
Dataset Sensitive Autotuning of Multi-Versioned
Code based on Monotonic Properties ?

Autotuning in Futhark

Philip Munksgaard[0000−0001−9499−199X], Svend Lund Breddam, Troels
Henriksen[0000−0002−1195−9722], Fabian Cristian Gieseke[0000−0001−7093−5803],

and Cosmin Oancea[0000−0001−5421−6876]

DIKU, University of Copenhagen, Copenhagen, Denmark
philip@munksgaard.me, svendbreddam@gmail.com, athas@sigkill.dk,

fabian.gieseke@di.ku.dk, cosmin.oancea@diku.dk

Abstract. Functional languages allow rewrite-rule systems that aggres-
sively generate a multitude of semantically-equivalent but differently-
optimized code versions. In the context of GPGPU execution, this paper
addresses the important question of how to compose these code versions
into a single program that (near-)optimally discriminates them across
different datasets. Rather than aiming at a general autotuning frame-
work reliant on stochastic search, we argue that in some cases, a more
effective solution can be obtained by customizing the tuning strategy for
the compiler transformation producing the code versions.

We present a simple and highly-composable strategy which requires that
the (dynamic) program property used to discriminate between code ver-
sions conforms with a certain monotonicity assumption. Assuming the
monotonicity assumption holds, our strategy guarantees that if an opti-
mal solution exists it will be found. If an optimal solution doesn’t exist,
our strategy produces human tractable and deterministic results that
provide insights into what went wrong and how it can be fixed.

We apply our tuning strategy to the incremental-flattening transforma-
tion supported by the publicly-available Futhark compiler and compare
with a previous black-box tuning solution that uses the popular Open-
Tuner library. We demonstrate the feasibility of our solution on a set
of standard datasets of real-world applications and public benchmark
suites, such as Rodinia and FinPar. We show that our approach shortens
the tuning time by a factor of 6× on average, and more importantly, in
five out of eleven cases, it produces programs that are (as high as 10×)
faster than the ones produced by the OpenTuner-based technique.
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tening, Performance
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1 Introduction

Adapting the compilation technique to the dataset and hardware characteristics
is an important research direction [8], especially in the functional context where
rewrite-rule systems can, in principle, be used to aggressively generate a multi-
tude of semantically-equivalent but differently-optimized versions of code [27].

The main target of this work is highly-parallel hardware, such as GPGPUs,
which have been successfully used to accelerate a number of big-compute/data
applications from various fields. Such systems are however notoriously difficult
to program when the application exhibits nested parallelism—think imperfectly-
nested parallel loops whose sizes are statically unknown/unpredictable.

Common parallel-programming wisdom says that, in principle, one should
exploit enough levels of parallelism to fully utilize the hardware1 and to efficiently
sequentialize the parallelism in excess. However, even this simple strategy is
difficult to implement when the parallel sizes vary significantly across (classes
of) datasets: for example, one dataset may offer enough parallelism in the top
parallel loop, while others require exploiting several levels of inner parallelism.

To make matters even more difficult, the common wisdom does not always
hold: in several important cases [3, 14] it has been shown that even when the
outer parallelism is large enough, exploiting inner levels of parallelism is more
efficient, e.g., when the additional parallelism can be mapped to the threads of a
Cuda block, and when the intermediate results fit in shared memory.2 Finally, the
best optimization strategy may not even be portable across different generations
of the same type of hardware (GPU) from the same vendor [19].3

In essence, for many important applications, there is no silver-bullet opti-
mization recipe producing one (statically-generated) code version resulting in
optimal performance for all datasets and hardware of interest. A rich body of
work has been aimed at solving this pervasive problem, for example by applying:

1. supervised offline training techniques to infer the best configuration of com-
piler flags that results in best-average performance across datasets [8, 13, 5];

2. various compile-time code-generation recipes for stencil applications, from
which the best one is selected offline by stochastic methods and used online
to compute same-shape stencils on larger arrays [24, 12, 15];

3. dynamic granularity-control analysis [2, 28] aimed at multicore execution,
but which require runtime-system extensions that are infeasible on GPUs.

Such solutions (1-2) however, do not aim to cluster classes of datasets to the
code version best suited for them, and thus to construct a single program that of-
fers optimal performance for all datasets. Instead, a promising technique, dubbed

1 Current GPU hardware require about a hundred thousands of concurrent threads to
reach peak performance, and the number is still growing according to Moores law.

2 In Cuda, shared memory refers to a small and fast memory that is used as a user-
managed cache, and enables inter-thread communication within a block of threads.

3 The LocVolCalib benchmark of FinPar suite [3], run on the large dataset, favors
the common-wisdom approach on a Kepler GPU, but prefers exploiting inner levels
of parallelism on a Turing GPU. Matters can only worsen across hardware vendors.
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Fig. 1: The tuning tree of the paper’s running examples. V1...3 are code versions
and B1...2 are the predicates discriminating them. P1...2 are the degree of paral-
lelism exploited by V1...2 and T1...2 are the thresholds subject to autotuning.

incremental flattening [19], has been studied in the context of Futhark lan-
guage [18, 11]: semantically-equivalent code versions are statically generated—by
incrementally mapping increasing levels of application parallelism to hardware
parallelism—and are combined into one program by guarding each of them with
a predicate that compares the amount of exploited parallelism of that version
with a externally defined threshold variable (integer), see fig. 1.

