
A Lightweight In-Place Implementation for
Software Thread-Level Speculation

Cosmin E. Oancea Alan Mycroft
Computer Laboratory, University of Cambridge

Cambridge CB3 0FD, United Kingdom
{Cosmin.Oancea,Alan.Mycroft}@cl.cam.ac.uk

Tim Harris
Microsoft Research

Cambridge CB3 0FB, United Kingdom
tharris@microsoft.com

ABSTRACT
Thread-level speculation (TLS) is a technique that allows parts of
a sequential program to be executed in parallel. TLS ensures the
parallel program’s behaviour remains true to the language’s original
sequential semantics; for example, allowing multiple iterations of
a loop to run in parallel if there are no conflicts between them.

Conventional software-TLS algorithms detect conflicts dynami-
cally. They suffer from a number of problems. TLS implementa-
tions can impose large storage overheads caused by buffering spec-
ulative work. TLS implementations can offer disappointing scal-
ability, if threads can only commit speculative work back to the
“real” heap sequentially. TLS implementations can be slow be-
cause speculative reads must consult look-aside tables to see ear-
lier speculative writes, or because speculative operations replace
normal reads and writes with expensive synchronisation primitives
(e.g. CAS or memory fences).

We present a streamlined software-TLS algorithm for mostly-
parallel loops that aims to avoid these problems. We allow spec-
ulative work to be performed in place, so we avoid buffering, and
so that reads naturally see earlier writes. We avoid needing a serial-
commit protocol. We avoid the need for CAS or memory fences in
common operations. We strive to reduce the size of TLS-related
conflict-detection state, and to interact well with typical data-cache
implementations. We evaluate our implementation on off-the-shelf
hardware using seven applications from SciMark2, BYTEmark and
JOlden. We achieve an average 77% of the speed-up of manually-
parallelized versions of the benchmarks for fully parallel loops. We
achieve a maximum of a 5.8x speed-up on an 8-core machine.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming

General Terms
Algorithms, Design, Performance

Keywords
Thread-level speculation (TLS); Roll-back; Read-After-Write (RAW),
Write-After-Read (WAR), Write-After-Write (WAW) dependencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

1. INTRODUCTION
Scientific applications are often amenable to dependency-analysis
based static loop parallelisation [1] (predictable control flow and
loop bounds, limited object aliasing, etc.); however, this does not
extend to typical non-scientific code. Many applications nonethe-
less do have significant loop parallelism. Even common scientific
programs, for example the FFT code below, when analysed give an
iteration space falling outside Presburger arithmetic, thus preclud-
ing standard parallelisation techniques (in the example dual must
be treated as an unknown for the inner loops thereby giving a non-
linear system – this is more clearly seen after normalising the loop
on b). Furthermore, even the abstract interpretation framework of
Masdupuy [12], based on trapezoid congruences, only statically
finds two threads.

for(dual=1; dual<N; dual*=2) {
/* ... */
for(a=1; a<dual; a++) { /* do-all loop*/
for(b=0; b<n; b+=2*dual) {
int i=2*(b+a), j=2*(b+a+dual);
READ (x[i], x[i+1], x[j], x[j+1]);
ASSIGN(x[i], x[i+1], x[j], x[j+1]);

} } }

When static analysis fails to prove the absence of dependencies,
run-time techniques may still extract parallelism. For example Rus
et al. use an interval-based algebra to statically extract symbolic
invariants, via hybrid analysis [20], and to translate them into a hi-
erarchy of predicates, via sensitivity analysis [19]. Each level of the
hierarchy gives a sufficient condition for do-all parallelism to exist;
they are tested at run-time, in the order of their time complexities.
The extraction of these predicates however may still be hindered
by the same factors that may hinder static analysis, e.g. aliasing. If
either the predicates evaluation fails or it is computationally ineffi-
cient, exact but potentially expensive inspector or software thread
level speculation (TLS) algorithms are used.

Software TLS solutions usually extract parallelism from mostly-
parallel loops of a single-threaded application: (i) a window of con-
secutive loop iterations is executed in parallel by a set of threads,
and (ii) the original reads and writes to shared data are expanded
with a scheme to detect cross-iteration dependency violations at
run-time, and (iii) a safety-net mechanism is used to recover from
violations – e.g., rolling back to a safe point. Since rollbacks are
expensive, software-TLS is usually effective when less than 1% of
code needs to be re-executed.

Existing software TLS solutions buffer their speculative updates,
and commit them to non-speculative memory only when it is guar-
anteed that speculation succeed. This leads to so-called serial com-
mit implementations, in which only the thread running the oldest
iteration is allowed to write back its updates. As we show in Sec-

tion 2, all serial-commit algorithms exhibit weaknesses: (i) limited
scalability in the number of processors contributing to speed-up,
(ii) non-constant (and potentially high) instruction overhead [18,
26] – e.g. to satisfy same-iteration RAW dependencies, a read from
address a1 needs to check whether the current iteration has updated
a1, (iii) high memory overhead [5, 6], (iv) require locking [21] or
expensive memory fences [5, 18]. (The only parallel-commit im-
plementation [18] exhibits huge memory overhead.)

We observe that the distance, in terms of efficiency, between
evaluating at run-time the simple and sufficient predicates for par-
allelisation and the application of exact inspector/TLS algorithms is
big enough to warrant an intermediary refinement. In our perspec-
tive, the comparative advantage of software, as opposed to hard-
ware TLS, is the possibility to combine different instances of TLS
solutions on disjoint memory partitions. Dynamic analysis tech-
niques can determine which model is best suited for the type of
dependencies that occur on each memory partition, and further-
more can adapt the TLS instance to exploit regular access patterns.
We call these adaptive TLS instances lightweight, since their design
trades off the potential for discovering false-positive violations for
an efficient implementation of the (hopefully) common case. Com-
panion papers [13, 14] add detail on this perspective: how TLS in-
stances are combined and how patterns are identified via dynamic
analysis.

The contribution of this paper is a lightweight, in-place TLS im-
plementation: write operations directly update the non-speculative
memory. We make five main contributions: first, the absence of a
serial commit phase improves scalability, as shown in Section 4.2.

Second, our dependency tracking scheme has constant instruc-
tion overhead, comparable to the ideal case of current solutions.

Third, our speculative read/write operations avoid the use of atomic
compare-and-swap (CAS) operations, or memory fences. The de-
signs are intricate, and so we present a proof sketch in Sections 3.4
and 3.5. In particular, the speculative read operation modifies TLS
metadata, and hence read-races are problematic. Our solution tracks
dependencies in general at operation level; when a read-race is de-
tected it conservatively switches to a coarser granularity level, but
only for the racy access. This is effective in practice because it
allows read contention at negligible overhead; such partially paral-
lel loops – i.e. frequent contention of both reads and writes – are
usually exploited via inspector-based techniques [10, 16]. Under
mis-speculation, we perform rollback recovery to a safe point: the
end of the iteration preceding the iteration detecting the violation.

Fourth, we show that our dependency tracking is sound under a
“safe” language, such as Java. We identify subtle safety issues for
languages using pointer arithmetic and indirect function calls, such
as C++ and suggest possible solutions.

Finally, our implementation permits run-time access pattern adap-
tation. The TLS memory overhead is reduced by using a function
hash computed via dynamic analysis [13], where hash’s cardi-
nality gives the size of the data structure used in tracking depen-
dencies. Under irregular access patterns, hash often approxi-
mates the perfect-hash signature function [2] that disambiguates
the addresses accessed in any concurrent iteration window. We
show in Section 4.2 that trading-off a few false-positive violations
for small(er) speculative storage is beneficial for the workloads we
studied: regular access patterns usually correspond to a hash of
tiny cardinality that gives a cache-friendly layout to the TLS meta-
data. Running the FFT loop above on 4 cores, for dual ≥ 4,
where thread 0 ≤ i < 4 executes iterations i + 4Z and x is
the start address of array x, the function hash(y)= ((y-x)
/ (2*sizeof(x[0]))) % 4 exhibits the nice property that
thread i accesses only addresses a1 with hash(a1)=i. This
implies that a dependency-tracking structure of only 4 elements

does not yield any false-positive violations. More importantly, the
memory-friendly layout of TLS metadata – no cache conflicts be-
tween different pieces of meta-data – allows TLS’ time overhead to
decrease significantly against the periodic cache miss of the origi-
nal code; we achieve 90% of the speed-up of the hand-parallelised,
non-speculative version of the FFT loop.

