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Abstract—We present a technique for introducing and op-
timizing the use of memory in a functional array language,
aimed at GPU execution, that supports correct-by-construction
parallelism. Using linear memory access descriptors as building
blocks, we define a notion of memory in the compiler IR that
enables cost-free change-of-layout transformations (e.g., slicing,
transposition), whose results can even be carried across control
flow such as ifs/loops without manifestation in memory. The
memory notion allows a graceful transition to an unsafe IR that is
automatically optimized (1) to mix reads and writes to the same
array inside a parallel construct, and (2) to map semantically
different arrays to the same memory block. The result is code
similar to what imperative users would write. Our evaluation
shows that our optimizations have significant impact (1.1×–2×)
and result in performance competitive to hand-written code from
challenging benchmarks, such as Rodinia’s NW, LUD, Hotspot.

Index Terms—GPU, parallelism, functional programming, op-
timizing compiler

I. INTRODUCTION

Imperative languages allow and even encourage the user to
equate memory blocks with arrays and to perform memory-
related optimizations aimed at (1) optimizing locality and
copying overheads by reading and writing to the same array
inside parallel loops, and (2) decreasing memory footprint
by placing semantically different arrays in the same memory
blocks. Although this allows the user to write low-level
code that utilizes the memory system efficiently, the resulting
code may be less maintainable due to the use of complex
indexing such as flattened indices, and might hinder compiler
optimizations.

For example, many of the challenges pertaining to automatic
parallelization are the result of the compiler having to reverse-
engineer the users’ memory optimizations, as seen in the rich
amount of work in the context of SUIF [1], [2], Polaris [3]–
[5], and polyhedral compilation [6]–[8]. Such work relies on
sophisticated analyses which are conservative in nature, i.e.,
parallel loops might not be recognized as such.

In functional languages, all available parallelism is explicitly
declared by means of constructs such as map, reduce, or
scan, that take arrays and possibly functions as arguments,
and which always produce new arrays. Parallelism is “correct
by construction”, because data races cannot appear when the
read and write accesses are performed on different arrays.

But consider a program that adds to each diagonal element
of an n×n matrix A the corresponding element of the first row.
It can be safely implemented with one parallel loop, but its
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Fig. 1. Left: adding to each diagonal element its corresponding element
on the first row. Right: adding to each diagonal element at position i, the
diagonal element at position js[i].

functional expression requires two distinct parallel operations
to allow simple verification of race-free parallelism:

1. X = map2 (λd r → d+ r) A[0 : n : n+ 1] A[0 : n : 1]
2. A[0 : n : n+ 1] = X

We use A as a linearized (1D) array of length n · n and use
triplet notation for slicing1. The left side of fig. 1 depicts the
semantics of the two parallel operations:

1. map2 computes a new array X of length n that temporar-
ily stores the values of the new diagonal elements,2

2. the structured update operation performs an in-place
update of the diagonal slice of A with the elements of
X3.

In contrast, a program that adds to each diagonal element at
position (i, i) the diagonal element at position (js[i], js[i])—
where js is an array of statically unknown numbers—cannot
be implemented with one parallel loop because it might
exhibit cross-iteration anti dependencies (WAR). The parallel
implementation demands a separation between the reads from
A and the writes to A, as demonstrated in the code below
whose semantics is depicted in the right side of fig. 1:

1. X = map2 (λd j → d+A[j · n+ j]) A[0 : n : n+ 1] js
2. A[0 : n : n+ 1] = X

1A[0 : n : n+1] produces n diagonal elements by starting at index 0 and
advancing with stride n+ 1.

2In the code, d and r, the formal parameters of the lambda function, iterate
over the corresponding values of the two arrays input of map2: the diagonal
slice A[0 : n : n+ 1] and the first row A[0 : n : 1], respectively.

3Semantically, this is equivalent to a copy of A with some elements
changed. Section II-C discusses how this can be safely done in-place in a
purely functional language.
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Relative to imperative programming models, a challenge
with the functional approach is (1) sub-optimal memory
footprint—because each parallel construct creates a new
array—and (2) various copying overheads, e.g., introduced by
syntax-directed translation, or the ones necessary to provide
race-free guarantees (the update).

This paper discusses the optimization of a functional array
language that encourages the use of array slicing, race-free
parallelism, and is aimed at GPU execution. We propose
compiler analyses that introduce a notion of memory in the
compiler IR and aggressively optimize its use in order to
produce low-level code with performance comparable to one
implemented in an imperative language.

Central to our approach is the linear memory access descrip-
tor, LMAD [9], [10], which offers a structured representation
of a linearized set of memory references. We use LMADs in
several related directions:

First, we use LMADs to extend the source language and
IR with a generalized form of slicing, which can express
blocked matrices or the blocked diagonal of a matrix. This
not only allows a shorter and nicer notation, but also hints
to the compiler that such read/write accesses may be worth
analyzing since they have structure.

Second, we use LMADs in the IR for mapping array indices
to concrete memory locations. This can represent chains of
index space transformations that change the logical layout
of an array,4 but not its elements, in a manner that (1)
is still amenable to further analysis, and (2) incurs O(1)
overhead,5 even when the resulting arrays are carried across
control flow such as branches. Our notion of memory has no
semantic meaning, but only an operational one. We preserve
the property that if the memory annotations are deleted, the
program remains semantically unchanged, in the sense that
the program could still be interpreted using purely functional
semantics. The memory information can be seen as an “add-
on” to the IR that provides a convenient framework in which
a compiler can express memory optimizations.

Third, and most important, we use LMADs to aggregate and
analyze sets of memory references in an optimization that aims
to eliminate the copying overhead that is often introduced by:

• correct-by-construction parallel programming, and
• syntax-directed translation of high-level code.

Our bottom-up analysis detects candidate arrays for opti-
mization at the point of update expressions such as A[0 : n :
n + 1] = X , where X is lastly used. The analysis attempts
to determine whether it is legal to allocate and compute X
directly in the memory block of A—which we refer to as
short-circuiting. This requires us to re-map the memory of all
aliases of X , and to prove that the construction of X does not
interfere with any uses of A. The legality of short-circuiting
is determined after analyzing the first use of X (the map2

expression). If successful, the update is turned into a no-op,

4Examples of such operations are slicing, transposition, or reshaping.
5The resulting arrays do not need to be manifested again in memory.

eliminating the copying overhead. As an example, the left part
of fig. 1 can be succesfully handled, but the right part cannot.

Finally, we report a full implementation of the proposed
enhancements in a copy of the publicly available Futhark com-
piler [11], [12], and present an experimental evaluation on six
public benchmarks that demonstrates that the short-circuiting
optimization (1) has significant impact (between 1.1−2×), and
(2) successfully optimizes challenging applications, such as
NW and LUD from the publically available GPU benchmark
suite Rodinia [13], to the extent that it outperforms their hand-
written GPU code by a factor between 1.1− 1.5×6.

II. PRELIMINARIES

Before diving into our contributions, we introduce the
concepts of index functions and LMADs, including how LMADs
can be used as index functions, as well as a brief description
of the language used for our examples.

A. Index Functions for Arrays

Semantically, arrays can be seen as functions whose do-
mains are isomorphic to contiguous subsets of integers. For
example, an n×m matrix is equivalent to a function N2 → R.
Some functional languages build on this idea and repre-
sent arrays simply as functions from an index space to a
value space, which is sometimes called pull arrays [14] or
views [15]. One attractive property of this approach is that
certain optimizations, such as parallel loop fusion, become
merely instances of function composition. However, this does
not address the storage of arrays in memory.

Our work is inspired by this idea, but we use functions
solely to describe the layout of in-memory arrays. We associate
each array A with a memory block Amem that can be thought
of as a pointer to the start of an allocation, and an index func-
tion ixfnA, which is a mapping from indexes to a flat offset
into the corresponding memory block. For example, an n×m
matrix has an index function of type N2 → N. To access an
element A[i, j], we would execute Amem[ixfnA(i, j)]. Index
functions thus describe how arrays are laid out in memory. By
manipulating memory blocks and index functions of arrays, we
can express both footprint and locality optimizations inside a
compiler. To represent index functions, we use one or more
linear memory access descriptors.

B. Linear Memory Access Descriptor (LMAD)

An LMAD [10] defines a set of linearized uni-dimensional
points that have a regular, quasi-affine structure:

t+ {(n : s)
q
} ≡ { t+ i1 · s1 + . . .+ iq · sq

| 0 ≤ ik < nk, k = 1 . . . q }
(1)

A q-dimensional LMAD consists of an offset t and a sequence
of q tuples (ni : si) that represent for each dimension i:
ni: its number of points, referred to as the cardinality, and

6The Rodinia benchmark suite covers computational kernels from various
application domains such as data mining, bioinformatics, physics simulations,
image processing and graph algorithms, which expose diverse computational
patterns.



si: the linearized distance between two consecutive points on
that dimension, referred to as the stride.