The amount of exploited parallelism is a dynamic program property (known
at runtime), while the threshold values are found by offline tuning on a set of rep-
resentative datasets. The proposed autotuner [19] uses a black-box approach that
relies heavily on the stochastic heuristics of OpenTuner [4], but is impractical
for application development and mainstream use, as demonstrated in section 4
on a number of standard datasets of real-world applications [14, 16] and public
benchmarks from Rodinia [7] and FinPar [3] suites:

– even relatively “simple” programs, i.e., exhibiting a small number of thresh-
olds, may result in unpredictable and suboptimal tuning times;

– the approach does not scale well, because the search space grows exponen-
tially with the number of thresholds,4 and thus an optimal result that per-
fectly discriminates between code versions may not be found, even if it exists.

1.1 Scope and Contributions of This Paper

Instead of aiming to implement a general flavor of autotuning (e.g., relying on
stochastic search), this paper argues in favor of promoting a tighter compiler-
autotuner codesign, by customizing the tuning technique to the code transfor-
mation producing the multi-versioned code. Our framework assumes that the
multi-versioned program has the structure of a forest5 of tuning trees, such
as the one depicted in fig. 1, namely that code versions V1...3 are placed in-
side branches B1...2, whose conditions compare a dynamic program property
(value) P1...2 against one freshly introduced unknown/threshold variable T1...2.
Our framework finds an optimal integral value for each threshold as long as the
dynamic properties (Pi) conform with a monotonic assumption, namely:

4 A program may consist of several computational kernels, and each such kernel may
produce multi-versioned code, hence the number of thresholds can grow large.

5 Each tuning tree corresponds to a computational kernel of the original program.
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If for a certain dynamic program value Pi, the corresponding code version
Vi is found to be faster/slower than any/a combination of versions belonging to
the subtree at the right of Bi, then it will remain faster/slower for any dynamic
program value greater/less than Pi.

If the dynamic program value refers to the utilized parallelism, the trivial
intuition for monotonicity is that if a code version parallelizes only the outer-
most loop, and has been found optimal for some loop count, then increasing
the count of that parallel loop should not require exploiting the parallelism of
inner loops. One can similarly reason for (combined) properties referring to load
balancing, thread divergence, or locality of reference. Conversely, our technique
is not suitable for tuning tile sizes, for example.

These limitations enable the design of a simple, but highly-composable and
practically-effective tuning strategy. We present the intuition by using the tuning
tree of fig. 1 and the simplifying assumption that the dynamic property values Pi

do not change during the execution of a dataset. Then autotuning should select
(exactly) one code version per (training) dataset. The rationale is as follows:

For a fixed dataset d, we can always find an instantiation of threshold values
that exercises V3 and then V2, and we can measure their runtime. We can now
combine V2 and V3 into an optimal subprogram on d, named V ′2 , by assigning
T2 the maximal interval that selects the fastest of the two, i.e., [0, P2] if V2 is
faster and [P2 + 1,∞] otherwise—please notice that maximizing the interval is
sound under the monotonic assumption. We continue in a recursive fashion to
compute the interval of T1 that discriminates between V1 and subprogram V ′2 .

Once we have (independently) computed partial solutions for each training
dataset, we compute a global solution for each threshold by intersecting the
maximal intervals across datasets. It is easy to see, by definition of intersection
and maximal intervals, that (i) the resulted intervals are maximal, (ii) if non-
empty, then any instantiation of the resulting intervals optimally satisfies each
dataset, and (iii) conversely, if empty, then no solution exists that optimally
satisfies all datasets—we use the term “near-optimal” to accommodate the empty
case. Furthermore, this rationale naturally extends to the general case in which
the values of Pi might vary during the execution of a dataset (see section 3.5).

In this case, the maximal interval of Ti that perfectly discriminates versions
Vi and Vi+1 is found by binary searching the set of mi distinct values taken by
Pi. This requires O(log2 mi) program runs, instead of O(1) in the simple case.

In comparison with solutions reliant on stochastic search, our technique:

– processes each dataset independently and composably between code versions,
thus requiring a predictable and small number of program runs;

– produces a guaranteed optimal solution that perfectly discriminates the
training datasets if the resulting intervals are non-empty;6

– produces human tractable, deterministic7 results, which, if sub-optimal, pro-
vide insight into what went wrong (empty intervals) and how it can be fixed.

6 Of course, the accuracy of classifying new (test) datasets depends on whether the
training datasets capture the sweet points—this is the user’s responsibility.

7 It produces the same result modulo variances in execution time.



Dataset Sensitive Autotuning of Multi-Versioned Code 5

For example, one can consider only the maximal set of datasets that produces
non-empty intervals, or one can possibly instruct the compiler to generate
the code versions in a different order or even redundantly, see section 3.4.

The information used by our autotuner requires minimal and trivial compiler
modifications that add profiling printouts to the resulting code (details in sec-
tion 3.1), hence our framework can be easily ported to other compilers employing
similar multi-versioned analysis.

We demonstrate the benefits of our approach by applying it to Futhark’s in-
cremental flattening analysis and evaluating a number of (i) real-world applica-
tions [14, 16] from the remote-sensing and financial domains and (ii) benchmarks
from standard suites, such as Rodinia [7] and Finpar [3, 20]. In comparison with
the OpenTuner-based implementation, our method reduces the tuning time by
a factor as high as 22.6× and on average 6.4×, and in 5 out of the 11 cases it
finds better thresholds that speed-up program execution by as high as 10×.