The penalty is to allow cross-iteration WAW and WAR, to generate
the occasional rollback, in addition to RAW dependencies. Further-
more, due to its in-place nature, our rollback recovery procedure
is more expensive than the one of serial-commit implementations;
while we expect to outperform the serial-commit implementations
on fully parallel loops, the efficiency will decay faster with the
number of violations than with a serial-commit model.

In terms of performance, experiments on both regular and graph-
based tests show effective speed-ups (up to 5.8x on a 8-core ma-
chine) even when treating most data accesses as speculative. On
fully parallel loops we achieve on average 77% of the speed-up
of hand-parallelised code, with memory overhead at under 1% of
program data for regular applications and between 10–40% for the
graph-based ones. The tests also show that our implementation can
tolerate a 0.5% (iteration-based) rollback ratio.

The rest of the paper is organised as follows. Section 2 in-
troduces TLS at a high-level, briefly describes several software-
only TLS solutions, identifies the main trade-off axes, and places
our solution within these coordinates. Section 3 introduces the
main components of our solution, and shows the simplified pseudo-
code of the speculative load and store operations, which assume
“atomic” execution. Sections 3.4 and 3.5 fill in the details by pre-
senting the algorithm that implements the atomic behaviour and
that preserves memory sequential consistency. Soundness proofs
are sketched. Section 4 shows performance results and compares
our implementation against another one that employs a serial com-
mit phase, while Section 5 concludes.

2. TLS SOLUTIONS COMPARISON
In this section we survey related work on software TLS implemen-
tations in Section 2.1, we identify design axes on which to com-
pare them in Section 2.2, we place our in-place solution within this
space in Section 2.3, and finally we recount more remotely related
work in Section 2.4.

For simplicity, throughout the paper we consider speculation on
a single loop. We use: M for the number of loop iterations, P for the
number of processors, N for the size of the data-structure requiring
speculative support, C for the maximal number of concurrently-
executing iterations, and W for the maximal number of per-iteration
writes. Finally, thread identifiers (id) are numbered so that iteration
i will be executed by thread i. The thread executing the lowest
numbered iteration is referred to as the master thread.

2.1 Current Software-TLS Solutions
Rundberg and Stenström’s solution [18] (S-TLS) directly simu-
lates the operation of a hardware-based TLS cache protocol. In our
opinion, this solution’s main strengths are that it features a par-
allel commit phase and it effectively minimises the potential for
false-positive violations, as dependencies are tracked at the spec-
ulative load/store operation level. One downfall is that it exhibits
a huge O(M ∗ N) memory overhead. In the presence of aliasing, it
is often the case that a significant part of the original-data requires
speculative support, which makes this solution impractical for these
cases. Furthermore, (i) the speculative instruction overhead is non-
constant and can be high for certain access patterns, (ii) the parallel
commit checks all locations, not only the updated ones, and (iii) it
requires expensive memory fences (mfence for X86).

Solution Memory Overhead Precision Scalability
S-TLS High High Medium-High

OS-TLS Medium High Medium
SpFSC Small Medium-High Medium
SpRO 0 Low High
SpLIP ε−Small Medium High

Table 1: TLS Solutions Classification. (SpLIP – ours.)

Cintra and Llanos’s [5] and Rauchwerger et al.’s [6, 17] soft-
ware TLS solutions (OS-TLS) decrease TLS’s memory overhead (of
S-TLS) to roughly O(N*C) via a sliding window mechanism in
which a serial commit phase updates the non-speculative memory
with the writes performed in the current sliding window. This limits
scalability since now only a fixed number of processors may con-
tribute to speed-up. As with S-TLS, dependencies are tracked at the
operation level and only RAW may cause rollbacks. TLS support is
applied at data-structure level, and mfences are needed.

Welc et al. propose an approach [26] (SpFSC) for integrating
safe futures in Java. Although not discussed in their paper, we
notice that their solution may effectively reduce the TLS memory
overhead. First, each thread buffers the written values (W*C over-
head). Second, the size of the dependency-tracking data structure
does not depend on N or M but, roughly, on the range of memory lo-
cations accessed by C (concurrent and contiguous) iterations, under
the penalty of introducing potential false-positive violations. Our
understanding is that a perfect hash-like mapping [2], hash, is em-
ployed between memory locations and indexes in the speculative
tracking structure. This is achieved by compromising scalability,
as the solution employs a serial commit phase, and rollback detec-
tion precision, as the dependency-tracking mechanism is applied
by the master iteration. In our experiments, the overhead associ-
ated to satisfying RAW same-iteration dependencies for this type of
solution can be significant. Also, the serial commit phase exhibits
higher overhead than OS-TLS.

Pickett and Verbrugge’s framework [15] is similar, at a high-
level, to that of Welc et al. in that it speculates at method level
(Java) and their technique resembles that of STM. While we believe
the same trade-offs hold, the main difference is the use of predic-
tors, and hence of a more precise, value-based solution to detect
violations. The framework is fully-automated and attempts to max-
imise parallelism by allowing speculative threads to create threads
of their own. However, the high TLS overhead and the non-adaptive
spawning strategy restricts gains: speed-ups were rarely observed.

At this point we introduce a simple TLS solution: Read-Only
TLS (SpRO). This is the most effective, scalable, and imprecise of
all, and can be seen as the intersection between our in-place imple-
mentation and the serial commit ones. A speculative load simply
returns the contents of the to-be-read address, while a speculative
store causes a rollback. The rollback procedure executes one it-
eration sequentially to ensure system progress. When composed
with other solutions (for disjoint address ranges), SpRO yields im-
portant gains when employed on memory partitions of variables
that are rarely written, but are not statically provable read-only (the
overhead-free read compensates for the occasional rollback).

2.2 TLS Solutions Classification
Our brief literature survey hints that several trade-offs exist:

Memory Overhead ranges from S-TLS’s O(N ∗ M) to OS-TLS’s
O(N ∗ C) to roughly O(C ∗ W) for SpFSC, to O(1) for SpRO.

Scalability – we identify two sub-directions:
(i) “Will adding more processors yield a further speed up, assuming
that there are no further conflicts?” The answer is no for the imple-
mentations exhibiting a serial commit phase: OS-TLS, SpFSC. This
is because, if the per-iteration writes account for 1/k of the itera-

tion time cost, then, intuitively, the parallel execution resembles a
k-stage pipeline, which is best exploitable by k processors.
(ii) Instruction overhead is not constant: in the worst case it isO(M)
for S-TLS, O(C) for OS-TLS, and O(W) for SpFSC.

Precision – violation detection accuracy:
(i) Dependencies are tracked at speculative operation level – S-TLS,
OS-TLS, or iteration-window level – SpFSC (write operations ap-
pear to occur at the time of the serial-commit phase).
(ii) “What dependencies may cause violations?” SpLIP, our solu-
tion, exploits this trade-off axis: all run-time cross-iteration depen-
dency violations – RAW, WAW, WAR – trigger rollbacks, in addition
to potential false positives due to collisions under the hash function.

The first four rows in Figure 1 classify the TLS solutions that
we have studied. SpRO gets high marks at memory-overhead and
scalability but there is certainly enough room for improvement on
the precision axis. The first three solutions are exact – only RAW
dependencies may cause rollbacks. Their main strategy for reduc-
ing the memory overhead is to compromise the system scalability
by employing a serial commit phase. This would be unsuitable
for applications in which speculative writes represent a significant
fraction of the total iteration execution time.

2.3 SpLIP: Our In-Place Solution
Our new TLS implementation, SpLIP, aims to: (i) accelerate the
hopefully-common case of loop iterations that execute without de-
pendencies between them by providing speculative operations of
constant-instruction overhead, and (ii) to retain scalability in such
workloads by avoiding a serial commit phase. Our key technique,
inspired by recent STM implementations, is to combine in-place up-
dates with TLS. As with in-place STMs, we must log values that get
overwritten, and retain enough meta-data to be able to roll back to
a consistent state. However, as we show in Section 3.4, unlike typ-
ical STM algorithms, we avoid any atomic read-modify-write oper-
ations or memory fences on speculative read/write operations. The
downside is that cross-iteration WAW, WAR, RAW and false-positive
dependencies may cause rollbacks. As we show in Section 4.2, for
the studied workloads, the performance and scalability that we gain
seem to offset the costs that this incurs.

