define pyk of hypothetical inference axiom prime a two as text unicode start of text unicode small h unicode small y unicode small p unicode small o unicode small t unicode small h unicode small e unicode small t unicode small i unicode small c unicode small a unicode small l unicode space unicode small i unicode small n unicode small f unicode small e unicode small r unicode small e unicode small n unicode small c unicode small e unicode space unicode small a unicode small x unicode small i unicode small o unicode small m unicode space unicode small p unicode small r unicode small i unicode small m unicode small e unicode space unicode small a unicode space unicode small t unicode small w unicode small o unicode end of text end unicode text end text end define
define tex of hypothetical inference axiom prime a two as text unicode start of text unicode capital a unicode two unicode apostrophe unicode underscore unicode left brace unicode small i unicode small h unicode right brace unicode end of text end unicode text end text end define
define statement of hypothetical inference axiom prime a two as system prime s infer all metavar var h end metavar indeed all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var h end metavar peano imply ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) infer ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) end define
define proof of hypothetical inference axiom prime a two as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var h end metavar indeed all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var h end metavar peano imply ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) infer ( ( mendelson lemma one eight conclude ( metavar var h end metavar peano imply metavar var h end metavar ) ) cut ( ( axiom prime a two conclude ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) cut ( ( ( inference axiom prime a one modus ponens ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) conclude ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) cut ( ( ( ( inference inference axiom prime a two modus ponens ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) modus ponens ( metavar var h end metavar peano imply ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) ) conclude ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) cut ( ( inference mendelson lemma one eight modus ponens ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) conclude ( metavar var h end metavar peano imply ( ( metavar var a end metavar peano imply metavar var b end metavar ) peano imply ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,