define pyk of mendelson exercise one fourtyseven b as text unicode start of text unicode small m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode space unicode small e unicode small x unicode small e unicode small r unicode small c unicode small i unicode small s unicode small e unicode space unicode small o unicode small n unicode small e unicode space unicode small f unicode small o unicode small u unicode small r unicode small t unicode small y unicode small s unicode small e unicode small v unicode small e unicode small n unicode space unicode small b unicode end of text end unicode text end text end define
define tex of mendelson exercise one fourtyseven b as text unicode start of text unicode capital m unicode small e unicode small n unicode small d unicode small e unicode small l unicode small s unicode small o unicode small n unicode backslash unicode space unicode backslash unicode small t unicode small e unicode small x unicode small t unicode small b unicode small f unicode left brace unicode one unicode period unicode four unicode seven unicode right brace unicode backslash unicode space unicode small b unicode end of text end unicode text end text end define
define statement of mendelson exercise one fourtyseven b as system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply metavar var b end metavar ) infer ( ( metavar var b end metavar peano imply metavar var c end metavar ) infer ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) end define
define proof of mendelson exercise one fourtyseven b as lambda var c dot lambda var x dot proof expand quote system prime s infer all metavar var a end metavar indeed all metavar var b end metavar indeed all metavar var c end metavar indeed ( ( metavar var a end metavar peano imply metavar var b end metavar ) infer ( ( metavar var b end metavar peano imply metavar var c end metavar ) infer ( ( ( inference axiom prime a one modus ponens ( metavar var b end metavar peano imply metavar var c end metavar ) ) conclude ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) cut ( ( ( inference inference axiom prime a two modus ponens ( metavar var a end metavar peano imply ( metavar var b end metavar peano imply metavar var c end metavar ) ) ) modus ponens ( metavar var a end metavar peano imply metavar var b end metavar ) ) conclude ( metavar var a end metavar peano imply metavar var c end metavar ) ) ) ) ) end quote state proof state cache var c end expand end define
The pyk compiler, version 0.grue.20050603 by Klaus Grue,