Table 1 makes it clear that there is no “universal panacea” for
software-TLS. Perhaps this is to be expected as the latter’s main
strength resides in flexibility. While hardware-TLS is restricted to
use one scheme for all programs, software TLS has the compara-
tive advantage that it may compose instances of various TLS solu-
tions, to parallelise an application (e.g. for different data-structures;
see [14]). Our perspective on software TLS is a tree of solutions,
in which the nodes closer to the root score higher on the combined
precision-scalability axes. With the available solutions, the root is
S-TLS, leaves are SpRO, SpLIP and SpFSC, while OS-TLS is either
a node or a leaf. Lightweight solutions are leaves, as they are more
effective in both space and time, but less precise. If dynamic analy-
sis indicates no suitable leaf, one of the nodes or the root is chosen.

2.4 Other Related Work
Hardware-centric TLS proposals [4, 7, 23, 24, 25] generally give
better speed-ups than software ones, especially on iterations of small
granularity. However they involve non-trivial and expensive changes
to the basic cache-coherence infrastructure and avoiding overflow
of the limited speculative storage can restrict gains [11].

Among other software TLS approaches from the literature we
enumerate Kazi and Lilja’s multi-thread pipelining architecture [10],
Zilles and Sothi’s master-slave model [28], and Chen and Oluko-
tun’s framework [3] that speculatively exploits method-level paral-
lelism for Java applications. These scheme rely heavily on compiler
support, hence comparing overheads is difficult.

0

P−1

0 1 W−1...

W = max nr of writes
per iteration

Load Vector (LdVct)

Stamp Vector (StampVct)

Store Vector (StVct)

hash

Sync Vectors (SyncR,SyncW)

elt : {addr, val, stamp}

ShBuff

P = num processors

S = cardinal(hash)
0 1 S−1

Memory

Figure 1: Speculative Storage Structure

Work on TLS-related compiler optimisations includes data-flow
algorithms for identifying idempotent references [11], aggressive
instruction scheduling techniques aiming at reducing the stalls as-
sociated with scalar values [27], and other optimisations related to
loop inductors, light thread synchronisation locks, reduction opera-
tors and loop invariant register allocation [4]. Our implementation
would also benefit from all such optimisations.

For completeness we conclude this section with a comparison
with work on software transactional memory (STM). STM pro-
vides a mechanism for making a set of memory accesses appear
to happen as a single atomic step. There are two main differences
between STM and TLS. First, TLS requires that different threads’
speculative work be committed in loop-iteration order. With STM
transactions any serial order is typically acceptable. Second, TLS
deals with a simple programming model in which execution is ei-
ther sequential (outside a loop), or parallelised via TLS (inside a
loop). Problems with concurrent speculative / non-speculative ac-
cess to a given location do not occur, since TLS is usually applied on
single-threaded applications. Saha et al. [21] and Harris et al. [8]
designed STM algorithms using in-place updates. In addition to
constraining commit order, our TLS implementation avoids the use
of atomic-CAS operations on updates.

3. SPLIP IMPLEMENTATION
Section 3.1 presents the structure of the speculative memory and
high-level ideas. Section 3.2 shows the atomic-based implementa-
tion of the speculative load/store operations. Section 3.3 proves the
implementation’s safety. Finally, Sections 3.4 and 3.5 show how to
implement the speculative operations’ atomicity effectively (with-
out CAS or mfence instructions).

3.1 Speculative Storage Structure
Figure 1 depicts how the speculative memory is organised. For
the moment assume that the map hash between memory loca-
tions and entries in the dependency-tracking vectors is one-to-one.
LdVct/StVct[i] hold the maximal iteration number (≡ thread
id) that, at a time, has read/written an associated memory location
(a1, with hash(a1)=i). SyncR/SyncW are used in Section 3.4
for synchronisation between readers and writers without needing
atomic CAS operations.

We assume a thread-pool matching the available processors, P.
For simplicity we take C==P, where C is the size of consecutive,
concurrent iteration window. (We can choose however C a mul-
tiple of P.) Threads are re-used under the policy of assigning the
next iteration to the first available thread. With C==P, we have
that always P consecutive iterations are executed concurrently. As
with in-place STM implementations, prior to an update, the address,

atomic WORD specLD(atomic void specST(
volatile WORD* addr, volatile WORD* addr,
int itNr) { WORD new_val, int itNr) {

1 int i = hash(addr); 1 int i = hash(addr);
2 if(LdVct[i]<thNr) 2 int prev = StVct[i];
3 LdVct[i]=itNr; 3 if(prev > itNr)
4 WORD val = *addr; 4 throw Dep_Exc(itNr-1);
5 if(StVct[i]<=itNr) 5 StVct[i] = itNr;
6 return val; 6 save(addr, *addr,
7 else throw StampVct[i]++);
8 Dep_Exc(itNr-1); 7 *addr = new_val;
} 8 WORD load = LdVct[i];

9 if(load > itNr)
10 throw Dep_Ex(itNr-1); }

Figure 2: SpLIP: Speculative Load/Store Operations

previous value and a time-stamp are saved in a shadow buffer –
ShBuff, where StampVct[i] holds the “current time” for the
class of addresses a1 with hash(a1)==i. ShBuff is a two-
dimensional array, of first dimension P. While executing iteration
j a thread “owns” (has exclusive access to) ShBuff row j%P,
and its writes access consecutive entries; this gives good cache be-
haviour. Of course, ShBuff is also accessed during rollback.

3.2 Speculative Load/Store
Figure 2 shows the simplified implementation of the speculative
load/store operations. We initially assume these operations exe-
cute atomically; we return to the synchronisation protocol we use
to ensure this in Section 3.4. Both TLS operations access the orig-
inal memory in place, and they may discover dependency viola-
tions. These are signalled via exceptions (Dep_Exc) that register
the safe recovery point – the highest iteration up to which the pro-
gram is guaranteed to have executed correctly. The variable i de-
notes the index in the LdVct/StVct corresponding to addr. The
values stored in each entry of LdVct/StVct are monotonically
increasing in time (see lines 2/3 in specLD/specST) and give the
number of the highest iteration that has read/written the content of
any address a1 with hash(a1)==i. SpecLD is the simpler of
the two operations. A speculative load is successful as long as there
have been no speculative writes to the same location by later iter-
ations – i.e. it is successful if StVct[i] ≤ itNr. Otherwise,
it detects a WAR violation at line 10; the safe point is the end of
iteration itNr-1, since the current one (itNr) cannot complete.

Conversely, a speculative store is successful so long as there have
been no speculative accesses at all (either loads or stores) to the
same location by later iterations – i.e. it is successful if StVct[i]
≤ itNr and LdVct[i] ≤ itNr. The specST operation may
fail due to a RAW violation (line 10), when it determines that a
successor iteration has read a value that should have been provided
by the current iteration. Note that the safe-point is itNr-1 and not
load (from Figure 2) as one may naively guess – any successor of
the current thread and predecessor of load may have also mis-
read, and the framework cannot detect it. Furthermore, specST
may fail due to a WAW violation (line 4).

Skipping the update without signalling a violation is incorrect
because: First, the previous store may have referred to a differ-
ent address in hash−1(i) and hence the sequential semantics re-
quires an update. Second, it may fail to detect a RAW violation.
(E.g. consider the time-ordered sequence of accesses to address
a1: thread T3 loads, T4 stores, T5 loads, T2 stores. Thread T2
will not identify the RAW violation corresponding to thread T3.) If
successful, the former content of address addr is saved into the
thread’s ShBuff row (line 6) prior to the update in line 7.

Note that dependency detection is still sound even if hash is
a many-to-one function. Hash collisions may cause false depen-
dencies to be detected, but never miss real dependencies. (This re-
finement corresponds to the conservative, hence safe, approach that
treats a memory access to address a1 as an access to all locations
in hash−1(hash(a1)).)