Complex inter-procedural analyses [3], [5], [16] have used
LMADs as building blocks for summarising memory references
across large loop nests, for example in analyses aimed at
proving parallelism based on set equations written in terms
of read-only, write-first and read-write sets [9].

The power of LMADs resides in the fact that they represent
a set of flat indices but “form” dimensions according to how
the underlying memory is being used, rather than to the shape
of the declared array.7 The example below demonstrates how
the flat (non-affine) write access to A is aggregated across the
two nested loops of indices i and j.
-- assuming strictly positive M, N, k
do i = 0 . . . m-1 -- W = ∪m−1

i=0 Wi = t + {(m : m), (n : k)}
do j = 0 . . . n-1 -- Wi = ∪n−1

j=0 Wi,j = t + i ∗m + {(n : k)}
A[t + i*m + j*k] = ... -- Wi,j = t + i ∗m + j ∗ k + {}

Initially, inside the two loops, the LMAD Wi,j is the point
{t + i ∗ m + j ∗ k}. Aggregating the write accesses across
the inner loop of index j = 0 . . . n − 1 results in summary
Wi = ∪n−1j=0Wi,j , which is obtained by promoting the term
j ∗ k of the offset of Wi,j to a new LMAD dimension of
• cardinality equal to the count of the inner loop n1 = n,
• stride equal to the the difference between the offsets of
Wi,j for two consecutive points on the new dimension:
s1 = t+ i ∗m+ (j + 1) ∗ k − (t+ i ∗m+ j ∗ k) = k.

It follows that Wi = t+i∗m+{(n : k)}, and the aggregation
across the inner loop of index j is deemed successful because
j is not used inside Wi.8 Similarly, Wi is successfully aggre-
gated across the outer loop of index i = 0 . . .m− 1, resulting
in LMAD W = ∪m−1i=0 Wi = t+ {(m : m), (n : k)}.

For example, if t = 1, k = 2, and m ≥ 2 · n then a
possible interpretation is that A is a m ×m matrix, and the
write accesses correspond to the slice of A that contains the
first n odd indices from each row of A.

C. Language

To discuss our ideas, we use an informally specified func-
tional language, equivalent to a subset of Futhark’s core IR.
This is a standard functional language where parallelism is
primarily expressed with map, generalised to mapn for simul-
taneously mapping over n arrays. Application is by juxtaposi-
tion, so we write f x instead of f(x). The language supports
both creation of fresh arrays, i.e. arrays that do not alias any
other array, using map, copy, iota, scratch, and concat9, as
well as “free” index-space transformations such as reshape,
transpose, and slicing. The statement let (x : τ) = e binds
variable x of type τ to the result of e. When x is an array, τ
also contains information about the memory block and index

7For example, LMADs allow analyses to be extended across procedure
boundaries where arrays are permitted to change shape (e.g., in Fortran77).

8If j appears inside the cardinal of one of the original-LMAD dimensions,
then an overestimate could still be computed by substituting j with whichever
bound maximizes the cardinal, i.e., either its lower (0) or upper bound (N−1).

9iota n = [0, . . . , n − 1] and scratch n f32 creates a new array of
length n of single-precision floats (f32), whose elements are uninitialized.

A[i,j] = f( A[i−1,j]

, A[i,j−1]

, A[i−1,j−1]

);

for (i=1; i<n; i++)

for (j=1; j<n; j++)
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Fig. 2. NW parallel access patterns

function. We will often elide or shorten τ for brevity. A let-
statement can bind multiple variables, and these are called
the pattern. Loop expressions denote a local tail-recursive
function, where loop p = x for y = 0 .. z − 1 do b
initially binds p to x, then evaluates b (the body) z times,
each time binding p to the result, and ultimately returns
the final value of p. For example, n! can be expressed as
loop acc = 1 for x = 0 .. n− 1 do acc ∗ (1 + x).

In contrast to most functional languages, we support array
updates, written as A with [i] = e. A uniqueness type system
based on affine logic ensures that the “old” value of A is not
used on any subsequent execution path, enabling the update
to be implemented as an in-place write to the memory of
A [17]. In cases where we reuse the name of the argument
for the result, we use the form let A[i] = e as syntatic sugar,
but semantically this is merely variable shadowing, not a true
imperative effect.

III. BIRD’S EYE VIEW BY EXAMPLE

This section demonstrates the intuition behind the tech-
niques presented in this paper, namely the use of LMADs for:
• providing a stronger abstraction than triplet notation for

array slicing in the source language (section III-B),
• introducing a notion of memory in the compiler IR for a

memory-agnostic source program (section III-C),
• driving the index analysis that enables memory optimiza-

tions, e.g., that recovers the efficient in-place update of
parallel containers in a manner that is determined safe
by compiler analysis but not verifiably correct by type
checking (section III-D).

Section III-A explains the running example, based on
Rodinia’s parallel implementation of the Needleman-Wunsch
(NW) method for DNA sequence alignment.

A. Running Example

The left side of fig. 2 shows the sequential implementation
of NW and its dependency pattern. Rodinia’s parallel code
can be obtained by a combination of loop skewing and block
tiling, whose access patterns are depicted on the right:
• the green b × b blocks forming an anti-diagonal are

computed in parallel (i.e., the write set), but successive
anti-diagonals are computed sequentially;



• each b× b green block is computed by one CUDA block
of threads that takes as input the horizontal and vertical
red bars adjacent to the block (the read set), and similarly
computes the internal anti-diagonals in parallel.

The resulting pseudo-Futhark code is shown below, where
n is the number of elements in a row, b is the block size, and
q is the number of blocks in a row, while input is a flat array
of size n×n and process_block is a function computing
the value of one block given its two input perimeters.
loop A for i < q do
let R_vert_slc = A[i*b + {(i+1 : n*b - b), (b+1 : n)}]
let R_horiz_slc= A[i*b + 1 + {(i+1: n*b - b),(b : 1)}]

let X = map2 process_block R_vert_slc R_horiz_slc
let A[i*b + n + 1 +

{(i+1: n*b - b), (b : n), (b : 1)}] = X
in A

The loop shown computes the first half of the matrix, and
is followed by another loop for the second half, which, apart
from the values used for indexing, is identical. We use some
unconventional slicing, which we’ll explain next.

B. LMADs as Generalized Slicing at Language Level

Functional approaches typically require all parallelism to be
verifiably deterministic by simple type-checking techniques.
In practice, this means that reads and updates to a parallel
container are split into two parallel operations: one that
produces a new array, and one that performs the update:

let X = map2 f A[Rvert] A[Rhoriz]
let A[W ] = X

For NW we would like to express the block-level parallelism
elegantly as above, where (1) W , Rvert, Rhoriz are notations
for generalized slicing, and (2) map2 computes in parallel each
of the green blocks on the current anti-diagonal by applying
f—the function that computes a block—to its corresponding
adjacent vertical and horizontal bars. In order to achieve this,
we need to be able to express a slice A[Rvert] that produces
all the vertical bars on an anti-diagonal, and similarly for
A[Rhoriz]. The update would similarly need to express that
the resulting array X updates the slice of A corresponding to
the green-blocks on the anti-diagonal, A[W ].

Assuming A is a 1-dimensional n·n array, with n = q ·b+1
for some q ≥ 1, and i is the index of the current anti-diagonal,
we can express10 these slices as LMADs, defined in eq. (1):
• W = i·b+n+1 + {(i+1 : n·b−b), (b : n), (b : 1)}11

• Rvert = i · b + {(i+ 1 : n · b− b), (b+ 1 : n)}
• Rhoriz = i · b + 1 + {(i+ 1 : n · b− b), (b : 1)}
We have implemented the following semantics in both the

source and IR languages: a read slice is an O(1) operation

10The triplet notation cannot express such slices because it cannot create
“new” dimensions, i.e., slicing is applied to each of the array dimensions.