2 Background

This section provides a brief overview of the Cuda and Futhark features necessary
to understand this paper.

2.1 Brief Overview of Cuda

Cuda [1] is a programming model for Nvidia GPGPUs. Writing a Cuda program
requires the user to explicitly (de-)allocate space on the GPU device, and to copy
the computation input and result between the host (CPU) and device (GPU)
memory spaces. The GPU-executed code is written as a Cuda kernel and exe-
cuted by all threads. The parallel iteration space is divided into a grid of blocks of
threads, where the grid and block can have up to three dimensions. The threads
in a block can be synchronized by means of barriers, and they can communicate
by using a small amount of fast/scratchpad memory, called shared memory. The
shared memory is intended as a user-managed cache, since it has much smaller
latency—one-to-two orders of magnitude—than the global memory. The global
memory is accessible to all threads, but in principle no synchronization is possi-
ble across threads in different blocks—other than terminating the kernel, which
has full-barrier semantics.

2.2 Incremental Flattening

Futhark [18, 11] uses a conventional functional syntax. Futhark programs are
written as a potentially-nested composition of second-order array combinators
(SOACs) that have inherently-parallel semantics—such as map, reduce, scan,
scatter, generalized histograms [17]—and loops that are always executed sequen-
tially. Loops have the semantics of a tail recursive function, and they explicitly
declare the variables that are variant throughout the execution of the loop.
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1 let mapscan1 [m][n] (xss: [m][n]i32) : [m][n]i32 =

2 map2 (\( row: [n]i32) (i: i32) ->

3 loop (row: [n]i32) for _ in 0 ..< 64 do

4 let row ’ = map (+ i) row

5 in scan (+) 0 row ’

6 )

7 xss (0 ..< m)

Fig. 2: Futhark program with size-invariant parallelism.

Fig. 2 shows the contrived but illustrative mapscan1 function that is used as
a running example in this paper. The function takes as input a m×n matrix and
produces a m×n matrix as result (line 1). The function body maps each row of
the input matrix and each row number i with a lambda function (line 2) that
consists of a loop that iterates 64 times (line 3). The loop-variant variable row

is initialized with the row i of the xss matrix, and the result of the loop-body
expression will provide the input for the next iteration. The loop body adds i to
each element of row (line 4), and computes all prefix sums of the result (line 5).

One can observe that mapscan1 has two levels of imperfectly-nested paral-
lelism: the outer map at line 2 and the inner map-scan composition at lines 4-5,
but the Cuda model essentially supports only flat parallelism. The application
parallelism is mapped to the hardware by the incremental-flattening analysis [19],
which builds on Blelloch’s transformation [6]8 but is applied incrementally:

V1: a first code version is produced by utilizing only the parallelism of the outer
map of size m, and sequentializing the inner map-scan composition.

V2: a second code version (that uses m × n parallelism) is produced that maps
the outer map parallelism on the Cuda grid, sets the Cuda block size to the
size n of inner parallelism, and performs the inner map-scan composition
in parallel by each Cuda block of threads. The intermediate arrays row and
row’ are maintained and reused from Cudas fast shared memory.

V3: the flattening procedure is (recursively) applied, for example by interchang-
ing the outer map inside the loop, and by distributing it across the inner map
and scan expressions. The arrays will be maintained in global memory. In
principle, if the nested-parallel depth is greater than 2, then the recursive
application will produce many more code versions.

Unfortunately, when flattening mapscan1, we don’t statically know what the
different degrees of parallelism will be, because they depend on the input data.
If the input matrix is very tall, we might prefer to use the outer parallelism and
sequentialize the inner, and vice versa if the matrix is wide. Essentially, each
of the three generated code versions V1..3 might be the best one for a class of
datasets. As mentioned earlier, Futhark will generate all three code versions and
arrange them in a tuning tree as shown in fig. 1, where the dynamic program
property refers to the degree of parallelism utilized by a certain code version,
e.g., P1 = m and P2 = n (or P2 = m · n).

8 Blelloch’s flattening also work in the presence of divide-and-conquer recursion, but
Futhark does not support recursive functions.
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3 Autotuning Framework

3.1 Tuning Forests, Program Instrumentation

While the introduction has presented the intuition in terms of the tuning tree
of fig. 1, the structure used by the tuner is essentially a tuning forest, because:

1. a program may consist of multiple computational kernels, each of them po-
tentially generating multi-version code, and

2. the recursive step of incremental flattening may split the original compu-
tation by means of (outer)-map fission into multiple kernels, each of them
potentially generating multiple code versions.

Other than the high-level structure that discriminates between code versions—
i.e., the branches B1..2—the tuning-forest representation is completely oblivious
to the control flow in which various code versions are (arbitrarily) nested in.
The only manner in which this control flow is (indirectly) observable by and
relevant to the tuning framework is by the fact that a dynamic property Pi may
take multiple values during the execution of one dataset, e.g., if a code version
is executed inside a loop then its degree of parallelism may also be loop variant.
Our approach requires (minimal) compiler instrumentation, added to determine:

1. the structure of the tuning forest: this is static information documenting the
control dependencies between thresholds: in fig. 1, T2 depends on T1 because
the code versions V2 and V3, are only executed when P1 ≥ T1 fails.