Note that, as the execution window progresses, the shadow buffer
and the LdVct/StVct vector values are re-used, and if no viola-
tion occurs, there is no need to clear them at the iteration’s end
(unlike other solutions). Furthermore, the instruction overhead is
constant, violations are tracked at instruction level and forwarding
occurs (only) implicitly via updates to non-speculative data. The
speculative memory size depends on the number of per-iteration
writes, and on hash’s cardinality. The latter is small for regular
access patterns.

3.3 Correctness. Roll-back Recovery.
This sections shows first that, when specLD/specST operations
are atomic as in Figure 2, the oldest source iteration involved in a
dependency violation will discover it, and second, that our rollback
technique is sound. For the purpose of demonstrating the correct-
ness of the dependency tracking mechanism, it is useful to consider
all dependency violations that share the source iteration as belong-
ing to the same class:

DEFINITION 3.1 (DEPENDENCY EQUIV. CLASS). Let δ1 and
δ2 be two dependency violations with δi = (si, ti) being the itera-
tion numbers (ids of thread executing these iterations) of the source
and target of the violations. Now define δ1 ∼ δ2 ⇔ s1 = s2 and
note that it is an equivalence relation. (Note that the source id is
always smaller than the sink id).

THEOREM 3.1 (DEPENDENCY-TRACKING). Assume that un-
der TLS speculative execution the read/write access to all variables
used in the code of a loop is accomplished via the specLD/specST
functions in Figure 2. Then, from all the run-time violations, pre-
cisely one per equivalence class is detected, and the thread that
detects it is the one executing the source of the dependency. (It fol-
lows directly that the lowest iteration involved in a violation will
detect it prior to consuming any dirty values.)

PROOF. Consider a true-dependency violation (RAW): thread
id2 has read (via specLD) the content of the address a1 be-
fore thread id1 has updated (via specST) a1, and id1 < id2.
Then, at lines 8–9 of specST in Figure 2, thread id1will find that
id3=LdVct[hash(a1)]≥id2>id1 due to the monotonic be-
haviour of the elements of LdVct. Note that the detecting thread
(id1) is the source of the dependence and that no other violations
with source id1will be discovered, since thread id1 throws an ex-
ception. The anti- and output-dependency violations (WAR/WAW)
are detected in line 8 of specLD and line 4 of specST and the
proofs are similar.

The remainder of this section shows that program execution un-
der our TLS model preserves the semantics of the sequential exe-
cution. Figure 3 shows the layout of the speculative thread. The
thread receives a new iteration to execute (id), and serially exe-
cutes the code that would otherwise yield too many dependency vi-
olations or that contains un-rollable operations (IO) together with
the dependent instructions (line 4). (We assume that the compiler
has moved all IO-independent instructions before the first IO and
has peeled-off the IO-independent part of the first iteration.) Then
the induction variables that can be determined solely from the iter-
ation number are updated (line 5). The TLS-preferred granularity is
achieved by unrolling the loop U times (line 6).

class SpecThread { //...
1 void run() {
2 while(true) {
3 try { 10 }catch(AnyError e) {
4 id = AcqAndSerialExec(); 11 waitBecomeMaster();
5 set_IndVars(); 12 killSpecThreads ();
6 for(int i=0; i<U; i++){ 13 rollbackProc(id-1);
7 if(end_of_loop_cond()) 14 if(!SpecEnded())
8 throw EndOfLoopExc(); 15 respawnThreads();
9 iteration_body(); } 16 else return;} } }};

Figure 3: Speculative Thread Layout – Pseudocode. For C, all
catchable errors are treated similarly to regular exceptions.

Upon detecting a dependency-violation, or any other exception
or error or the end of the loop, the thread waits to become mas-
ter (line 11). If it is master, then it kills all its successors (line 12
– hence it is the only live thread) and initiates the rollback proce-
dure (13). Theorem 3.1 guarantees that one of the violator-threads
will eventually become master since its “correct” predecessors will
eventually finish executing their iterations.

The rollback procedure clears the load/store vectors and restores
the original memory to the safe-point configuration, by using the
information in the ShBuff entries corresponding to threads that
are successors of the safe-point – this is enough, since specST
preserves the sequential update order. The algorithm complexity is
O(W ∗ C ∗ log(W ∗ C)), with C and W defined in Section 2. The algo-
rithm aggregates the considered entries, but only the lowest time-
stamp tuple is retained from a sequence of identical-address tuples.
The address of each tuple is then updated with the value mem-
ber. The latter procedure lacks with serial-commit models since
the non-speculative state is always updated only after the specula-
tion has proved successful; hence SpLIP rollback recovery is more
expensive. If the number of rollbacks exceeds 1% of the number of
executed iteration, the framework reverts to sequential execution.
Furthermore, since the master thread may cause rollbacks, one it-
eration is executed sequentially to ensure that the system “makes
progress”. (Otherwise, the same violation is discovered multiple
times, hence speculation may be abandoned in spite of the fact that
the code exhibited only one run-time violation.) Finally, threads
are re-spawned and assigned new iterations to execute.

THEOREM 3.2 (ROLLBACK INVARIANT). Under SpLIP, as-
sume the thread executing iteration rollId is master and it has de-
tected a violation. Rolling back the updates of rollId and all its
successor iterations, in the manner presented above, constructs the
same program state as the sequential execution of the iterations up
to and excluding rollId.

PROOF. Let updatei,l = {it, val, old_val} be the update per-
formed by iteration it on the memory location l (old_val= *l;

*l= val;), where a fresh i is chosen in accordance to the time-
ordering of the updates. Let Wr(l) = (updatei,l)i≥0, be the
whole update sequence for l. Fix l. Let γ be the smallest integer
such that updateγ,l.it ≥ rollId. The updates to l prior to γ respect
the sequential program order and were performed by threads with
ids less than rollId (otherwise, the rollId thread cannot become
master since a lower id thread would detect a WAW violation – by
Theorem 3.1). The theorem says that the correct value of l after
sequentially executing rollId− 1 iterations is updateγ,l.old_val.
Assume this does not hold for some l. It necessarily follows that
∃k > γ such that updatek,l.it < rollId (the update of an it-
eration that is not rolled back is missed). But then, the iteration
α = updatek,l.it is the source of a WAW dependence, which, by

virtue of Theorem 3.1 should be detected by iteration α. This con-
tradicts the hypothesis assumption that thread rollId is master.

Theorems 3.1, 3.2 and the following discussion about other mis-
speculation effects give the safety result for a language (without
pointer arithmetic and without user-level indirect function calls)
such as Java:
Infinite Loop – Theorem 3.1 guarantees that: First, the master
thread cannot consume an incorrect value. Second, there must be
a thread that discovers a dependency-violation and eventually be-
comes master. Therefore the thread executing the infinite loop will
be eventually killed.
Error/Exception/End of Loop – If the thread becomes master,
then these effects are not due to mis-speculations: the updates of
successor threads are rolled-back and the speculations ends either
by throwing an exception or normally. Otherwise, a mis-speculation
will be detected and the thread will be killed.
Garbage Collection (GC) – in a language like Java, we could
still implement our dependency tracking, but instead of tracking
(real) addresses, we use each Object’s hash field for as pseudo-
addresses in addition to fixing offsets inside the containing ob-
ject/array for basic-type fields. These are guaranteed to be constant,
and hence GC’s memory reordering does not affect TLS.

A language allowing pointer arithmetic and indirect function calls
such as C++ exhibits additional safety issues that we briefly outline
in the remaining of this section. We use the term dirty to gener-
ically denote any mis-speculated value that is propagated before
the violation that created it is detected. We draw attention that the
discussed issues below appear also with serial-commit implemen-
tations, since a speculative thread may consume an uninitialised
value that should have been updated by a predecessor thread.

First, we observe that a mis-speculation may cause, for exam-
ple, a NULL pointer to be dereferenced, which leads to a segmen-
tation fault on Linux. It follows that these relevant hardware errors
should be trapped and treated in the same way as exceptions in the
above discussion. For example, under POSIX standard, the only un-
catchable signals are SIGKILL and SIGSTOP, since a user should be
able to kill/stop its program. The SIGSEGV signal, which denotes
an invalid memory reference is catchable.