11For example, the cardinal of the outer dimension of W is i+1, denoting
the number of green blocks on the ith anti-diagonal, and its stride is n ·b−b,
denoting the distance between the start of two consecutive green blocks: one
needs to jump up b lines of length n, and then go back horizontally b positions.
The offset i · b+n+1 corresponds to the start offset of the bottom block of
the ith anti-diagonal: this is horizontally preceded by i blocks (i·b), and since
the green blocks start at (1, 1), we add one line and one element (n+ 1).

that creates an array of the same rank and dimension lengths
(cardinality) as the LMAD, whose elements are taken from
the source array at the indices specified by the LMAD. An
update based on an LMAD slice is fully parallel and requires
work proportional to the product of the cardinals of LMAD
dimensions, i.e., the number of indices defined by an LMAD.
In the source language, dynamic checks are inserted for slices
whenever necessary to verify that all strides are non-zero, and
that the LMAD dimensions do not overlap [9], meaning that
the update is guaranteed to not introduce output dependencies.

While it is possible to express NW without LMAD slicing,
the code would use (1) complex, error-prone indexing, and (2)
a scatter update operation that is typically applied to a very
irregular set of indices, thus hinting that the code is likely not
statically optimizable. In contrast, an LMAD update guarantees
structured indexing, and hints at optimization opportunities.

C. LMADs as Index Function for Memory Abstraction

At the language level, operations such as slicing produce a
new array, which can be bound to a variable and freely used in
the remaining program, e.g., let B = A[Rvert] semantically
creates a (i + 1) × (b + 1) matrix B. Such change-of-layout
operations12 are supported in O(1) time: their elements are the
same as (a subset of) those of the input array, but re-arranged
according to a regular structure.

Index functions, represented as LMADs, are the glue that
allows the mapping of such arrays to memory. For example,
assuming that (fresh) array A holds elements of type t and is
stored in memory block Amem in row-major form—then the
element B[j, k] resides at memory location:

Rvert(j, k) = Amem + (i · b+ j · (n · b− b) +k ·n) ·sizeof(t)

This is a direct application of the definition of LMAD in eq. (1),
but now seen as an index function rather than an abstract
set.13 By knowing the structure of the LMAD of an array at
compile time, we can emit an expression such as the above
when generating code for an array access. Section IV discusses
how this abstraction is introduced inside the compiler.

D. LMADs as Building Blocks for Index Analysis

Having introduced a memory notion in the compiler IR, we
turn our attention to optimizing it. With our example

let X = map2 f A[Rvert] A[Rhoriz]
let A[W ] = X

this essentially corresponds to determining whether it is legal
to update A directly inside the map2 operation, which would
eliminate the overhead of the following update.

Section V presents an analysis that attempts to short-circuit
arrays A and X by constructing X directly in the memory
block Amem of A with the new index function W .

12Examples include reshaping, rotating, reversing, permuting (e.g., trans-
position) array dimensions, and slicing based on LMAD or triplet notation.

13One important difference is that any abstract-set LMAD can be normalized
to have only positive strides, but this is not possible for the index-function that
corresponds to reversing a 1D array of length n: Lrev = n−1+{(n : −1)}.



For NW, the challenging part is the index analysis, presented
in section V-B, which, intuitively, verifies that the write set of
the moved X—the green boxes on an anti-diagonal—does not
overlap the read set of A—the vertical and horizontal bars on
the same anti-diagonal, i.e., W ∩ (Rvert ∪Rhoriz) = ∅.

While fig. 2 shows that this holds, proving it is nontrivial;
section V-C presents an adaptation of the algorithm in [9]
that provides a sufficient-condition test for proving empty
intersection of two LMADs (which succeeds for NW).14

If the analysis succeeds, the update will be redundant and
treated as a no-op. Essentially, introducing a memory notion in
IR is what allows a graceful transition to a representation that,
while not safe by construction, is able to express imperative-
style memory reuse.15 For NW, proving that X can be short-
circuited is equivalent to proving that the loop that processes
the anti-diagonal blocks is parallel; the difference is that the
failure of the latter is catastrophic (i.e., leads to sequential
execution), while the failure of the former results in slowdowns
of only 1.1− 1.5×, i.e., paying the overhead of the update.

IV. LMAD-BASED REPRESENTATION OF MEMORY

A. LMADs as Index Functions

A q-dimensional array is associated with a q-dimensional
LMAD. To index an array, we apply the associated LMAD to
the given indexes. We define application of an LMAD
L = x+ {(d1 : s1), . . . , (dq : sq)} as:

L(y1, . . . , yq) = x+
∑

1≤i≤q

yi · si

Now consider how to represent an n×m matrix. Two possible
index functions are as follows:

L1 = (0 + {(n : m)(m : 1)}) L2 = (0 + {(n : 1)(m : n)})

They both describe an index space of shape n×m. However,
L1 describes a row-major order layout, while L2 describes
column-major order. These cases are particularly common, so
as an abbreviation we define R(d1, . . . , dq) and C(d1, . . . , dq)
as index functions for arrays of shape [d1] · · · [dq] in respec-
tively row-major and column-major order, with zero offset.

B. Transformations of index functions

Index transformations are implemented by changing the
index functions of the array. We are concerned with the fol-
lowing transformations: transposition, slicing, and reshaping.

Transposition, or indeed any permutation of dimensions,
is done simply by permuting the components of the LMAD.
To slice an LMAD we compute an augmented offset by
multiplying each of the slice offsets ai with the strides of the
original LMAD. For example, to extract column i from a row-
major n×m matrix with the triplet slice [0 : n : 1, i : 1 : 0]16

14Our test is inspired by and extends the one from [9], which neither
distributes the terms of the offset, nor splits overlapping dimensions.

15If the memory annotations are deleted, the program is again guaranteed
to express correct-by-construction parallelism, i.e., no data-races are possible.

16This actually produces an index function for a n×1 “matrix”, which can
be seen as a column vector.

l e t as = (0 . . 63) −− i x f n as= 0 + { ( 64 :1 )}
l e t bs = u n f l a t t e n 8 8 as −− i x f n bs= 0 + { ( 8 : 8 ) , ( 8 : 1)}
l e t cs = transpose bs −− i x f n cs= 0 + { ( 8 : 1 ) , ( 8 : 8)}
l e t ds = cs [ 1 : 3 : 2 , 4 : 8 : 1 ] −− i x f n ds= 1+4 * 8+{ ( 2 :2 ) , ( 4 :8 )}
l e t es = ( f l a t t e n ds ) [ 2 : ]
−− i x f n es=L2oL1 w i t h L1 =2+{(6:1)} and L2= 3 3 +{ ( 2 : 2 ) , ( 4 : 8 )}
in es [ 5 ]
−− To f i n d t h e f l a t o f f s e t o f e s [ 5 ] i n t h e memory o f as :
−− 1 . I n t e r p r e t i n d e x 5 by L1 : L1 ( 5 ) = 2 + 5*1 = 7
−− 2 . Unrank 7 t o L2 ’ s dims : i = 7 / 4 and j = 7 mod 4
−− 3 . I n t e r p r e t ( i , j ) by L2 : L2 ( 1 , 3 ) = 33 + 1*2 + 3*8= 59

Fig. 3. Index function computations for complicated slices. Please note that
none of these operations manifest new arrays in memory.

we compute a new offset 0 · m + i · 1 = i, producing the
LMAD i+ {(n,m)(1, 0)}. LMAD-slices, like the ones used to
compute NW, can be handled in a similar manner.

The most difficult operation to handle is arbitrary reshaping.
While some common special cases can be handled (e.g.
flattening a row-major matrix), there are cases that cannot be
expressed with a single LMAD. For example, when flattening
a column-major matrix to a single-dimensional array, the
resulting index function cannot be expressed as a single LMAD.
Therefore we allow index functions to comprise multiple
LMADs. Applying these is done by applying the final LMAD to
the initial index producing an offset, which is then unranked
with respect to the q-dimensional index space of the remaining
LMADs, giving an q-dimensional point, to which the remaining
LMADs are applied. Unranking involves costly division and
remainder operations at run-time, but fortunately this case
rarely occurs in real programs. Figure 3 demonstrates the
treatment of a non-trivial example of slicing.

C. Introducing Memory Information

The source language exposed to programmers does not ex-
pose a notion of memory. All memory information is inserted
by the compiler. For statements that create fresh arrays, we
insert an alloc statement that allocates a memory block of
appropriate size, and use a row-major order index function by
default. For example, the statement,

let (y : [n][m]int) = copy x

will be turned into

let (ymem : mem) = alloc (n ∗m ∗ sizeof(int))
let (y : [n][m]int@ymem → R(n,m)) = copy x

Note how the binding of y contains both the name of the
memory block and the index function describing its layout.
For statements that perform index transformations of an array,
we insert no alloc statement, but instead use a transformed
index function. For example,

let (z : [m][n]int) = transpose y

becomes

let (z : [m][n]int@ymem → C(m,n)) = transpose y

Note that z resides in the same memory block as y.
Handling if is more tricky because the values returned by

the two branches can be in different memory blocks and have



1 let as = scratch m f32
2 let bs = scratch n f32
3
4 . . . fill in arrays as and bs . . .
5
6 let xss = concat as bslu

(a) Trivial Concatenation Example.