2. dynamic information corresponding to the dynamic property (degree of par-
allelism) of each executed kernel instance, and the overall running time of
the application. Importantly, we do not require the ability to perform fine-
grained profiling of program fragments.

3.2 Autotuning Overview

The key insight of the tuning algorithm is that one can perform the tuning in-
dependently for each dataset, and that the result of tuning each threshold is
a maximal interval. Furthermore, the threshold interval can be found by per-
forming a bottom-up traversal of the tuning forest, where each step tunes one
threshold (also individually). Finally, a globally-optimal solution can be found
by intersecting the locally-optimal intervals across all datasets and then selecting
any value in the resulting interval (as long as the training datasets are repre-
sentative). This is sound and guarantees that a near-optimal solution will be
found (if one exists) as long as the dynamic program property used as driver for
autotuning conforms with the following monotonic assumption:

If for a certain dynamic program value Pi, a code version Vi is found to be
faster/slower than any/a combination of versions belonging to the subtree at the
right of Bi, then it will remain faster/slower for any dynamic program value
greater/less than Pi.

The driver of the tuning algorithm is implemented by the function Tune-
Program, presented in fig. 3, which takes as arguments a program p and a
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1: function TuneProgram(p, ds)
2: . p is the program being run
3: . ds are the training datasets
4: . t = t1, . . . , tn are p’s thresholds in the order they appear in the tuning graph
5: rti ← (0,∞) for each program threshold ti, 1 ≤ i ≤ n
6: for d in ds do
7: ti ←∞, ∀1 ≤ i ≤ n
8: bestRun← run p on d with values (t1, . . . , tn)
9: for i in n . . . 1 do

10: ((lbi, ubi), bestRun)← TuneThreshold(p, d, t, i, bestRun)
11: ti ← (lbi + ubi)/2
12: rti ← rti ∩ (lbi, ubi)
13: end for
14: end for
15: return (rt1 , . . . , rtn)
16: end function

Fig. 3: Algorithm for tuning a program across a set of training datasets. For
a given dataset, the near-optimal interval for each threshold is (individually)
determined during a bottom-up traversal of the tuning tree (forest), where the
previously determined thresholds values are used for subsequent runs. The par-
tial results are aggregated across all datasets by taking the intersection of the
corresponding intervals.

set of training datasets ds and produces a globally-optimal interval rti for each
threshold ti, 1 ≤ i ≤ n. The outer loop starting on line 6 iterates over the avail-
able datasets. For each dataset, all thresholds are first set to infinity (line 7),
forcing the bottom-most code version to run, eg. V3 in fig. 1. Running that code
version and timing it (line 8) provides a baseline for further tuning. The loop on
lines 9–13 tunes each threshold in bottom-up order. After finding the optimal
threshold interval for each threshold (line 10), the threshold is set to an arbi-
trary value in the locally optimal interval (line 11) and finally the interval is
intersected with the globally optimal interval found so far (line 12).

3.3 Tuning Size-Invariant Thresholds on a Single Dataset

When tuning a single threshold, we need to distinguish between size-variant
and size-invariant branches. If during the execution of the given program on
a single dataset, we call a particular branch Bi size-invariant if, whenever it
is encountered in the tuning-graph, the corresponding dynamic program value,
Pi, is constant. If Pi can change during a single execution, we call the branch
size-variant. As an example, it is clearly the case that mapscan1 of fig. 2 is
size-invariant, because the parallel sizes do not change during execution, hence
neither does the degree of parallelism of each code version.

Because the degree of parallelism never changes, it stands to reason that for a
given branch we should always perform the same choice: Either use the guarded
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1: function TuneThresholdInvar(p, d, t, i, bestRun)
2: ePar ← exploitedPar(p, d, ti)
3: ti ← 0
4: newRun← run p on d with threshold values t
5: if new < best+ ε then
6: bestRun← min(newRun, bestRun)
7: lbi ← 0, ubi ← ePar
8: else
9: lbi ← ePar + 1, ubi ←∞

10: end if
11: return ((lbi, ubi), bestRun)
12: end function

Fig. 4: Tuning algorithm for a size-invariant threshold. exploitedPar(p, d, t) is
the constant amount of parallelism of the code version guarded by threshold t
on dataset d.
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(c) Targetting V1

in the collapsed
tree.

Fig. 5: Tuning the bottom-most threshold of the tuning-graph on a single dataset.

code version or progress further down the tree. Therefore, in order to find the
optimal threshold value for the given input, we have to time the guarded code
version, compare it to the best run time found further down the tree, and pick
a threshold value that chooses the fastest of the two.

Figure 4 shows the pseudocode of a version of TuneThreshold for tuning
a single size-invariant threshold on a given dataset by doing exactly that. The
arguments correspond to the arguments given to TuneThreshold in fig. 3. The
idea is simple: Whenever TuneThresholdInvar is called on a threshold Ti, all
the thresholds further down the tree (Tj where j > i) have already been tuned,
and the best run time that has been encountered so far is bestRun. Therefore,
we need to run the program once using the code version guarded by Ti (done
on line 4 of fig. 4) to determine if it is faster than any of the previously tested
code versions. If it is, the optimal threshold interval for Ti is the one that always
chooses Vi, namely the interval from 0 to Pi (lines 6–7). Otherwise the interval
from Pi + 1 to ∞ is optimal (line 8). As stated in the introduction, taking the
maximal interval is sound under the monotonic assumption.