Second, dirty references may corrupt TLS metadata either di-
rectly, or indirectly, for example by corrupting malloc’s meta-
data. We address this issue by protecting the metadata correspond-
ing memory segments with SpRO: now only specLD/specST
may update TLS metadata but a dirty update to TLS metadata will
fail and will generate a rollback.

Third, accesses to variables on stack frames following the one
corresponding to the speculative loop are not protected via TLS
since they are thread private. However, each assignment to such
a variable is guarded by a check that guarantees that the address of
the variable is inside that stack-frame, but different than the return
pointer of that frame. Otherwise, the update fails and a rollback is
started. This solves the problem of a dirty reference causing an un-
predictable jump in the program by overwriting the return pointer.

Finally, the difficult problem is that of a “wild” branch being
taken because of a dirty indirect function call: either via a dirty
function pointer or a dirty update to an object v-table. The simple
solution is to conservatively wait for the current thread to become
master before calling an indirect function. This solution is not prac-
tical under frequent indirect calls. A more refined solution, which
is beyond the scope of this paper, would be to check at run-time that
the function pointer to be called is valid: it belongs to a speculative
version of a function of the same signature to the one that is called.
This refinement would still give correct rollback recovery.

3.4 Non-locking Implementation of specLD/ST
This section shows how to implement specLD and specST with-
out assuming atomic execution and without (expensive) CAS in-
structions. We initially assume sequentially consistent hardware.
Section 3.5 discusses our practical implementation for the Intel IA-
32 memory model. We need to ensure that (i) from a group of
concurrent violations, the lowest numbered iteration that may have
been involved in a dependency is detected – the minimal safe point
property, and (ii) even if concurrent writes to the same memory lo-
cation are associated with the same time stamp, the rollback mech-
anism is still correct.

For presentation reasons, we break our solution and proof sketch
into four parts: first we have already proved soundness in Sec-
tion 3.2 for the case when specLD/ST execute atomically.

Second, we show that the non-atomic interaction between con-
current specLD and specST calls is still sound, as long as same-
type operation are assumed to execute atomically. This is discussed
in section 3.4.1.

The third and fourth steps provide the modifications that allow
multiple specLD and specST operations to execute safely with-
out assuming atomicity, and are presented in sections 3.4.2 and 3.4.3.

3.4.1 Interaction between specLD and specST
This section shows that, with the non-atomic implementation in
Figure 2, if a load and a store are in a race condition, i.e. accessing
same LdVct/StVct indexes, then either a RAW or a WAR viola-
tion is detected, and the minimal safe point is preserved.

There are two inconsistent cases that may lead to a violation of
the sequential semantics. First, a store, reaching line 8, may find a
load operation accessing the same index i in an inconsistent state:
LdVct[i] has been updated but the memory has not been read
yet (specLD execution is somewhere between lines 2 and 4). In
this case, if the condition in line 9 holds, the current store conserva-
tively assumes that the load has read a value produced by an earlier
write and signals a violation. The safe point is the store’s itNr-1,
and is minimal (the load’s itNr necessarily greater).

Second, a load (ldTh) may find a store operation accessing the
same index i in an inconsistent state: the current thread (currTh)
has updated StVct[i], but the value “consumed” by ldTh be-
longs to an earlier store (wrTh).

• If currTh<wrTh then the current store yields a violation
since the sequential order of writes was not respected. If
ldTh<currTh then the load also yields a violation since it
conservatively assumes that the needed value was overwrit-
ten. Either way the minimality of the safe point is ensured.

• If currTh==wrTh then the state is consistent from the ldTh
point of view. (However currTh may conservatively yield
a violation later at line 10.)

• Otherwise: currTh==StVct[ind]>wrTh. All the fol-
lowing cases detect the lowest violator:
(i) if currTh>ldTh then specLD detects a WAR violation
at line 8,
(ii) if currTh<ldTh then by virtue of the load vector mono-
tonicity we have currTh<LdVct[ind] and specST de-
tects a RAW violation at line 10,
(iii) the case currTh==ldTh cannot happen: the same thread
cannot execute at a time both a load and a store.

3.4.2 Interaction between non-atomic specLDs
The third stage implements atomicity semantics for specLD – see
pseudocode in the left-hand side of Figure 4 (specST is shown

WORD specLD(volatile WORD* addr, void specST(volatile WORD* addr,
int itNr, int TH_ID) { WORD new_val, int itNr, int TH_ID) {

1 int i = hash(addr); 1 int i = hash(addr);
2 SyncW[i] = TH_ID; 2 SyncW[i] = TH_ID;
3 3
4 if(LdVct[i] < itNr) 4 if(StVct[i] > itNr) throw Dep_Exc(itNr-1);
5 LdVct[i] = itNr; 5 StVct[i] = itNr;
6 6
7 if(SyncW[i] != TH_ID) 7 if(SyncW[i] != TH_ID) throw Dep_Exc(itNr-1);
8 SyncR[i] = itNr + P; 8 WORD old_val = *addr; int stamp = StampVct[i]++;
9 9 ShBuff[itNr%P] = { addr, old_val, stamp }; //save(...);
10 WORD val = *addr; 10 *addr = new_val;
11 11
12 if(StVct[i] <= itNr) return val; 12 WORD ld = max(LdVct[i], SyncR[i]);
13 else throw Dep_Exc(itNr-1); 13 if((ld > itNr) || (StVct[i] != itNr))

} 14 throw Dep_Exc(itNr-1); }

Figure 4: Implementing Speculative Load (left side) and Store (right side) Operations using Normal Memory Accesses.
The volatile keyword assumes the weaker, C++ semantics – it does not introduce WRITE-READ barriers.

on the right-hand side). Consider two threads id0 <id2 in a read-
race case – i.e. executing concurrently lines 2–7 for the same addr.
The bad case is when id0 is the last to be recorded in LdVct[i]
since this breaks LdVct[i]’s monotonicity to the result that a
later write performed by thread id1, with id0 < id1 < id2

may fail to detect a RAW violation involving id2.
Our approach is to detect the read race via the use of SyncW in

lines 2 and 7, where TH_ID is a per-thread unique value. Note that
all but one threads involved in the read race detect the race. If a
race is detected, a conservative-high value, itNr+P, is inscribed
in SyncR[i], where P denotes the number of processors. No
matter of the update order at line 8 – threads may be arbitrarily pre-
empted – the system’s design guarantees that iterations greater or
equal to itNr+P cannot be running while iteration itNr is run-
ning (see Section 3.1). Hence at the time of any update at line 8, any
iteration involved, but not aware of the race is lower than itNr+P.
The monotonicity of LdVct[i] is fixed now since specST uses
in the RAW test max(LdVct[i],SyncR[i]), at line 13.

The fact that a concurrent write idw has happened within the in-
terval in which the monotonicity was broken, luckily, does not give
any more problems. We sketch the proof here. Assume idM is the
read that was involved but not aware of the race, and that idm is the
value the problematic write finds in LdVct[i]. (Note that the bro-
ken monotonicity case necessarily requires that idw was inscribed
in StVct[i] before idm reads it at line 12.) If idm >idM then
LdVct[i]’s monotonicity was preserved (safe). Otherwise, if:
(i) idw < idm < idM then the write detects at line 14 a RAW
violation of safe point idw-1, or if
(ii) idm < idw < idM or idm < idM < idw then the read
idm detects at line 13 a WAR violation of safe point idm-1. In
both cases the minimality of the safe point is preserved.

Note that our proof sketch allows for an arbitrary number of con-
current threads. Also our solution does not introduce any rollbacks
on read-only accesses. The conservative monotonicity fix above
may introduce false-positive violations under both read and write
races; however, if such races are frequent then frequent violations
will happen anyway, and software TLS would likely be ineffective.