1 let as = scratch n f32
2 . . . use of arrays aliased with xss . . .
3 . . . fill in array as . . .
4 let bs = chg-layout-op-1 as
5 let cs = chg-layout-op-2 bs
6 . . . use of arrays as, bs, cs . . .
7 . . . use of arrays aliased with xss . . .

8 let xss[W ] = bslu

(b) Challenges to Analysis.
Fig. 4. Simple example and challenges for short-circuiting array bs in xss.

different index functions. Our solution is to compute the least
general generalization (lgg) of the involved index functions,
via anti-unification [18]. Suppose that the input statement is

let (z : [n][m]int) = if c then x else y

and that x resides in xmem with index function R(n,m) =
0 + {(n,m)(m, 1)}, and y in ymem with C(n,m) = 0 +
{(n, 1)(m,n)}. The lgg of these index functions is 0 +
{(n, a)(m, b)} for some a, b. Thus, the pattern for the state-
ment is augmented with bindings of zmem, a, b, for which the
branches return specific values:

let (zmem, a, b, z : [m][n]int@zmem → 0 + {(n, a)(m, b)}) =
if c then (xmem,m, 1, x) else (ymem, 1, n, y)

A similar technique is used for loops. Anti-unification is
not supported in some rare cases, e.g., where the index
functions differ in number of constituent LMADs, or when the
loss of information would prevent locality optimizations, e.g.,
coalesced accesses to memory. In such cases we insert copy
statements to normalise the arrays to a uniform representation.

V. ARRAY SHORT-CIRCUITING OPTIMIZATION

We denote by circuit point a statement

let x = concat a blu

or
let y[W ] = blu

where W denotes a triplet-notation or LMAD slice and blu

denotes the last use of b.
The simplest example demonstrating the proposed optimiza-

tion is shown in fig. 4a and concerns creating a new array
xss by concatenating the elements of two existent arrays
as and bs. If bs is a fresh array and it is lastly used here,
then essentially one may allocate and compute bs directly in
xssmem, the memory of xss—i.e., bs will have index function
m + {(n : 1)}. If as is lastly-used too, then it is similarly
treated and concatenation becomes a no-op, since xssmem

already has the expected content.17

Our analysis is implemented as a bottom-up pass that
identifies candidates for short-circuiting, such as bs, at circuit
points (last use of bs) and validates the optimization at the
definition of their corresponding fresh arrays (first use). We
use fig. 4b to demonstrate the four properties that we verify:

17Please note that let xss = concat bs bslu cannot be perfectly
optimized: one copy of bs is still needed, and in our analysis this is reflected
by the fact that only one of the two uses of bs can possibly be a last use.

(1) bs is lastly used in the circuit point (denoted blu).18

(2) xssmem is in scope (already allocated) at the definition
point of the fresh array associated to bs. This is enabled
by a preceding pass that aggressively hoists out alloca-
tions.19 In fig. 4b, the fresh array is as, created at line 1,
and bs is obtained from as at line 4.

(3) the analysis optimistically assigns a new memory block
and index function to bs at the circuit point (line 8). As
it moves up towards the definition of its fresh array as,
the analysis needs to be able to compute and assign new
(valid) index functions to all variables that are in an alias
relation to bs, for example as and cs. In particular, these
might use some of the program variables of W , which
might be defined after the creation of as, bs, cs, hence
they need to be “translatable” at those creation points.

(4) since the analysis attempts to lay out bs in the memory of
xss, it needs to conservatively prove that, semantically,
there is no write to bs that would override a memory
location that is read or written via xss—in between the
definition of as and the circuit point of bs. As such, a use
of array xss at line 2 would be safe, because no element
of as (bs) has been written yet, but a use of xss at line
7 would need to be proven to not overlap the preceding
writes to bs (as and cs).

Essentially, (1) bounds the analysis scope to the live range
of as/bs, (2) and (3) are legality checks satisfying the IR
requirements that any variable is memory typed at its definition
point, and (4) ensures the preservation of program semantics
in the case when xss is accessed during the live range of
bs: Since xss and bs are not aliased, a write to bs should not
overwrite a location that is later read from xss, and conversely,
a write to xss should not overwrite a location previously
written by (aliases of) bs.20 Property 1 and 2 are easy to check,
so we will concentrate on verifying properties 3 and 4.

We use a syntax-directed approach [19] for implementing
the analysis (a.k.a., structural), in which each syntactic cate-
gory is implemented by a translation rule that uses case anal-
ysis on the IR constructors21. We informally discuss several
such translation rules, demonstrated on concrete examples.

A. Verifying the Third Safety Property

We first discuss the case of layout transformations using the
example in fig. 4b, and then explain how to extend analysis
across if and loops that can return memory blocks.

For simplicity, we assume that xss is a fresh array—i.e.,
laid out in memory xssmem in row-major order—and W is
an LMAD slice. Our analysis then attempts to construct array
bs in xssmem with the new index function W (at line 8).

18We have implemented a last-use analysis (as a preceding pass) that
conservatively guarantees that neither bs nor any array in an alias relation with
bs can possibly be used on any path following a bslu-annotated statement.

19Pathological cases exist in which this property cannot be satisfied, e.g.,
if the size of xssmem is data or control dependent on the elements of bs.

20This also covers the illegal case when a write to xss is later read from
bs because then bs has been necessarily written before the write to xss.

21E.g., a program is a block of statements; a statement can be simple
additions or ifs or loops, which contain their own block of statements.



l e t (bsmem , n ,
bs @ bsmem → R(n) ) =

i f cond
then

l e t bsthmem = a l l o c . . .
l e t bsth @ bsthmem → R(t)

= mapnest ( i<t ) . . .
in (bsthmem , t , bsth )

e l s e
l e t bselmem = a l l o c . . .
l e t bsel @ bselmem → R(q)

= Mapnest ( i<q ) . . .
in (bselmem , q , bsel )

. . .
l e t x s s [ i , 0 : n ] = bs

(a) If-Then-Else Example.

l e t as0mem = a l l o c n f32
l e t as0 @ as0mem → R(n) =

mapnest ( i<n ) . . .
l e t (bsmem , bs @ bsmem → R(n) )=

loop (asmem , as @ asmem → R(n) ) =
(as0mem , as0 )

f o r i = 0 . . n−1 do
l e t as′mem = a l l o c . . .
l e t as′ @ as′mem → R(n) = f ( a s lu )
l e t bs′mem = a l l o c . . .
l e t bs′ @ bs′mem → R(n) =
mapnest ( j<n )

( as ’ [ j ]* as ’ [ j + 1 ] )
in (bs′mem , bs′ )

. . .
l e t x s s [ n : 2 * n ] = bs

(b) Loop Example.
Fig. 5. Extending Analysis to Compound Statements If and Loops.

a) Change-of-Layout Transformations: Transformations
of bs such as the one on line 5 producing cs—or any other
arrays produced by a sequence of layout transformations from
bs—is always supported, because the index function of cs can
be directly computed by applying the layout transformation
to W , denoted chg-layout-2 ◦W , in a manner similar to
how the memory abstraction was introduced in section IV.

The change-of-layout transformation at line 4, however,
is applied to the fresh array as and produces the short-
circuited array bs. This is more difficult to support because it
corresponds to the equation W = chg-layout-1 ◦ ixfnas,
where ixfnas is the unknown denoting the “new” (rebased)
index function that needs to be assigned to as. This equation
does not always have a valid solution: e.g., if W is a dense
slice, such as i · n + {(n : 1)} and chg-layout-1 is a
slice that selects every other element of as, then the 2 · n
elements of as cannot possibly fit inside the n memory ele-
ments associated with xss[W ]. While a more general solution
might exist, we currently support only the transformations that
are “invertible”—such as rotating/reverting the elements of a
dimension and permuting an array dimensions22—by equation:

ixfnas = chg-layout-1−1 ◦W

b) Index-Function Translation: When the analysis
reaches the definition of an array variable, it is possible that its
rebased index function contains variables that are not in scope
(i.e. defined later). We address this by extending the symbol
table of the bottom-up analysis to record the integral variables
that are defined by simple arithmetic operations. Translating
the index function consists of substituting to a fixpoint the keys
of the symbol tables with their arithmetic expressions; analysis
fails if the translation still uses variables not in scope.

