
AD for an Array Language with Nested Parallelism
Robert Schenck

Dept. of Computer Science
University of Copenhagen

Copenhagen, Denmark
r@bert.lol

Ola Rønning
Dept. of Computer Science
University of Copenhagen

Copenhagen, Denmark
ola@di.ku.dk

Troels Henriksen
Dept. of Computer Science
University of Copenhagen

Copenhagen, Denmark
athas@sigkill.dk

Cosmin E. Oancea
Dept. of Computer Science
University of Copenhagen

Copenhagen, Denmark
cosmin.oancea@diku.dk

Abstract—We present a technique for applying reverse mode
automatic differentiation (AD) on a non-recursive second-order
functional array language that supports nested parallelism and
is primarily aimed at efficient GPU execution.

The key idea is to eliminate the need for a tape by relying on
redundant execution to bring into each new scope all program
variables that may be needed by the differentiated code. Efficient
execution is enabled by the observation that perfectly nested
scopes do not introduce re-execution and that such perfect nests
can be readily produced by application of known compiler trans-
formations. Our technique differentiates loops and bulk-parallel
operators—e.g., map, reduce(-by-index), scan, and scatter—by
specific rewrite rules and aggressively optimizes the resulting
nested-parallel code. We report an evaluation that compares
with established AD solutions and demonstrates competitive
performance on ten common benchmarks from recent applied
AD literature.

Index Terms—automatic differentiation, functional data par-
allel language, compilers, GPGPU

I. INTRODUCTION

Automatic differentiation (AD) is a practical way for com-
puting derivatives of functions that are expressed as programs.
AD of sequential code is implemented in tools such as
Tapenade [1], ADOL-C [2], and Stalingrad [3]. Modern deep
learning is built on array programming frameworks such as
Tensorflow [4], PyTorch [5], and JAX [6] which provide
implicitly parallel bulk operations that support AD.

A largely unsolved challenge is supporting AD for high-
level parallel languages [7]–[9] that permit arbitrary nesting
of sequential and parallel constructs. Such solutions may in
principle act as a catalyst for prototyping and training of more
advanced machine learning (ML) models.

ML often involves minimizing a cost function, a proce-
dure which generally involves computing its derivative. Cost
functions in ML workloads typically have far more inputs
than outputs; the reverse mode of AD is the most efficient
in such cases [10] but is challenging to implement because
intermediate program values are required by the differentiated
code. The program must first run a forward sweep (a.k.a.,
primal trace) that stores intermediate program states on the
tape. The tape is read from in the return sweep, which executes
the program in reverse to compute the derivative.

A significant amount of work has studied how to elegantly
model reverse mode AD as a compiler transformation and how
to hide the tape under powerful programming abstractions such
as (dynamic) closures [3] and delimited continuations [11].

These abstractions are not suited for efficient parallel execution
on manycore hardware such as GPUs.

This work is, to our knowledge, the first to demonstrate
an efficient GPU implementation of reverse mode AD as
a compiler transformation on a data-parallel language that
supports nested parallelism by means of higher-order array
combinators such as map, reduce(-by-index), scan, and scatter.

A key difference is that related approaches save all variables
on the tape by default and support checkpointing annotations
as a memory footprint optimization. However, in a nested-
parallel context, the tape may give raise to complex, irregular
data structures which are passed across deep nests and are
challenging to implement efficiently in regards to optimiz-
ing spatial (coalescing) and temporal locality. Our approach
exploits the fact that applying reverse AD to a straight line
of side effect-free code does not require any tape because
all intermediate values remain available [10]. We expand this
idea to drive the code transformation across lexical scopes by
requiring that whenever the return sweep enters a new scope
s, it first redundantly re-executes the forward sweep of s in
order to bring all the needed variables into scope.

Our technique preserves work-span asymptotics because the
recomputation overhead is at worst proportional to the depth of
the deepest nest of scopes, which is constant for a given non-
recursive program. Moreover, perfectly nested scopes (other
than loops) are guaranteed to not introduce re-execution,
hence the overhead can be minimized by classic compiler
transformations such as flattening nested parallelism [12] and
polyhedral-like optimizations [13]. Since we forgo passing
a tape across scopes, scalars are efficiently accessed from
registers rather than global memory, and the code resulting
from the AD transformation fully benefits from the existent
compiler optimization repertoire.1

Having designed the glue that binds scopes together, we
turn our attention to deriving high-level rewrite rules for dif-
ferentiating the parallel operators of the language. We achieve
this by starting from the main rewrite rule of the reverse
mode transformation (eq. (2)) and extend it by applying
reasoning that combines imperative (dependence analysis, loop

1Our approach is not “AD-efficient” because there is no constant bound
for the depth (of scopes) that programs may have. We view this more as a
tradeoff that needs to be demonstrated rather than a weakness because tape-
based systems may incur order-of-magnitude overheads (due to inefficient
utilization of locality), which are higher than the depth of most programs.