Figure 5 shows an example of how the size-invariant tuning works. In fig. 5a
all thresholds are set to∞, forcing V3 to run. That allows us to find the baseline
performance and get the dynamic program values P1 = 10 and P2 = 50. Then,
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(b) Adding duplicate code
versions.

Fig. 6: Alternative versions of the tuning graph, enabling different constraints.

in fig. 5b, We use the knowledge of P2 to force V2 to run. The change in overall
run time of the program represents the difference between running code versions
V3 and V2. After choosing an optimal threshold, we can think of the bottom part
of the tree as one collapsed node, and continue our tuning by moving up the tree
to run V1, as seen in figure fig. 5c

3.4 Monotonicity Assumption

The monotonicity assumption, outlined in section 1.1, is what ultimately makes
our tuning method work, and it is therefore also the primary restriction for our
method. In essence, we assume that for any branch Bi, the performance of the
guarded code version as a function of Pi, is monotonically increasing compared
with any of the code versions further down the tree. In terms of fig. 5, if V1 is
found to outperform any of the other versions when P1 = 10, then V1 will keep
outperforming the other code versions for larger values of P1.

The implication of the monotonicity assumption is that there is at most one
cross-over point for each branch. The interval found using the method described
above precisely models this behavior.

This simplifying assumption relies on the compiler choosing meaningful mea-
sures to distinguish between code versions. In other words, for a given branch Bi

guarding Vi, the dynamic program value Pi should be a measure of how “good”
Vi is, compared to the code versions further down the tuning tree. That, in turn,
puts restrictions on what Pi should measure. In the context of incremental flat-
tening, each Pi measures the degree of parallelism of the guarded code version,
and thus the monotonicity assumption should hold according to the common
wisdom of optimizing the amount of parallelism.

The monotonicity assumption is closely related to the structure of the tun-
ing forest. The tuning forest built by incremental flattening, and tuned by our
technique, does not allow for more complex ways to discriminate between code
versions. For instance, in fig. 5, it is not possible to specify that V1 should be
preferred when P1 ≤ 10 or P1 ≥ 100, or that V1 should be preferred when
P1 ≥ 10 unless P2 ≥ 100. However, in principle, one can still model such casses
by instructing the compiler to generate the code versions in a different order, or
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1 let mapscan2 [k] (ns: []i32) (xs: [k]i32) : [k]i32 =

2 loop xs for n in ns do

3 let m = k / n

4 let xss ’: [m][n]i32 = unflatten m n xs

5 let xss =

6 map2 (\( row: [n]i32) (i: i32) ->

7 loop (row: [n]i32) for _ in 0 ..< 64 do

8 let row ’ = map (+i) row

9 in scan (+) 0 row ’

10 )

11 xss ’ (0 ..< m)

12 in flatten_to k xss

Fig. 7: Futhark program with size-variant parallelism.

even to duplicate some code versions in the tuning forest. For instance fig. 6a
shows a reordered version of fig. 1, which enables us to model the first restriction
while still conforming with the monotonicity assumption. Similarly, the second
restriction can be modeled by adding duplicate code versions, as in fig. 6b, where
V ′1 and V ′′1 are obtained from handicapping V1 in the case when P1 < 10 and
P1 > 100, respectively. Such transformations hint that the monotonicity restric-
tion can be relaxed to a piece-wise monotonic one.

While our tuning technique is primarily aimed at incremental-flattening anal-
ysis, it should work in other contexts, as long as the modeled (dynamic) program
property conforms with the monotonicity assumption.

3.5 Tuning Size-Variant Thresholds

In section 3.3, we assumed that the degrees of parallelism exhibited by the differ-
ent branches were constant during a single execution of the program. However,
that is not always the case.

For instance, the mapscan2 function shown in fig. 7 is size-variant. Again,
we’re not interested in the specific computation, but rather in the structure
which serves to illustrate the difference between size-invariant and size-variant
programs. The core algorithm is similar to mapscan1, but with a loop added
around it. In each iteration of the outer loop, the input is transformed into a
differently shaped matrix,9 which is then mapped over. If fig. 1 is the tuning
tree for this function, P1 and P2 would take on different values during the course
of a single execution, because the degrees of outer and inner parallelism (as
determined by the size of the matrix) change.

It follows that when tuning a single threshold on a single dataset, it is no
longer the case that the guard predicate should always be either true or false.
For instance, if a given dynamic program value Pi takes on the values 10, 50,

9 The unflatten function transforms an array into a matrix of the given dimensions.
flatten transforms a matrix into an array.
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1: function TuneVarThreshold(p, d, t, i, bestRun)
2: ePar′ = ePar1, . . . , eParm ← exploitedPar(p, d, ti)
3: ePar′ is a sorted sequence of unique values
4: ePar ← 0, ePar′,∞
5: low ← 0, rlow ← run p on d with ti set to 0
6: high← m+ 1, rhigh ← bestRun
7: (bestRun, bestInd)← minInd(rlow, low, rhigh, high)
8: while low < high do
9: mid← b(low + high)/2c

10: rmid ← run p on d with ti set to eParmid

11: if rhigh was faster than rmid then
12: low ← mid+ 1
13: else
14: if rlow was faster than rmid then
15: high← mid− 1
16: else
17: rgrd ← run p on d with ti set to eParmid+1