3.4.3 Interaction between non-atomic specSTs
The fourth stage implements atomicity semantics for specST –
see the right-hand side pseudo code of Figure 4. The technique is
similar: StVct is used to decide whether or not the current store
was involved in a race-condition (it is set in line 5 and tested at
the end in line 13). If so, a rollback is generated – this technique
increases the number of found WAW violations by a factor of two,

since it is anyway a 50% chance that a WAW dependency is violated.
Without the use of SyncW on lines 2 and 7 it may happen that the
lowest iteration involved in a race, is not aware of the race, succeeds
executing the store, and starts a new iteration, before one of the
other conflicting stores initiates the rollback. In this unlucky case
one of the ShBuff rows needed by the recovery procedure may
have been over-written. Instructions on lines 2 and 7 fix this issue
by guaranteeing that the lowest iteration involved in a race is either
aware of the race and causes a rollback or it executes lines 5–13 in
mutual exclusion. The proof sketch assumes that threads id1 and
id2, id1 < id2, concurrently write an address of index i:

• Thread id2 executes line 2 after id1 (SyncW[i] ==id2).
If this happens before thread id1 reads SyncW[i] at line 7,
then thread id1 detects a rollback at lines 4 or 7.
Otherwise, thread id1 initiates a rollback at line 14 or exe-
cutes the (code) lines 5-to-13 in mutual exclusion. Note that
a thread with an id higher than id1 cannot already be inside
the 5-13 region since then thread id1 would have thrown an
exception at line 4. If a lower number thread is already inside
region 5-13, it will discover the violation at line 13 and the
minimality of the safe point is preserved.

• Thread id1 executes line 2 after id2 (SyncW[i] ==id1).
If this happens before thread id2 reads SyncW[i] in line 7,
then thread id2 initiates a rollback at line 7, and allows id1

to execute atomically region 5–13.
Otherwise, thread id2 is already inscribed in StVct[i],
hence thread id1 initiates a rollback at line 4.

Finally, for the specST implementation in Figure 4, we note
that several writes to the same location may be stamped with the
same time. However, in this case the saved values are the same too,
since addr is read before the stamp counter is incremented, hence
the rollback procedure may validly use any of these. If the num-
ber of per-iteration writes exceeds the predicted dimension of the
ShBuff row, that row is dynamically re-allocated. This does not
raises concurrency issues since the row is “owned” by one thread.

3.5 Memory Ordering on Intel IA-32
This section discusses what is required to make specLD/ specST
sound on the Intel IA-32 architecture, even though this hardware
does not provide sequential consistency. Our solution exploits the
details of Intel’s specification [9] (relevant Chapters 7.1 and 7.2).

The Intel IA-32 memory model is fairly strong, when compared
with those of the ALPHA, or the POWER PC. Given two distinct

addresses "x" and "y", the only re-ordering allowed by the IA-32
model is for a later read to appear to be performed before an earlier
store. For example, consider the following 4 patterns:

PATTERN 1 | PATTERN 2 | PATTERN 3 | PATTERN 4
x=y=0; | x=y=0; | | TH 0 TH 1

TH 0 TH 1 | TH 0 TH 1 | TH 0 TH 1 | u=..; v=..;
x=1; ..=y; | x= 1; y= 1; | t=..; u=..;| z=..;
y=1; ..=x; | mfen; mfen; | ..=W; ..=W;| ..=W; x=..;

| ..=y; ..=x; | | ..=x; t=..;
| | | ..=W; ..=W;

According to the IA-32 documentation, Pattern 1 is always se-
quentially consistent for any locations x and y (i.e. thread 1 cannot
read y==1 and x==0). When x and y are different locations, Pat-
tern 2, without mfences, is the only one that allows (memory)
re-ordering (i.e. not sequentially consistent) – for example both
threads 0 and 1 may read at the end x==y==0. One fix, for exam-
ples like Pattern 2, is to use the mfence instruction. Unfortunately
this is costly in typical implementations. Furthermore, Pattern 2
occurs in three places in the implementation of SpLIP’s speculative
operations, which would necessitate numerous fence operations.

To avoid fences, we can exploit other details of the IA-32 mem-
ory model and, in particular, its behaviour when different threads
access parts of the same word. Only for the purpose of this sec-
tion, let W be a 64-bit aligned word, and let t, u, v and z be
16-bit aligned subwords of W, with t and W starting at the same
address. The IA-32 model guarantees that read/write accesses to
aligned subwords/words are guaranteed to be atomic. We denote
by x = y or x 6= y whether x and y are considered the same
memory location or not. We claim that Pattern 3 is sequentially
consistent since any interpretation of “different locations” does not
exhibit the problematic Pattern 2: (i) t 6= W and u 6= W or (ii) t = W

and u 6= W or (iii) t = W and u = W.
This pattern has been tested on one hardware configuration and

the non-consistent case has not been observed1. There are concerns
that Intel’s specification is weak – see Sarkar et al. [22], and hence
ambiguous. The sequentially consistent behaviour of Pattern 3 is
likely due to flushing the cache line when cache coherency detects
concurrent accesses to a word and one of its contained subwords.
This is a significantly cheaper and more scalable mechanism than
mfence. If this behaviour was unintended, the scalable results of
Section 4.2 argue in favour of standardising it.

We represent LdVct[i], StVct[i], SyncR[i] and SyncW
[i] in Figure 4 as interleaved, aligned 16-bit subwords of a 64-bit
word; reading any of these is replaced by reading the full word and
computing the required value. We insert an inter-thread synchroni-
sation barrier every 216 iterations to clear TLS metadata. Pattern 3
proves the sequential consistency of (i) the accesses to LdVct[i]
and SyncW[i] for concurrent specLD executions and (ii) the ac-
cesses to StVct[i] and SyncW[i] for concurrent specSTs.

We discuss now the concurrency between specLD and specST,
which is depicted in Pattern 4: t, u, v, z and x stand for SyncW[i],
LdVct[i], StVct[i], SyncR[i] and addr, respectively. Pat-
tern 3 showed that the accesses to TLS metadata t, u, v, z and W
are (always) not re-ordered. What about x?

The delicate case is when, in memory ordering, the accesses to
TLS metadata of thread 0 (the load) come after the accesses of
thread 1 (the store). This is because the value read by thread 0
from address x is not guaranteed to be the one thread 1 updated.
The write to t just after writing x in thread 1 and the read from W

1In contrast, Pattern 2 with x and y subwords of the same word has
been observed to be inconsistent; t = W and u = W does not imply
t = u (not transitive).

just before reading x in thread 0 provide the fix-up. In the interest-
ing case when t=W, Pattern 1 prevents now re-ordering thread’s 1
updates to x and t: thread 0 necessarily reads the good value of W
(by hypothesis), which implies also that the updated value of x is
read. The explanation is similar to that of Pattern 3 – all possible
interpretation for “different locations” are considered. Note that
now any SyncW[i] is broken into two bytes: each is accessed by
either specST or specLD. This still allows up to 256 processors.

The other case is still sound: when the accesses to TLS metadata
are interleaved in memory ordering, the framework detects either a
RAW or a WAR violation (we have shown this already). Thus, it is
of no consequence that x’s value was inconsistent.

4. PERFORMANCE RESULTS
This section aims at demonstrating the following: First, our tech-
nique works well on code with regular patterns, even when most
accesses use speculative support. We obtain on average 74% of
the speed-up of the hand-parallelised code: 65% when SpLIP is
used alone and 82% when SpLIP is used in combination with SpRO,
on disjoint memory partitions. Other work has shown ratios up to
71%; however, this has only been for workloads where static anal-
yses can identify a significant number of accesses as thread private.

Second, SpLIP performs reasonably well even in the absence of
regular access. The speed-ups on three graph-based applications is
on average within 66% of that of hand-parallelised code.

Third, under rare WAW/WAR dependencies, SpLIP performs in
general better than a serial-commit implementation, because the
latter may exhibit (i) significant overhead in satisfying iteration-
independent RAW dependencies and (ii) limited scalability in num-
bers of processors.

We first describe the testing methodology and then present and
comment on the speed-up results. All the tests were performed on
a two quad-core AMD Opteron processors machine – model 2347
HE, 8 cores running at 1.9 GHz – with 16Gb of RAM memory,
running Linux (Fedora Core 8). We used the gcc-4.3.2 compiler at
-O3 optimisation level, and the pthread library. We have checked
that gcc is generating the correct movw and movq instructions in
the order required by the implementation of specLD/ST.