c) If and Loops: We explain the treatment of if state-
ments based on fig. 5a. As before, the analysis tries to rebase
bs in the memory of xss (last line). But now bs is produced
by an if statement and resides in memory bsmem. We know
that bsmem has been allocated, but cannot uniquely pinpoint

22For example, the inverse of the transformation that permutes the dimen-
sions of an array by permutation p is the permutation by p−1, the inverse of
p. The inverse of matrix transposition is matrix transposition (MT )T =M .

l e t yssmem = a l l o c . . .
l e t asmem = a l l o c . . .
l e t bsmem = a l l o c . . .
l e t csmem = a l l o c . . .
l e t yss@yssmem → R(n, 2 ∗ n)=

mapnest ( i<n , j <2*n ) . . .
l e t as @ asmem → R(n) =

mapnest ( j<n ) . . .
l e t bs @ bsmem → R(n) =

mapnest ( j<n ) . . .

l e t cs @ csmem → R(2 ∗ n) =
concat aslu bslu

l e t yss [ i ] = cslu

(a) Chaining Example.

l e t xssmem = a l l o c . . .
l e t xss @ xssmem → R(n, n) =
mapnest ( i<n )

l e t rsmem = a l l o c . . .
l e t rs0 @ rsmem → R(n) =

s c r a t c h n f32
l e t rs0 [ 0 ] = as [ i , 0 ]
l e t rs′ @ rsmem → R(n) =

loop (rs@rsmem → R(n) ) = (rs0 )
f o r k = 1 . . n−1 do

l e t rs [ k ] = as [ i , k ] +
s q r t (rs [ k − 1 ] )

in r s
in r s ’ lu

(b) mapnest Example.

Fig. 6. Chaining and mapnest Examples

where: it is one of bsthmem or bselmem, which are returned from
the two branches, respectively. Similarly, bs has index function
R(n), where n is either t or q. The analysis for bs is reduced
to solving two sub-problems that attempt to short-circuit in
xss the results of the then and else branches within the
corresponding bodies. For example, the index function of bsth

is rebased and translated (n 7→ t) to i+{(0 : t)} and, as before,
the success will be determined after analyzing the mapnest

that creates (the fresh array of) bsth, and similar for bsel.
We use fig. 5b to explain loops, which are treated similarly:

the result bs of a loop, originally residing in existential
memory bsmem, can be short-circuited in xss if (1) its size
is invariant through the loop, (2) the result of a loop iteration
bs′ is successfully short-circuited within the iteration body,
(3) at a definition point that comes after the last use of the
corresponding iteration input as, and (4) the loop initializer
as0, defined prior to the loop, can also be short-circuited. If
analysis succeeds, arrays as0, bs, as and bs′ (but not as′) will
be placed in xssmem with index function n+ (n : 1).

Essentially, (1) ensures that the index functions of as0,
as still fit in the destination array, and (2-4) subsume a
conservative condition for reusing memory for as0, as, bs′,
e.g., because the liveness of as and bs′ do not overlap (3).23

d) Transitive Chaining: Figure 6a shows a source pro-
gram in which fresh arrays as and bs can be short-circuited
(by concatenation) into array cs, which, at its turn, can be
short-circuited into array yss. Our bottom-up analysis supports
such transitive cases, by attempting to first rebase cs into
the memory yssmem of yss, then attempting to rebase as
and bs in the “new” memory of cs which is now yssmem

24.
However, the success of short-circuiting as and bs is flagged
to be conditional on the success of cs; if analysis of cs fails,
then it is remembered, and analysis is re-run (to a fix point)
to allow as and bs to be circuited in the memory of cs.

23The case of an iterative stencil would not conform with (3) and would be
unsafe to reuse memory across the input and result stencil. In contrast, a loop
that adds one to each element of a loop-variant array would not conform but
would be safe. Instead of complicating analysis to “guess” implicit circuiting
points, we expect the user to insert them explicitly inside the loop body.

24Assuming yss is a fresh array of dimensions n× 2 · n, and denoting by
t = i · 2 · n, the rebased index functions are: ixfncs = t + {(2 · n : 1)},
ixfnas = t+ {(n : 1)}, and ixfnbs = t+ n+ {(n : 1)}.



e) Mapnests: We explain the semantics and treatment of
mapnests on the example in fig. 6b. A mapnest is essentially
a perfect nest of parallel loops (in our case of depth one),
whose indices and counts are written as (i < n). Its body
computes a per-thread i result rs′, which is always explicitly
returned at the end (in rs′). In our example, rs0, rs and rs′

essentially correspond to the same array which is computed
in place, one element at a time, inside the sequential loop.25

These arrays are normally laid out R(n) in memory rsmem,
which is allocated inside the mapnests.

The semantics of the mapnest is that there is an implicit
copy of each per-thread result rs′ into the array result of
the mapnest, which is denoted xss, i.e., xss[i] = rs′. Our
analysis treats this as an implicit circuit point, and attempts
to short-circuit rs′—and its aliases rs and rs0—into memory
xssmem with rebased index function i · n+ (n : 1). This has
high impact on the LBM and LocVolCalib benchmarks.

B. LMAD-Based Index Analysis

The previous section has presented the gist of our analysis
for the simple case in which the (memory of) array xss,
which bs is short-circuited into, is not used in-between the
first and last use of bs. This section explains how to relax this
restriction, without which analysis would fail on important and
challenging benchmarks such as NW and LUD.

The core idea is that for each short-circuit candidate,
denoted by let xss[Scirc] = bslu, the bottom-up analysis
maintains two summaries of memory locations, viewed as
abstract sets and represented as unions of LMADs:
Uxss: aggregates all uses of the memory xssmem of xss

from the circuit point (backward) until the current
statement;

Wbs: aggregates the memory locations that are semanti-
cally written via (aliases of) bs, which is now rebased
in xssmem.

The safety property that successful analysis must verify is that
any write to (aliases of) the rebased bs does not overlap in
memory with any successor uses of xss aliases (held in Uxss).

a) Straight-line code free of control flow: This is demon-
strated in fig. 7a. At the circuit point (line 5), bs is rebased in
xssmem, hence its new index function, ixfnnewbs , is computed
by applying the slice Scirc to the index function of xss, and
the summaries Uxss and Wbs are initialized to the empty set.

Line 4 reads the slice Srd
xss of xss. The analysis computes

the read set of memory references by (1) applying the slice
Srd
xss to ixfnxss and (2) re-interpreting the resulting LMAD
Lrd
xss as an abstract set,26 which is added to Uxss. Line 3 writes

xss, and Uxss is similarly updated to Lrd
xss ∪ Lwt

xss.
Line 2 writes a slice Swt

bs of bs. The corresponding set of
memory locations Lwt

bs is (1) computed by applying the slice
Swt
bs to the new (rebased) index function of bs and (2) is added

25The imperative reader may think of rs0, rs and rs′ as SSA names
referring to the same source array.

26If the resulting index function is a composition of LMADs rather than one
LMAD then its abstract set is conservatively overestimated, e.g., to [−∞,∞].

−− S u c c e s s i f r eached !
1 . l e t bs = s c r a t c h . . .

−− Lwt
bs = slice Swt

bs ixfnnew
bs

−− Wbs = Lwt
bs

−− F a i l s i f : Uxss ∩ Lwt
bs 6= ∅

2 . l e t bs [Swt
bs ] = . . .

−− Lwt
xss = slice Swt

xss ixfnxss

−− Uxss = Lrd
xss ∪ Lwt

xss

3 . l e t x s s [Swt
xss ] = . . .

−− Lrd
xss = slice Srd

xss ixfnxss

−− Uxss = Lrd
xss

4 . l e t . . . = f ( x s s [Srd
xss ] )

−− Wbs = ∅, Uxss = ∅
−− ixfnnew

bs = slice Scirc ixfnxss

5 . l e t x s s [Scirc ] = bslu

(a) Straight-Line Code

l e t bs0@bsmem : R(q)= s c r a t c h . . .
. . .
l e t bs @ bsmem : R(q) =

loop (bsi@bsmem : R(q) ) = (bs0 )
f o r i = 0 . . n−1

−− Wi
bs,U

i
xss are t h e

−− summaries o f t h e body
l e t bsi [Swt

bsi
] = . . .

l e t x s s [Swt
xss ] = . . .