18: if rmid was faster than rgrd then
19: update bestRun, bestInd
20: high← mid− 1
21: else
22: update bestRun, bestInd
23: low ← mid+ 2
24: end if
25: end if
26: end if
27: end while
28: (lbi, ubi)← expand bestInd to left and right
29: within a given runtime variance
30: return ((lbi,ubi), bestRun)
31: end function

Fig. 8: Tuning algorithm for a size-variant threshold. ePar′ is a sorted sequence
of unique values denoting the amount of parallelism of the code version guarded
by threshold ti, encountered during the execution of dataset d.

and 100 during a single execution, it might be optimal to run Vi when Pi is
100, but otherwise choose the best code version further down the tree. However,
according to the monotonicity assumption, there will still be a single cross-over
point for size-variant thresholds, so it is still possible to find an optimal interval
for a single dataset. The question is, how do we do that efficiently.

The answer relies on the insight that only the exhibited dynamic program
values and∞ are relevant to try as threshold values, as these are the only values
that accurately discriminate between different distributions of code versions. In
the example from above, there are four possible ways to distribute the loop
iterations: Setting Ti to 10 will always choose Vi, setting Ti to 50 will choose
Vi except when Pi is 10, and so on. Any other value, like 45, will not result
in changes in what code versions are being run. Therefore, we only have to try
those particular values.
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Furthermore, the monotonicity assumption implies that there is a gradient in
the direction of the optimal solution, so we can actually perform a binary search
in the space of possible threshold values, by trying two neighboring threshold
candidates and determining the gradient in order to reduce the search space.

Figure 8 shows an alternate version of TuneThreshold which is used to
tune size-variant thresholds using this binary tuning technique. Using this func-
tion, we can tune one size-variant thresholds on a single dataset in O(log n) runs,
where n is the number of different degrees of parallelism exhibited.

We conclude with a formal argument of why the use of gradient is sound under
the monotonic assumption. We denote by Vi a code version that corresponds to
a size-variant threshold Ti whose dynamic program property takes n distinct
increasingly-sorted values P 1...n

i during the execution on a fixed dataset d. We
denote by V ′i+1 the near-optimal subprogram to the right of the branch. Assume

we have run the program with Ti ← P j
i and with Ti ← P j+1

i and that the first
run is faster. The only difference between the two runs is that the first run uses
Vi for dynamic property value P j

i while the second run uses V ′i+1 for P j
i ; the

other uses of code versions Vi and V ′i+1 are the same between the two runs.

The first run being faster thus means that Vi is faster than V ′i+1 for the

dynamic value P j
i , and by the monotonic assumption, it follows that it will

remain faster for any value higher than P j
i , which means that we should continue

the binary search to the left of P j
i (lines 19-20 in fig. 8). Conversely, following

a similar logic, if the second run is faster, then we should continue the binary
search to the right of P j

i (lines 22-23 in fig. 8).

4 Experimental Validation

This section evaluates the tuning time of our technique as well as the performance
of the tuned programs (i.e., the accuracy of tuning), by comparing with results
obtained using the old OpenTuner-based black-box tuner. All benchmarks are
tuned and run on a GeForce RTX 2080Ti GPU, though we have observed similar
results on an older GTX780Ti.

We use a set of publicly available, non-trivial benchmarks and datasets. For
each benchmark, we base our analysis on two datasets, chosen to exhibit dif-
ferent degrees of parallelism and to prefer different code versions. The bench-
marks, datasets and the number of thresholds are shown in table 1. Heston
and BFAST are real-world applications: Heston is a calibration program for the
Hybrid Stochastic Local Volatility / Hull-White model [16], for which we use
datasets from the futhark-benchmarks repository 10. BFAST [14] is used to
detect landscape changes, such as deforestation, in satellite time series data and
is widely used by the remote sensing community. We use the peru and africa
datasets from the futhark-kdd19 repository 11.

10 https://github.com/diku-dk/futhark-benchmarks
11 https://github.com/diku-dk/futhark-kdd19
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Benchmark D1 D2 # Thrs. Opent. Our Speedup

Heston 1062 quotes 10000 quotes 9 3798s 168s 22.59x
BFAST peru africa 16 1127s 206s 5.47x
LocVolCalib medium large 2 101s 21s 4.83x
OptionPricing small large 1 31s 6s 5.40x
LUD M256×256 M2048×2048 9 611s 430s 1.42x
Backprop 214 220 1 30s 8s 3.65x

LavaMD M103×50 M33×50 4 104s 28s 3.67x
NW M2048×2048 M1024×1024 6 222s 29s 7.62x
NN 1× 855280 4096× 128 3 125s 36s 3.48x
SRAD 1×M502×458 1024×M16×16 4 148s 28s 5.31x

Pathfinder 1×M100×105 391×M100×256 1 66s 10s 6.81x

Table 1: Tuning-time speedup between the OpenTuner implementation and our
autotuner on a number of benchmarks on GeForce RTX 2080 Ti. There are two
datasets for each benchmark, D1 and D2, with dataset sizes given in their respec-
tive columns. The LUD benchmark is size-variant, the rest are size-invariant.

LocVolCalib (local volatilty calibration) and OptionPricing are implementa-
tions of real-world financial computations from FinPar [3, 20], for which we use
datasets from the finpar repository 12.

