define pyk of mendelson corollary one ten a as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small c unicode small o unicode small r unicode small o unicode small l unicode small l unicode small a unicode small r unicode small y unicode space unicode small o unicode small n unicode small e unicode space unicode small t unicode small e unicode small n unicode space unicode small a unicode end of text end unicode text end text end define
define tex of mendelson corollary one ten a as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode backslash unicode space unicode backslash unicode small t unicode small e unicode small x unicode small t unicode small b unicode small f unicode left brace unicode one unicode period unicode one unicode zero unicode right brace unicode backslash unicode space unicode small a unicode end of text end unicode text end text end define
define statement of mendelson corollary one ten a as system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply metavar var b end metavar ) infer ( ( metavar var b end metavar peano imply metavar var c end metavar ) infer ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) end define
define proof of mendelson corollary one ten a as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply metavar var b end metavar ) infer ( ( metavar var b end metavar peano imply metavar var c end metavar ) infer ( ( mendelson lemma one eight conclude ( metavar var a end metavar peano imply metavar var a end metavar ) ) cut ( ( ( ( mendelson exercise one fourtyseven b modus ponens ( metavar var a end metavar peano imply metavar var a end metavar ) ) modus ponens ( metavar var a end metavar peano imply metavar var b end metavar ) ) conclude ( metavar var a end metavar peano imply metavar var b end metavar ) ) cut ( ( ( ( mendelson exercise one fourtyseven b modus ponens ( metavar var a end metavar peano imply metavar var b end metavar ) ) modus ponens ( metavar var b end metavar peano imply metavar var c end metavar ) ) conclude ( metavar var a end metavar peano imply metavar var c end metavar ) ) cut ( ( inference mendelson lemma one eight modus ponens ( metavar var a end metavar peano imply metavar var c end metavar ) ) conclude ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,