plus ( var x peano var peano succ ) ) peano is ( ( peano zero peano plus ( var x peano var ) ) peano succ ) ) ) conclude ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( ( peano zero peano plus ( var x peano var peano succ ) ) peano is ( ( peano zero peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( hypothetical inference axiom prime s two modus ponens ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) ) ) conclude ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano succ peano is ( ( peano zero peano plus ( var x peano var ) ) peano succ ) ) ) ) cut ( ( ( ( hypothetical inference inference mendelson proposition three two d modus ponens ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano succ peano is ( ( peano zero peano plus ( var x peano var ) ) peano succ ) ) ) ) modus ponens ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( ( peano zero peano plus ( var x peano var peano succ ) ) peano is ( ( peano zero peano plus ( var x peano var ) ) peano succ ) ) ) ) conclude ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano succ peano is ( peano zero peano plus ( var x peano var peano succ ) ) ) ) ) cut ( ( inference mendelson lemma one eight modus ponens ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano succ peano is ( peano zero peano plus ( var x peano var peano succ ) ) ) ) ) conclude ( ( var x peano var peano is ( peano zero peano plus ( var x peano var ) ) ) peano imply ( var x peano var peano succ peano is ( peano zero peano plus ( var x peano var peano succ ) ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define

The pyk compiler, version 0.grue.20050603 by Klaus Grue,
GRD-2005-07-04.UTC:07:55:10.732497 = MJD-53555.TAI:07:55:42.732497 = LGT-4627180542732497e-6