LUD, Backprop, LavaMD, NW, NN, SRAD and Pathfinder are Futhark im-
plementations of benchmarks from the Rodinia benchmark suite [7]. Some Ro-
dinia benchmarks, like Backprop, only has one default dataset (layer length equal
to 216). In those cases we’ve created datasets that span the Rodinia inputs—
e.g., layer length 214 and 220 for Backprop—otherwise we have used the Ro-
dinia datasets directly. The NW, SRAD and Pathfinder benchmarks implement
batched versions of their respective algorithms, so the outer number is the num-
ber of matrix inputs (M denotes matrix). For instance, SRAD solves one instance
of an image of size 502× 458 for D1, and 1024 different images of sizes 16× 16
for D2, while NN solves one nearest-neighbor problem for one query and 855280
reference points for D1, and 4096 problems each having 128 reference points.

We wish to investigate the impact of our tuning method on tuning time and
run time using the tuned thresholds. Because the OpenTuner based tuner is in-
herently random, and benchmarking GPU programs is suspectible to run-time
fluctuations, we base our analysis on three separate autotuning and benchmark-
ing passes. For each pass, we first benchmark all programs untuned by run-
ning them 500 times with each dataset, then we tune the programs using the
OpenTuner-tool and benchmark all programs using the found thresholds (500
runs), and finally we tune using our autotuner and benchmark again (500 runs).
We’ll pick the best tuning times for both OpenTuner and our autotuner, but it
should be noted that the OpenTuner-tool has a significantly larger variance in
tuning time on some benchmarks, like LUD (between 366s and 881s). To mea-
sure run time performance we first find the fastest out of the 500 runs in each

12 https://github.com/HIPERFIT/finpar
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pass. Then, for OpenTuner, we will show both the best and worst of those three
passes, while for our autotuner we will only show the worst, because the vari-
ance is significantly smaller (and our tuning strategy is deterministic otherwise).
For OpenTuner, it is also important to point out that, because it was the only
tool available to tune thresholds before creating the new autotuner, it has been
highly optimized, and will, among other things, use memoization techniques to
minimize the number of runs, i.e., it avoids running the same combination of
code versions twice.

Table 1 shows the datasets used for each benchmark, the number of tuning
thresholds13 and the average tuning times using OpenTuner and our autotuner,
as well as the speedup in tuning time. Overall, we see a significant reduction in
tuning time, from 1.4x for LUD to 22.6x for Heston. Without those two outliers,
the average speedup is 5.1x. In general, we see that more tuning parameters result
in longer tuning times, but other factors also play in, such as the time it takes
to run the benchmark on a single dataset and the number of different degrees
of parallelism for each particular threshold. The LUD benchmark has the least
improvement in tuning time: It has size-variant parallelism, so our autotuner has
to perform more test runs to find the right thresholds. We’ll see that OpenTuner
sometimes finds bad threshold values for LUD, so the relatively small difference
in tuning time should not necessarily be seen as a boon for OpenTuner.

Fig. 9: Application run time speedup. The baseline is untuned performance.
Higher is better.

Figure 9 shows the performance of five of the benchmarks described above:
LavaMD, LUD, SRAD, BFAST and LocVolCalib. The rest of the benchmarks
have similar performance characteristics when tuned using OpenTuner and our
autotuner, primarily because of recent improvements in the default thresholds
and heuristics used in the Futhark compiler. The benchmarks shown in fig. 9
are interesting because the different tuning methods result in programs whose
performance differ significantly.

LUD is an implementation of LU matrix diagonalization with size-variant
parallelism, as mentioned above. Running this program efficiently is a matter of
using intra-group parallelism as long as the inner parallelism fits inside a Cuda

13 The number of code-versions is equal to the number of tuning thresholds plus one.
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block, which is also what the untuned version does. Our autotuner correctly finds
tuning parameters that encode this behavior while OpenTuner fails to do so. In
fact, it sometimes produces extremely degenerate results, due to the randomness
inherent in the technique.

In the SRAD benchmark, OpenTuner will sometimes find the correct thresh-
old values the datasets, but not always, as shown in the second dataset. A sim-
ilar story can be told for LocVolCalib and LavaMD, where the OpenTuner tool
sometimes find bad threshold values.

BFAST, which also relies on intra-group parallelism and is highly sensitive
to tuning parameter variations, receives a significant performance boost from
accurate tuning. However, the OpenTuner tool cannot even handle the largest
dataset for BFAST (africa) because it causes our GPU to run out of memory, with
no suitable fallback strategy, which is why we see no improvement in the second
dataset at all compared to the untuned version. Our autotuner can correctly
identify which threshold is causing the device to run out of memory and correctly
tune to avoid it.

Interestingly, one can observe that benchmarks which have many thresholds,
but not a big difference in tuning time, such as LUD and BFAST, are also
the ones on which OpenTuner results in the worst program execution time.
OpenTuner is not able to accurately discriminate between the different code
versions, and seems to get stuck in local minimas because it terminates before
the time-out is reached.

Finally, we should emphasize that, in contrast to the OpenTuner-based tool,
the tuning time of our autotuner is deterministic. This means that you can reason
about how many datasets you want to tune on, without having to fear tuning for
unexpectedly long time. For instance, one might use the savings in tuning time
to increase the set of training datasets, so as to improve the likelihood of hitting
the threshold sweet spots, thus improving the prediction for new datasets.