4.1 Testing Methodology
We tested seven applications from three benchmarks: SciMark2,
BYTEmark and JOlden. We chose to select only applications
whose loop-kernels exhibit significant amount of parallelism; thus
parallelising the kernel significantly improves the total application
run time. Where needed, we break down the kernel into structurally
different loops that we test separately. We did not consider the
initialisation phase, since we found it either trivial or not parallel
enough. JOlden is written in Java; we have re-written in C++.
The tests did not exhibit indirect function calls, hence applying
speculation was safe – see the concluding discussion of Section 3.3.

The tests exhibiting regular patterns are: (i) Idea, where Cipher
and DeKey stand for the main loops involved in the encryption and
decryption algorithms, (ii) SparMult that implements a multipli-
cation algorithm over sparse matrices, (iii) FFT that implements
the Fast Fourier Transform algorithm, and (iv) NeuralNet that
simulates a back-propagation neural network, whose loops struc-
turally fall in one of two classes: NeuralNetFW that processes
the forward pass through the output layer, and NeuralNetBW that
adjusts the weights of the output layer.

We test three graph-based applications with no regular patterns:
(i) TSP – Karp’s travelling-salesman problem algorithm, (ii) EM3D –
the propagation of electromagnetic waves through 3D objects, and
(iii) BH – Barnes-Hut’s hierarchical force-calculation algorithm.

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9 Col10
Test P=1 P=2 P=4 P=6 P=8 R F/L/O 8R+ R
IdeaDeKyRO 1:.57:.37 1.93:1.12:0.75 3.80:2.24:1.36 5.19:3.33:1.36 6.36:4.38:1.35 0 3.53:4.01:5.19 3.53 16
IdeaDeKy 1:.53:.28 1.93:1.05:0.62 3.80:2.05:1.19 5.19:3.05:1.35 6.36:3.80:1.35 0 2.77:3.23:4.87 3.65 16
IdeaCiphRO 1:.79:.80 1.98:1.57:1.59 3.91:3.07:3.13 5.69:4.61:4.66 6.79:5.88:5.86 0 5.69:5.95:6.01 5.42 3
IdeaCiph 1:.36:.30 1.98:0.69:0.60 3.91:1.38:1.11 5.69:2.06:1.73 6.79:2.76:2.28 0 0.87:0.75:3.33 2.58 3
SparMultRO 1:.78:.75 1.75:1.46:1.43 2.72:2.51:2.40 2.81:2.79:2.72 2.64:2.60:2.58 0 2.59:2.60:2.80 2.58 16
SparMult 1:.28:.24 1.75:0.55:0.46 2.72:1.10:0.90 2.81:1.62:1.35 2.64:2.13:1.93 0 0.19:0.60:2.19 2.04 16
NeuNetFWRO 1:.82:.83 1.80:1.59:1.52 3.14:2.87:2.80 2.46:2.38:2.41 2.31:2.29:2.28 0 2.27:2.28:3.19 2.16 2
NeuNetFW 1:.40:.34 1.80:0.77:0.71 3.14:1.43:1.30 2.46:1.77:1.40 2.31:2.09:1.93 0 0.78:0.13:2.51 1.88 2
NeuNetBW 1:.26:.23 1.90:0.51:0.44 3.09:0.97:0.74 2.61:1.68:1.10 2.48:1.56:1.02 0 0.89:0.96:2.25 1.49 39
FFT .8:.66:.54 1.45:1.25:1.03 2.84:2.47:1.03 3.28:2.95:1.02 3.91:3.51:1.01 0 2.92:2.83:3.72 3.21 3
TSPMem:216 1:.57:.02 1.98:1.23:0.03 3.85:2.55:0.06 5.27:3.48:0.07 6.76:4.80:0.09 0 2.08:2.79:5.80 4.12 22
EM3DMem:215 .8:.25:.01 1.41:0.49:0.03 2.51:0.94:0.06 2.30:1.28:0.09 2.16:1.44:0.13 32 0.77:0.81:2.17 0.78 280
BHMem:214 1:.68:.65 1.90:1.53:1.47 3.62:2.79:2.69 5.61:4.08:3.86 7.38:5.29:4.82 1 3.53:2.12:5.30 4.68 5
BHMem:221 1:.40:.27 1.90:0.78:0.58 3.62:1.53:1.18 5.61:2.25:1.75 7.38:2.84:2.28 0 2.12:1.75:3.08 2.22 4

Table 2: Speed-ups on up to 8 Processors. Col1 shows the tested loops. XRO means that we use both SpRO and SpLIP for test X. XSpMem:2y

means that dependency-tracking vectors have 2y entries. Entries in Col2–6 are of form x:y:z where x is the non-speculative speed-
up – sequential time divided by parallel time, while y and z are the speed-up of SpLIP and SpLSC [14] (serial-commit), respectively.
P denotes the number of processors used. Col7 shows the number of rollbacks on 8 processors. Col8 shows SpLIP’s speed-up when
mfence or CAS instructions are used. The last number is the speed-up under a 0-cost mfence. Col9 and Col10 show SpLIP’s
speed-ups and number of rollbacks when 0.5% of the iterations yield dependency violations.

To apply TLS, we use the PolyLibTLS library [14] that encap-
sulates SpLIP, SpRO and SpLSC – a serial-commit solution. We also
use dynamic analysis [13] to compute the iteration/memory space
partitioning, to create suitable iteration granularity (thousands of
instruction range), and to compute the hash function of SpLIP. The
latter has the form (i) hash(x)=x%Q with large Q for graph-based
applications, and (ii) hash(x)=((x-a)/q)%Q with small Q for
regular applications. With the selected loops, the rest was done
manually. Array/pointer accesses are assumed to alias everywhere
and require TLS support: x=y becomes specST(&x,specLD(
&y,i),i); here i is the iteration number. Privatisable scalars
are not protected via TLS. Accesses that would generate many vi-
olations (e.g. iterators) are computed serially, but are protected via
TLS. Threads, at most eight, are re-used via a thread-pool. The
non-speculative parallel version corresponds to a straightforward
(sometimes unsafe) parallelisation of the sequential code.

We diverged from the public benchmarks by increasing the array
sizes to make the asymptotic behaviour more easily measurable.
For EM3D we changed a random distribution of nodes that gener-
ated too many dependency violations into a more structured one,
which still features the occasional rollback. For TSP, we changed
the recursive tree-traversal implementation into one based on itera-
tors, and hence exploitable via TLS. (The recursive implementation
is exploitable via method-level speculation, but only on 2 proces-
sors.)

4.2 Speed-up Results
Entries in columns Col2–6 in Table 2 have the shape x:y:z. x
is the hand-parallelised, non-speculative speed-up – computed as
the ratio between the sequential and parallel execution timings. y
is SpLIP’s speed-up (this paper’s implementation). z denotes the
speed-up obtained by SpLSC [14] – a lightweight, serial-commit
implementation that can exploit regular patterns in the same man-
ner as SpLIP. Since it exhibits similar memory overhead we use
it to compare against serial-commit implementations. P denotes
the number of processors used. We specify that the performance
results reported in companion papers [13, 14] were assuming a
sequentially-consistent hardware – i.e. 0-cost mfence – and thus
give an upper bound for efficiency. The results reported here take
into account the overhead corresponding to the changes that make
the algorithms sound under the Intel IA-32 memory model. The

most significant difference is for SpLSC on test IdeaDeKeyRO,
where these changes make the serial commit phase more expen-
sive, which in turn impacts on the scalability of the algorithm. The
performance difference between the hand-parallelised code and the
speculative one is dominated by the overhead introduced by the
specLD/ST functions.

Comparing against SpLSC we observe that when the number of
writes per iteration is significant then: First, SpLSC’s read operation
increases in cost since, if a lightweight test fails to guarantee that
the current iteration has not updated that location, the write-buffer
is searched; if no update is found, then the non-speculative value is
returned. We referred to this as the overhead associated with same-
iteration RAW. This overhead is significant for IdeaDeKey and
NeuralNetBW, and huge for TSP and EM3D.

Second, SpLSC’s serial commit phase prevents scalable speed-up
on IdeaDeKey and FFT. We believe all serial-commit implemen-
tations will behave similarly.