. . . = f ( x s s [Srd
xss ] )

−− Wi
bs = ∅, Ui

xss = ∅
in bsi

−− Wbs, Uxss d e n o t e t h e
−− summaries a t t h i s p o i n t
. . .
−− Wbs = ∅, Uxss = ∅
l e t x s s [Scirc ] = bslu

(b) Loop Aggregation and Safety

Fig. 7. Index Analysis for Straight-Line Code and Loops

toWbs. At this point, analysis must verify the safety property,
which is reduced to verifying the non-overlap of a finite
number of LMAD pairs (which is discussed in section V-C):

Lwt
bs ∩ Uxss = ∅ ⇐⇒ Lwt

bs ∩Lrd
xss = ∅ ∧ Lwt

bs ∩Lwt
xss = ∅

b) Loops: This is demonstrated in fig. 7b, where we
assume the summaries Wbs and Uxss contain the correspond-
ing memory references just before the analysis reaches the
loop statement. The idea is to apply analysis independently
(recursively) on the loop body, where the summaries U i

xss and
Wi

bs of (some) iteration i are initialized to the empty set before
the last statement of the body, and are fully computed after
the first statement of the loop body was analyzed.

Denoting by U>i
xss the (partial) union of memory references

in the iterations following i, and by U loop
xss and W loop

bs the total
union across all iterations, i.e.,

U>i
xss =

n−1⋃
j=i+1

U j
xss, U loop

xss =
n−1⋃
i=0

U i
xss, W

loop
bs =

n−1⋃
i=0

Wi
bs

the safety property is equivalent to verifying that (1) the writes
to bs in (any) iteration i do not overlap with the uses of xss
in any iteration following i, and (2) the writes to bs across the
whole loop do not overlap with the uses of xss after the loop:

U>i
xss ∩ Wi

bs = ∅ ∧ Uxss ∩ Wmap
bs = ∅

Finally, summaries are updated with the accesses within the
loop, so that analysis can advance towards the first use of bs,
which is represented by the definition of bs0 (via scratch):

Wbs = Wbs ∪ W loop
bs , Uxss = Uxss ∪ U loop

xss

The treatment of mapnests is similar, but with two differences:
• The mapnest requires that each iteration ends with an

implicit update bs[i] = r, where r and bs denote the result
of the mapnest body and of the mapnest. It follows that
Wi

bs = slice ([i, :]) ixfnnewbs .
• Denoting by U<i

xss = ∪i−1j=0U j
xss the uses of xss in

all iterations prior to i, the safety property needs to



procedure NonOverlap(L1, L2)
t1, t2 ← the offsets of L1, L2

I1, I2 ← convert L1, L2 to sum of intervals of matching strides by distributing
the terms of t1 − t2 positively across LMADs dimensions.

if both I1 and I2 have all dimensions non-overlapping
then return whether exists a corresponding pair of non-overlapping intervals
else L1

1, L
2
1 ← splitAnOverlappingDimensionInto2LMADs(I1)

L1
2, L

2
2 ← splitAnOverlappingDimensionInto2LMADs(I2)

if L1
1 = Fail or L1

2 = Fail
then return False
else return NonOverlap(L1

1, L
1
2) and NonOverlap(L1

1, L
2
2)

and NonOverlap(L2
1, L

1
2) and NonOverlap(L2

1, L
2
2)

Fig. 8. Pseudocode for the procedure that tests that two LMADs do not overlap.

also check that Wi
bs does not overlap U<i

xss, because the
(parallel) iterations of a mapnest execute out-of-order:

U<i
xss∩Wi

bs = ∅ ∧ U>i
xss ∩ Wi

bs = ∅ ∧ Uxss ∩ Wmap
bs = ∅

The partial and total unions are implemented by expanding
LMAD dimensions [9], [10], as demonstrated in section II-B.

C. Statically Checking Non-Overlap of a Pair of LMADs

Our non-overlap test is rooted in the following theorem:

Theorem (Non-Overlap). Given two sum-of-strided intervals
with matching strides I1 = Σd

j=1[l1j . . . u
1
j ] · sj and I2 =

Σd
j=1[l2j . . . u

2
j ] · sj , such that ∀j, sj > 0 ∧ l1j ≥ 0 ∧ l2j ≥ 0,

then a sufficient condition for non-overlap I1 ∩ I2 = ∅ is:

• Both I1 and I2 have no overlapping dimensions, i.e.,
si > Σi−1

j=1u
1
j · sj ∧ si > Σi−1

j=1u
2
j · sj , ∀i = 2 . . . d, and

• ∃j, 1 ≤ j ≤ d, such that [l1j . . . u
1
j ] ∩ [l2j . . . u

2
j ] = ∅.

Our procedure, summarized in fig. 8, converts the pair of
LMADs to a pair of sum of intervals of matching dimensions,
by exploiting LMAD properties [9], such as: (1) an LMAD
can always be normalized to have only positive strides, and
(2) dimensions of length 0 can be introduced or removed at
will. This step requires a bit of computer algebra support
for subtracting the offsets, and iteratively simplifying and
distributing the most-complex term of the (sum-of-terms)
result to the interval whose (leading term of the) stride is the
best match for that term, and such that the term accounts with
a positive sign.27

If one or both of the sum-of-intervals, say I1, have over-
lapping dimensions, then we apply a heuristics that rewrites
the interval that has produced the overflow as a union between
the last point of the interval and the rest of the interval. This
essentially decomposes I1 into a union of sum-of-intervals
I1 = I11 ∪I12 , and the test is applied recursively for every pos-
sible combination of pairs. Figure 9 shows how non-overlap
is proven for the NW example discussed in section III-B.

27For example, if the strides of I1 and I2 are nb− b, n, 1, and the offset
is simplified to t0 = tI1 − tI2 = nb − b − n − 1, then the term nb,
assumed positive, best matches the stride nb − b. t0 is re-written as t0 =
(nb− b) + b− b− n− 1 and its first term nb− b contributes with a “+1”
to the lower and upper bounds of the interval of stride nb − b of I1. The
remaining offset is simplified to t1 = −n− 1, and its terms, having negative
signs, are (made positive and) distributed to I2’s intervals of strides n and 1.

To Prove:W ∩ Rvert = ∅ assuming n = qb + 1, 2 ≤ q, 1 ≤ b, 0 ≤ i
W = ib + n + 1 + {(i + 1 : nb− b), (b : n), (b : 1)}
Rvert = ib + {(i + 1 : nb− b), (b + 1 : n)}

Re-write as sum-of-intervals:
W∪I = [0 . . . i] · (nb− b) + [1 . . . b] · n + [1 . . . b] · 1
Rvert
∪I = [0 . . . i] · (nb− b) + [0 . . . b] · n + [0 . . . 0] · 1

Both have overlapping dimensions, e.g.,nb− b 6 >nb

Solution: Split 2nd dim,e.g.,[0 . . . b] · n = [0 . . . b− 1] · n ∪ {nb}

To Prove:(W 1
∪I ∪W 2

∪I) ∩ (Rvert,1
∪I ∪ Rvert,2

∪I ) = ∅, where
W 1
∪I = [0 . . . i] · (nb− b) + [1 . . . b− 1] · n + [1 . . . b] · 1

W 2
∪I = [1 . . . i + 1] · (nb− b) + [0 . . . 0] · n + [1 + b . . . 2b] · 1

Rvert,1
∪I = [0 . . . i] · (nb− b) + [0 . . . b− 1] · n + [0 . . . 0] · 1

Rvert,2
∪I = [1 . . . i + 1] · (nb− b) + [0 . . . 0] · n + [b . . . b] · 1

All have non-overlapping dimensions if q ≥ 2 ∧ b ≥ 1

W 1
∪I ∩ Rvert,2

∪I = ∅ holds because [1 . . . b− 1] · n ∩ [0 . . . 0] · n = ∅
W 1
∪I ∩ Rvert,1

∪I = ∅ ∧ W 2
∪I ∩ Rvert,1

∪I = ∅ ∧ W 2
∪I ∩ Rvert,2

∪I = ∅
holds because non-overlap in the first dimension, e.g.,
[1 + b . . . 2b] · 1 ∩ [b . . . b] · 1 = ∅ and [1 . . . b] · 1 ∩ [0 . . . 0] · 1 = ∅

Fig. 9. Proving the NW example in section III-B. In practice we need to
prove less, i.e., Wq ∩Rvert

j>q = ∅, which succeeds statically when q ≥ 1.

D. Implementation Details

The techniques and methods described in this paper are fully
implemented as an automated pass in a dedicated version of
the Futhark compiler. In all, it takes up around 5000 lines
of Haskell code. The simple inequalities resulting from the
analysis in section V-C are currently solved using an external
SMT solver when checking LMAD non-overlap, but we are
working on replacing this with a simpler symbolic algebra
engine inside the compiler. Note that the SMT solver cannot
by itself verify non-overlap of e.g. NW; we use it only for
testing the inequalities generated by the non-overlap theorem.