5 Related Work

The study of autotuning solutions has been motivated by two observations: The
first is that, in general, there might not exist one optimization recipe that results
in best performance across all datasets, i.e., “one size does not fit all”. The second
is that not all performance optimizations are portable across different hardware
combinations. Related work is aligned along three directions:

The first direction is to infer the best configuration of compilation flags that
results in the best average performance across a set of training datasets on a
given hardware setup. Solutions typically apply machine learning techniques, for
example by relying on supervised off-line training [13], and promising results have
been reported for both multi-core [8] and many-core [5] systems. For example,
such techniques have successfully inferred (i) the compilation flags of the -O3

GCC option, and improved on it when the set of programs is restricted, and (ii)
near-optimal tile sizes used in GPU code generation of linear algebra operations
that outperformed finely-tuned libraries, such as cuBLAS.
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The second direction has been to promote a compiler design reliant on auto-
tuning that separates concerns: The compiler maintains a thesaurus of legal code
transformations that might improve performance, and the autotuner is responsi-
ble for selecting the combination of transformations that maximize performance
for a given dataset run on some given hardware. For example, Lift [27, 15] and
SPIRAL [12], exploit the rich rewrite-rule systems of functional languages in
this way. Similarly, Halide [24] applies stochastic methods to find the best fusion
schedule of image-processing pipelines, corresponding to various combinations
of tiling, sliding window and work replication transformations. The per-dataset
tuning is feasible in cases such as stencil computations, because the important
tuning parameter is the stencil’s shape, and the performance is likely portable
on larger arrays.

The third research direction is to provide a general black-box autotuning
framework such as OpenTuner [4], which uses a repertoire of stochastic search
strategies, such as hill-climbing and simulated annealing, and also provides the
means for the user to define custom search strategies. ATF [25] similarly fol-
lows this research direction and provides a generic framework that supports
annotation-driven autotuning of programs written in any language. ATF simpli-
fies the programming interface, allows the specification of constraints between
tuning parameters and optimizes the process of search-space generation, but
it only supports tuning a single dataset at a time. However, like OpenTuner,
ATF does not use any knowledge of the program structure or of the compilation
technique that is being used.

Such strategies can work well when every point in the space provides new
information to guide the tuning. Unfortunately, our results indicate that the
threshold parameter space of compilation schemes such as incremental flatten-
ing [19] is too sparse for such black-box startegies to be effective in practice: (i)
in several cases, near-optimal configurations are not (reliably) found even when
enough time is given for the search to finish naturally, and (ii) typically the
tuning times are too large (and unpredictable), which makes it infeasible to use
it during application development stages.

The main high-level difference of our approach, compared to these other
approaches, is that it integrates the multi-versioned compilation with a rela-
tively cheap and one-time autotuning process that results in one executable
that automatically selects the most efficient combination of code versions for
any dataset.14 In comparison, the first direction selects the compilation strategy
that is best on average for the training datasets, and the second direction needs
to repeat the autotuned compilation whenever the stencil shape changes.

At a very high level, our method has some relation to software product lines
(SPLs), where techniques have been explored to, for instance, generate a multi-
tude of code versions and statically determine the energy usage of each [9].

14 This way of combining static and dynamic analysis by means of lightweight pred-
icates is reminiscent of techniques used for automatic parallelization of sequential
loops [22, 26].
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Finally, another related research direction has been the study of various run-
time systems aimed at dynamically optimizing program execution on the target
dataset, for example by dynamically adjusting the granularity at which paral-
lelism is exploited for multicore execution [2, 28] and by speculatively executing
in parallel loops with statically unknown dependencies [10, 21, 23].

6 Conclusion

We have presented a general technique for tuning thresholds in multi-versioned
programs. By taking advantage of the knowledge of the tuning-forest, we can
efficiently target each code version in turn, thereby finding the (near-)optimal
threshold parameters using only the necessary number of runs. For size-invariant
branches, we only require a single test-run, whereas we perform a binary search
across the set of unique threshold values for size-variant branches. Having tuned
thresholds for each dataset individually, we combine the partial-tuning results at
the end, in order to find threshold parameters that optimally distinguish between
the code versions in question. We have shown substantial improvement in tuning
time and tuned-execution run-time compared to the previous OpenTuner-based
tuning technique. Furthermore, we remark that a significant amount of effort
has been devoted to downgrade the incremental-flattening analysis by pruning
at compile time the number of generated code versions, precisely because the
OpenTuner-based autotuning was unreliable and slow.

In comparison with more complex stochastic-search strategies, our framework
proposes a custom solution that trades off generality—each predicate introduces
one unknown threshold, and thus there might not exist a set of threshold values
that optimally implements a top-level strategy of combining code versions—
for an efficient solution that significantly reduces the number of program runs.
Finally, our strategy promotes human reasoning and understanding of results,
by providing sanity-assumptions, limitations and guarantees:

– The central assumption is that the dynamic values that appear in the tuning
predicates satisfy a notion of monotonic behavior, namely if version Vi is
optimal for a certain Pi then it remains optimal for any dynamic value
greater than Pi.

– The principal guarantee is that if a (near-)optimal set of threshold values ex-
ists then it will be found. If it does not exists then necessarily the intersection
of threshold intervals across datasets is empty, and a reasonable approxima-
tion is derived by considering the maximal number of datasets that result
in a non-empty intersection. Alternatively, user-defined attributes may in
principle change the order in which code-versions are generated, which may
enable the existence of an optimal configuration.
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