The use of SpRO significantly improves performance on the tests
IdeaCipher and SparMult, because they exhibit read-access
races – even though they do not generate false-positive violations,
the cache-conflicts at LdVct/StVct level are expensive. The TLS
memory overhead is within< 1% of the original storage for regular
applications and between 10–40% for the graph-based ones. The
last two BH tests shows the benefits of using a reduced memory-
overhead via a perfect-hash-like mapping between memory loca-
tions and indexes in dependency-tracking vectors. This benefit is
even more pronounced under regular patterns.

We also observe that the gap between the optimal and the SpLIP
speed-ups narrows with the number of processors. This is to be ex-
pected since (i) writing Ov for the TLS time-overhead on 1 proces-
sor, we expect the overhead on P processors to be Ov/P and (ii) due
to memory bandwidth issues, the optimal code may reach its upper
limits for fewer processors (4 for NeuralNetBW and EM3D) than
SpLIP, which continues to improve to 8 processors.

Column Col7 in Table 2 shows the number of rollbacks on 8
processors for SpLIP.

Column Col8 shows the speed-up obtained when (i) mfence
instructions are used for memory ordering; (ii) CAS instructions
are used to ensure LdVct/StVct[i] monotonicity; and (iii) a
sequentially consistent memory is unsafely assumed – i.e. a 0-cost
mfence. This is an estimate of the maximal TLS speed-up. We

observe that the cost of both locking, and surprisingly, mfences is
high, hence neither is suitable for TLS.

Columns Col9 and Col10 show SpLIP’s speed-ups and number of
rollbacks when 2% of iterations generate violations. This translates
into an additional 0.2–1% of rollbacks.

5. CONCLUSIONS
This paper has presented an in-place TLS implementation that is
more scalable than the serial-commit ones. The implementation
features a constant speculative operation instruction overhead, which
is comparable with the ideal case of previous solutions, and can ex-
ploit applications’ regular patterns resulting in a small speculative
storage with cache-friendly layout. We have shown how to safely
eliminate both locking and memory ordering instructions from the
implementation of the speculative operation. We found these mech-
anisms too expensive for TLS. The penalty resides in relaxing the
system’s precision: RAW, WAW, WAR and false-positive dependen-
cies may cause rollbacks.

While other software-based solutions yield good speed-ups only
when there is enough independent computation that does not re-
quire speculative support, we have shown that our solution achieves
significant speed-ups, as high as 588%, even when nearly all ac-
cesses are protected with speculative support. Tested on nine loops
that implement the loop kernels of seven, both regular and graph-
based, applications, our implementation realises on average 77%
of the speed-up of the hand-parallelised, non-speculative program.

6. ACKNOWLEDGMENTS
The authors thank Susmit Sarkar and Peter Sewell for their help
with testing the memory ordering patterns discussed in Section 3.5
on one hardware configuration.

7. REFERENCES
[1] V. S. Adve. An Integrated Compilation and Performance

Analysis Environment for Data Parallel Programs. In Int.
Conf. High Perf. Comp. (SC), Nov 1995.

[2] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk
Disambiguation of Speculative Threads in Multiprocessors.
In Int. Symp. Comp. Arch. (ISCA), Jun 2006.

[3] M. K. Chen and K. Olukotun. Exploiting Method Level
Parallelism in Single Threaded Java Programs. In Int. Conf.
Par. Arch. and Comp. Tech. (PACT). Oct 1998.

[4] M. K. Chen and K. Olukotun. The JRPM System for
Dynamically Parallelizing Java Programs. In Int. Symp.
Comp. Arch. (ISCA), Jun 2003.

[5] M. Cintra and D. R. Llanos. Toward Efficient and Robust
Software Speculative Parallelization on Multiprocessors. In
Int. Symp. Princ. Pract. of Par. Prg. (PPoPP), Jun 2003.

[6] F. Dang, H. Yu, and L. Rauchwerger. The R-LRPD Test:
Speculative Parallelization of Partially Parallel Loops. In Int.
Par. Distr. Proc. Symp. (IPDPS), Apr 2002.

[7] L. Hammond, M. Willey, and K. Olukotun. Data Speculation
Support for a Chip Multiprocessor. In Int. Conf. Arch. Sup.
Prg. Lang. Op. Sys. (ASPLOS), Oct 1998.

[8] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
Memory Transactions. In Int. Conf. Prg. Lang. Design
Impl. (PLDI), Jun 2006.

[9] Intel. Intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A: System Programming Guide, chapter
7. In http://download.intel.com/design/
processor/manuals/253668.pdf, Sep 2008.

[10] I. H. Kazi and D. J. Lilja. Coarsed-Grained Thread
Pipelining: A Speculative Parallel Execution Model for
Shared-Memory Multiprocessors. IEEE Tran. Par. Distr.
Sys., 12(9), Sep 2001.

[11] S. W. Kim, Chong-Liang Ooi, R. Eigenmann, B. Falsafi, and
T. N. Vijaykumar. Reference Idempotency Analysis: A
Framework for Optimizing Speculative Execution. In Int.
Symp. Princ. Pract. of Par. Prg. (PPoPP), Jun 2001.

[12] F. Masdupuy. Array Operations Abstraction Using Semantic
Analysis of Trapezoid Congruences. In Int. Conf.
Supercomputing (ICS), Jul 1992.

[13] C. E. Oancea and A. Mycroft. Set-Congruence Dynamic
Analysis for Software TLS. In Lang. Comp. Par. Comp.
(LCPC), Aug 2008.

[14] C. E. Oancea and A. Mycroft. Software Thread-Level
Speculation – An Optimistic Library Implementation. In Int.
Worksh. Multi-Core Soft. Eng. (IWMSE), Jan 2008.

[15] C. J. F. Pickett and C. Verbrugge. Software Thread Level
Speculation for the Java Language and Virtual Machine
Environment. In Lang. Comp. Par. Comp. (LCPC), Oct 2005.

[16] L. Rauchwerger, and N. M. Amato, and D. A. Padua. A
Scalable Method for Run-Time Loop Parallelization. In Int.
Conf. Supercomputing (ICS), Jul 1995.

[17] L. Rauchwerger and D. Padua. The LRPD Test: Speculative
Run-Time Parallelization of Loops with Privatization and
Reduction Parallelization. IEEE Trans. on Parallel and
Distributed System, 10 No 2(2):160–199, Feb 1999.

[18] P. Rundberg and P. Stenström. An All-Software
Thread-Level Data Dependence Speculation System for
Multiprocessors. The Journal of Instr.-Level Par., 1999.

[19] S. Rus, M. Pennings, and L. Rauchwerger Sensitivity
Analysis for Automatic Parallelization on Multi-Cores. In
Int. Conf. Supercomputing (ICS), Jun 2007.

[20] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid Analysis:
Static & Dynamic Memory Reference Analysis. In Int.
Journal of Par. Prg., 31(4), pages 251–283, Aug 2003.

[21] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: a High Performance Software
Transactional Memory System for a Multi-Core Runtime. In
Int. Symp. Princ. Pract. of Par. Prg. (PPoPP), Mar 2006.

[22] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge,
T. Braibant, M. Myreen, and J. Alglave. The Semantics of
X86-CC Multiprocessor Machine Code. In Int. Symp. Princ.
of Prg. Lang. (POPL), Jan 2009.

[23] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Int. Symp. Comp. Arch. (ISCA), Jun 1995.

[24] J. G. Steffan, C. G. Colohan, A. Zhai, and T. Mowry. A
Scalable Approach for Thread Level Speculation. In Int.
Symp. Comp. Arch. (ISCA), Jun 2000.

[25] M. Tremblay, J. Chan, S. Chaudhry, A. W. Conigliaro, and
S. S. Tse The MAJC Architecture: A Synthesis of
Parallelism and Scalability. In Symp. Microarch. (MICRO),
Dec 2000.

[26] A. Welc, S. Jagannathan, and A. Hosking. Safe Futures for
Java. In Int. Conf. Obj.-Orien. Prg. Sys. Lang. Appl.
(OOPSLA), Oct 2006.

[27] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry.
Compiler Optimization of Scalar Value Communication
Between Speculative Threads. In Int. Conf. Arch. Sup. Prg.
Lang. Op. Sys. (ASPLOS), Oct 2002.

[28] C. Zilles and G. Sohi. Master/Slave Speculative
Parallelization. In Symp. Microarch. (MICRO), Nov 2002.