Short-circuiting causes around 10% compile time overhead
for most benchmarks, with only NW and LUD taking longer.
Particular, due to the SMT solver, NW takes 17 seconds to
compile with short-circuiting compared to 1 second without.

VI. EXPERIMENTAL EVALUATION

To investigate the impact of array short-circuiting, we have
implemented it in the Futhark compiler, and validated it by
testing it on a collection of benchmarks.

A. Experimental Methodology

Each benchmark was run on an NVIDIA A100 and AMD
MI100 GPU. To ensure accurate measurements, we run each
benchmark a number of times, as indicated by the header
of each table, always discarding the first run and measuring
the average wall time of the rest. The full experimental
methodology is described in the artifact description.

B. Case Study: NW

The NW benchmark has already been extensively discussed.
It uses a complex parallelization pattern as shown in fig. 2,
but our LMAD slices allow us to take a flattened representation
of the matrix and directly express the LMADs we want.

Using LMAD slices, our short-circuiting pass correctly rec-
ognizes that the blocks in each iteration can be computed in-
place, which reduces copying overhead, resulting in significant



TABLE I
NW PERFORMANCE (1000 RUNS)

Dataset Ref. Unopt.
Futhark

Opt.
Futhark

Opt.
Impact

A
10

0 8192 9ms 0.99x 1.16x 1.17x
16384 21ms 0.96x 1.19x 1.24x
32768 58ms 1.04x 1.36x 1.31x

M
I1

00 8192 15ms 0.71x 0.88x 1.24x
16384 44ms 0.64x 0.78x 1.21x
32768 325ms 1.01x 1.14x 1.13x

(a) LUD (b) Hotspot
Fig. 10. The access patterns for LUD and Hotspot.

performance improvements as shown in table I. Overall, we
see impacts of between 1.1× and 1.3×, which means that we
are outperforming the hand-written Rodinia implementation
on the largest datasets.

C. Case Study: LUD

The Futhark implementation of LUD closely mimics Ro-
dinia’s hand-written OpenCL implementation. At a high level,
the implemented algorithm separates the input matrix into
blocks and iteratively processes the resulting blocked matrix
along the diagonal. Figure 10a shows an example at the second
iteration of the outer loop: First, the green diagonal block
is processed individually. The result is used to compute the
blue and yellow blocks, all of which are used to updated the
remaining inner red blocks. The loop then continues inside the
red blocks. In principle, and in the Rodinia implementation,
this can all be done in-place, but without arrray short-circuiting
Futhark will put the intermediate arrays in temporary memory
allocations, with significant copying overhead.

Short-circuiting determines that the yellow and red blocks
can be constructed in-place. Due to various other compiler
optimizations (e.g. layout changes to enable coalesced access
for the blue blocks) the green and blue blocks are not
computed in-place, but we still see significant performance
improvements from short-circuiting (1.19− 1.39×), as shown
in table II. The resulting code is more efficient than Rodinias
implementation, because Futhark automatically performs both
block and register tiling, while Rodinia’s code only uses block
tiling—this seems to have higher impact on A100.

D. Case Study: Hotspot

Hotspot from Rodinia is a repeated stencil computation. The
stencil boundaries are treated separately as shown in fig. 10b:
The corners (in green) are handled first, then the four edges
(which have similar access patterns) and finally the internal

TABLE II
LUD PERFORMANCE (10 RUNS)

Dataset Ref. Unopt.
Futhark

Opt.
Futhark

Opt.
Impact

A
10

0 8192 190ms 1.08x 1.34x 1.25x
16384 1445ms 1.19x 1.53x 1.29x
32768 11547ms 1.21x 1.60x 1.32x

M
I1

00 8192 173ms 0.60x 0.72x 1.19x
16384 1248ms 0.74x 0.98x 1.32x
32768 10511ms 0.83x 1.14x 1.39x

TABLE III
HOTSPOT PERFORMANCE (10 RUNS)

Dataset Ref. Unopt.
Futhark

Opt.
Futhark

Opt.
Impact

A
10

0 8192 9ms 0.47x 0.84x 1.78x
16384 29ms 0.46x 0.94x 2.04x
32768 117ms 0.46x 0.94x 2.05x

M
I1

00 8192 8ms 0.33x 0.64x 1.96x
16384 34ms 0.35x 0.68x 1.97x
32768 142ms 0.37x 0.73x 1.98x

TABLE IV
LBM PERFORMANCE (100 RUNS)

Dataset Ref. Unopt.
Futhark

Opt.
Futhark

Opt.
Impact

A
10

0 short 29ms 0.84x 0.92x 1.09x
long 860ms 0.86x 0.95x 1.10x

M
I1

00 short 49ms 0.65x 1.04x 1.59x
long 1423ms 0.63x 1.01x 1.60x

cells. Because the new value of each cell depends on the old
value of its neighbours, we cannot perform the computation in-
place. Instead we compute the different parts separately and
concatenate them at the end. Without short-circuiting, each
of the intermediate arrays reside in separate memory blocks
and must be copied to form the result. Short-circuiting causes
the intermediate arrays to be constructed directly in the result
memory, giving speedups of up to 2x, as shown in table III.
The optimised code almost reaches the performance of the
hand-written Rodinia implementation on the A100.

E. Case Study: LBM

The LBM benchmark from Parboil [20] is an implemen-
tation of the Lattice-Boltzmann Method. Table IV shows the
impact of our optimization on the Futhark implementation.
We see significant improvement on the MI100, which results
in outperforming the reference implementation slightly. On the
A100, Futhark was already quite close to matching Parboil’s
performance, but the 1.1× optimisation impact brings it even
closer.



TABLE V
OPTIONPRICING PERFORMANCE (1000 RUNS)

Dataset Ref. Unopt.
Futhark

Opt.
Futhark

Opt.
Impact

A
10

0 medium 1ms 0.78x 0.80x 1.03x
large 18ms 0.58x 0.70x 1.21x

M
I1

00 medium 13ms 4.19x 4.70x 1.12x
large 28ms 0.65x 0.74x 1.14x

TABLE VI
LOCVOLCALIB PERFORMANCE (10 RUNS)

Dataset Ref. Unopt.
Futhark

Opt.
Futhark

Opt.
Impact

A
10

0 small 103ms 0.97x 1.05x 1.08x
medium 50ms 1.18x 1.27x 1.07x

large 169ms 0.63x 0.68x 1.08x

M
I1

00 small 207ms 1.08x 1.20x 1.12x
medium 84ms 0.92x 0.97x 1.06x

large 431ms 0.76x 0.79x 1.04x

F. Case Study: OptionPricing

OptionPricing is an implementation of the extended option
pricing engine from Finpar [21]. The impact here is more
modest, but still up to 1.2×. As seen in table V our imple-
mentation doesn’t quite reach the performance of the reference
implementation (except for one case on the MI100 where the
reference implementation is unusually slow), but this is at least
no longer due to the overhead of copying.

G. Case Study: LocVolCalib

The LocVolCalib benchmark from FinPar is an implemen-
tation of contract price volatility calibration. Except for largest
dataset, short-circuiting allows us to match or out-compete the
reference implementation, as seen in table VI.

H. Case Study: NN

The NN benchmark from Rodinia is an implementation
of K-nearest neighbors. The Futhark version contains a loop
with a reduction whose result is used in an in-place update,
resulting in a copy. Short-circuiting correctly identifies that the
result of the reduce can be put directly in the memory of the
result, eliminating a copy. Table VI shows the performance of
our Futhark implementation with and without optimizations,
compared to the reference Rodinia implementation. Rodinia is
significantly slower, because it uses a sequential reduction.

VII. RELATED WORK

Our IR design is philosophically related to the use of region
inference for memory management in compilers for functional
languages [22], as for example used in MLKit [23]. But
whereas regions can be seen as lexically scoped heaps that
potentially contain multiple objects, our memory blocks rep-
resent single allocations and can have non-lexical lifetimes. In

TABLE VII
NN PERFORMANCE (100 RUNS)

Dataset Ref. Unopt.
Futhark

Opt.
Futhark

Opt.
Impact

A
10

0 855280 70ms 9.82x 15.19x 1.55x
8552800 631ms 76.48x 93.18x 1.22x

85528000 6194ms 197.66x 208.02x 1.05x

M
I1

00 855280 70ms 5.06x 6.78x 1.34x
8552800 630ms 39.11x 46.08x 1.18x

85528000 6280ms 115.72x 126.18x 1.09x

contrast to standard functional languages, array languages such
as Futhark exhibit fewer but larger allocations. Destination-
passing style [24] is an adaptation of the region approach to
an array language, but lacks our notion of index functions to
address the layout of arrays, and also does not support non-
lexical lifetimes, or index-analysis based optimizations such
as short-circuiting arrays.

Sisal’s “Build-in-Place” analysis seeks to avoid copying
when incrementally constructing an array [25], and is similar
to—but more limited than—array short-circuiting, and has no
way to express general memory layout optimizations.

Driven by polyhedral analysis, SMO [26] reduces the mem-
ory footprint of imperative programs by aggressively reusing
the same memory block for multiple semantically distinct
arrays, as long as their per-element live ranges do not overlap.

A significant body of work presents dataflow-graph DSLs.
DFGL [27] proposes a dependency-based notation that is
lowered and optimized in a polyhedral framework, e.g., sup-
porting legality checks for absence of deadlocks and safety
of parallelization. Our work addresses the reverse problem:
that of a non-restricted language using conventional type
checking that requires the separation of reads and writes,
and in which the efficiency of the in-place specification is
recovered by short-circuiting arrays. Other approaches build
on the idea of separating the program specification from
the optimization recipe, pioneered by Chill [28], [29]. For
example, several dataflow DSLs are aimed at fusing image-
processing pipelines [30]–[32], e.g., by means of overlapped-
tiling and sliding window transformations. Here, memory is
introduced at the very end in a way tailored to the optimization
recipe, to optimize the placement/footprint of intermediates
in the memory hierarchy. Our work has a different focus,
for example standalone transformations on the memory IR
(circuiting) that are not expressible on the array IR.

Short-circuiting is related at a high-level with analyses
developed in the context of automatic parallelization of loop-
based (Fortran) code [1]–[3], [9], [16], [33], [34]. Such anal-
yses classify memory references into, for example, read-only
(RO), write-first (WF) and read-write (RW) kinds, aggregate
each kind across complex (target) loops, and model loop
parallelism as a set equation that uses the resulting RO, WF and
RW summaries. LMADs [9], [10] have been used as the building
blocks for representing such summaries [3], [5], [35]. Short-



circuiting addresses a simpler (analogous) problem in which
parallelism is already expressed but the copying needs to be
optimized. This leads to a simpler classification of memory
accesses—the reads of bs and the uses (read+writes) of xss—
and more importantly to simpler formulas for aggregating
accesses, which in our case require only (repeated) unions of
LMADs, but not subtraction and intersection, which are much
more challenging. Finally, if the analysis conservatively fails,
in our context we pay with an overhead between 1.1 − 2×,
while failure of automatic parallelization is catastrophic.

Our test for empty intersection of LMADs is inspired from
and is an extension of the one presented in [9]. The difference
is that we use a sum-of-interval representation to determine
overlap of (1) dimensions within an LMAD, and (2) pairwise
between two LMADs. When LMAD dimensions overlap we use
heuristics like splitting the offending dimension rather than
failing immediately, leading to less conservative results.

LMADs are closely related to dope vectors, which have
a long history of being used to represent metadata about
multidimensional arrays in array languages. For example, the
run-time representation of arrays in Sisal [36] uses a dope
vector whose contents are equivalent to a single LMAD, as
well as extra metadata such as reference counts. However,
dope vectors have been treated as a run-time data structure, to
be referenced whenever an array is indexed. In contrast, we use
LMADs at compile-time, for letting the compiler reason about
and optimise based on array layouts, and the actual structure
of the LMAD for a given array is inlined for every array access
during final code generation.

VIII. CONCLUSIONS

We have shown that LMADs can be used to generalize
slicing in the source language and IR of a functional language.
We demonstrated that LMADs can be used to extend the IR of
a purely functional language to add a notion of memory. This
representation allows the compiler to express memory based
optimizations akin to the ones found in imperative languages.
We detailed such an optimization, called array short-circuiting,
which aims to mimic a common imperative programming
technique. Finally, we have implemented said optimization
in a purely functional array language, and we showed that it
has significant impact on some benchmarks, sometimes even
beating the reference hand-written implementation.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Our paper shows how LMADs can be used to extend the IR of a
functional language in a way that lets the compiler express memory-
based optimizations like the ones found in imperative languages. As
an example of one such optimization, we introduce short-circuiting,
which aims to reduce the use of intermediate arrays and elimi-
nate redundant copies, resulting in improved performance. In many
cases the resulting code should closelymimicwhat would bewritten
by hand. To validate our work, we’ve implemented short-circuiting
as a compiler pass in the Futhark compiler and compared the per-
formance of seven benchmarks with and without said optimization,
as well as compared to a reference hand-written optimization. For
each benchmark, our paper shows a table, which can be reproduced
using the artifacts included, given the right hardware. In particu-
lar, we have used computers equipped with the following GPUs:
NVIDIA A100 and AMD MI100.

We support two different methods of running the experiments
from the paper: Directly on your host-machine or inside one of
the provided containers. We recommend using one of the provided
containers.

The DOI contains instructions and trouble-shooting tips on how
to get everything working, but for convenience we have summa-
rized the instructions below.

Running benchmarks in a container
For maximum reproducibility, we supply Docker-containers

which can be used to replicate the results from our article, as de-
scribed below.

For NVIDIA devices, additional steps are needed to ensure that
Docker containers have access to the hosts GPU devices. Follow
the instructions to listed on at https://docs.nvidia.com/datacenter/
cloud-native/container-toolkit/install-guide.html#docker to set up
and install the NVIDIA Container Toolkit.

We supply two containers:

(1) futhark-mem-sc22:cuda - targeted at CUDA devices (such
as NVIDIAs A100)

(2) futhark-mem-sc22:rocm - targeted at ROCM devices (such
as AMDs MI100)

The containers have been uploaded to the Github container
registry. They can be executed using the following commands for
CUDA and ROCM respectively.

docker run –rm -i -t –gpus all
ghcr.io/diku-dk/futhark-mem-sc22:cuda bash

docker run –rm -i -t –device=/dev/kfd
–device=/dev/dri –security-opt seccomp=unconfined
–group-add video ghcr.io/diku-dk/futhark-mem-sc22:rocm
bash

Running the commands will pull and execute the container in
question, putting you in a command prompt in the benchmarks
directory. There, you can run make tables to run all benchmarks
or e.g. make table1 to reproduce individual tables. Use make help
for additional information.

Alternatively, you can automatically run and display all tables
by executing one of the following commands:

docker run –rm -t –gpus all
ghcr.io/diku-dk/futhark-mem-sc22:cuda

docker run –rm -t –device=/dev/kfd –device=/dev/dri
–security-opt seccomp=unconfined –group-add video
ghcr.io/diku-dk/futhark-mem-sc22:rocm

Running benchmarks on your host-machine
Alternatively, you can run the benchmarks directly on your host

machine using the repository in the futhark-mem-sc22 artifact.
If you have installed and configured an OpenCL capable GPU

(we use NVIDIAs A100 and AMDs MI100 in our article), you should
be able to run the experiments using :

make all
This will compile and run both reference- and Futhark-

implementations of all benchmarks using the Futhark binary in
bin and show the resulting performance tables in ASCII. To use
another version of Futhark, use make FUTHARK=my-futhark all.

Alternatively, you can reproduce the experiment for each ta-
ble individually by running e.g. make table1 in the benchmarks
directory:

Benchmark results are cached, so running make table1 a second
time will be instantaneous. To cleanup cached results, use make
clean.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo.6452039
Artifact name: futhark-mem-sc22

Artifact 2
Persistent ID: ghcr.io/diku-dk/futhark-mem-sc22:cuda
Artifact name: futhark-mem-sc22:cuda

Artifact 3
Persistent ID: ghcr.io/diku-dk/futhark-mem-sc22:cuda
Artifact name: futhark-mem-sc22:cuda

Artifact 4
Persistent ID: https://github.com/diku-dk/

futhark-mem-sc22/
Artifact name: futhark-mem-sc22 on Github

Reproduction of the artifact with container: To run the CUDA
container, which can be used to reproduce the A100 results from
the paper, execute the following command:

docker run –rm -i -t –gpus all ghcr.io/diku-dk/futhark-mem-
sc22:cuda bash

To run the ROCM container, which can be used to reproduce the
MI100 results from the paper, execute the following command:

docker run –rm -i -t –device=/dev/kfd –device=/dev/dri –
security-opt seccomp=unconfined –group-add video ghcr.io/diku-
dk/futhark-mem-sc22:rocm bash

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker
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Executing either of the two commands above will give you access
to a shell within the container. Now you can reproduce the tables
individually by running e.g. "make table1", or all of the tables by
running "make tables".

For additional information, please consult the README.md file
in the "futhark-mem-sc22" artifact.