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

(a)

P (x0, x1) :
v0 = sin(x0)
v1 = x1 ∗ v0
v2 = v0 ∗ v1
y0 = v1 + v2
return y0

(b)
−→
P (x0, x1, ẋ0, ẋ1) :
v0 = sin(x0)
v̇0 = cos(x0) ∗ ẋ0

v1 = x1 ∗ v0
v̇1 = v0 ∗ ẋ1 + x1 ∗ v̇0
v2 = v0 ∗ v1
v̇2 = v1 ∗ v̇0 + v0 ∗ v̇1
y0 = v1 + v2
ẏ0 = v̇1 + v̇2
return ẏ0

(c)
←−
P (x0, x1, y0) :
v0 = sin(x0)
v1 = x1 ∗ v0
v2 = v0 ∗ v1
y0 = v1 + v2
v1 = y0
v2 = y0
v0 = v1 ∗ v2
v1 += v0 ∗ v2
x1 = v0 ∗ v1
v0 += x1 ∗ v1
x0 = cos(x0) ∗ v0
return x0, x1

Fig. 1. (a) Program P (x0, x1) = x1 · sin(x0) + sin(x0) ∗ x1 ∗ sin(x0),
(b) the forward and (c) reverse mode AD transformation of P .

distribution) and functional thinking (rewrite rules, recurrences
as scans).

In particular, the simplest parallel operator, map, is the
most difficult one to differentiate because its purely functional
semantics allow free variables to be freely read inside it,
but reverse AD replaces reads with accumulations, which are
not representable as a combination of classical data-parallel
constructs. We report safe support for accumulations inside
maps via accumulators, together with optimizations aimed at
transforming accumulators into more specialized constructs
such as reductions, which are further optimized for locality
and may yield speedups close to one order of magnitude.

Our overall contribution is an end-to-end AD algorithm
that supports nested parallel combinators as well as nesting
of forward and reverse mode, which is implemented as a
compiler pass for the Futhark programming language. Our
specific contributions are:
• A redundant execution technique for reverse AD that

eliminates the need for tape and does not introduce re-
execution for perfectly nested scopes other than loops.

• A set of rewrite rules for differentiating higher-order
parallel combinators, including in the presence of free
variables.

• A collection of optimizations that rewrite common cases
of accumulators to reductions, which benefit from spe-
cialized code generation.

• An experimental evaluation that demonstrates sequential
and GPU performance competitive with Tapenade [1],
Enzyme [14], PyTorch [5], and JAX [6].

II. PRELIMINARIES

In AD we seek to answer a basic question: how do changes
to the inputs of a program affect its outputs? Consider variable
v2 from program P in fig. 1 (a): the tangent of v2, written v̇2,
measures how v2 changes as the inputs x0 and x1 change.2

2Formally, v̇i =
∑n−1

j=0
∂vi/∂xj where x0, . . . , xn−1 are the n inputs to

the program.

Since v2 = v0 ∗ v1, x0 and x1 affect v2 indirectly via v0
and v1. The chain rule of calculus says that we can express
v̇2 in terms of v̇0 and v̇1, scaled by the sensitivity of v2 to
v0 and v2 to v1, respectively. By computing the tangent of
all intermediate variables in program order, we can compute
ẏ0—the answer to our question. The forward mode rewrite
rule expresses precisely this program transformation:

v = f(u,w) =⇒
v = f(u,w)

v̇ =
∂f(u,w)

∂u
u̇+

∂f(u,w)

∂w
ẇ

(1)

The original statement v = f(u,w) is preserved in the rule
because the derivatives appearing in tangent expressions may
depend on variables in the original program. Application of
the rule to program P in fig. 1 (a) yields the differentiated
program

−→
P , shown in fig. 1 (b). For example, applying eq. (1)

to the statement v2 = v0 ∗ v1 in P yields the lines

v2 = v0 ∗ v1
v̇2 = v1 ∗ v̇0 + v0 ∗ v̇1

in
−→
P . The inputs of

−→
P are augmented with their respective

tangents; to find the derivative with respect to the i-th input, we
set ẋi = 1 and all other input tangents to 0. So, for n inputs to
the original program, n executions of

−→
P are required to yield

the derivative with respect to each input.
In contrast to forward mode AD, reverse mode AD com-

putes how a program’s outputs are affected by its inputs from
the bottom up. Consider the variable v0 in program P ; the
adjoint of v0, written v0, measures how the output y0 changes
as v0 changes.3 Notice that y0 depends on v0 indirectly through
v1 and v2; the chain rule says that v0 is simply the addition
of v1 and v2, each scaled by the sensitivity of v1 to v0 and v2
to v0, respectively. This approach is inherently bottom-up: in
reverse mode AD the adjoint of each variable is determined
in reverse program order. Since adjoint variables have the
reverse dependencies of the original program variables, this
necessitates that P must first be executed (to bring all variables
into scope as the adjoints may depend on them) before any
adjoints can be computed. Variables may be used on the
right-hand side of multiple statements, meaning that their
adjoints must in general accumulate contributions throughout
the program. All of this is captured in the reverse mode rewrite
rule

v = f(u,w) =⇒

v =f(u,w)
...

u +=
∂f(u,w)

∂u
v

w +=
∂f(u,w)

∂w
v

(2)

where the
... indicates that the statements are separated by

the result of applying eq. (2) to all statements following the

3Formally, vi =
∑m−1

j=0
∂yj/∂vi where y0, . . . , ym−1 are the m outputs

of the program.

v = f(u,w) statement in the original program. Application of
the rewrite rule on P yields the reverse mode differentiated
program

←−
P , shown in fig. 1 (c).4 As an example of the rewrite

rule, applying eq. (2) to the statement v2 = v0 ∗v1 in P yields
the lines

v2 = v0 ∗ v1
...

v0 = v1 ∗ v2
v1 += v0 ∗ v2

in
←−
P . The inputs of

←−
P are augmented with the adjoints of the

outputs; to find the derivative with respect to the i-th output,
we set yi = 1 and all other output adjoints to 0. A program
P with m outputs requires m evaluations of

←−
P to yield all

input adjoints.

A. AD Interface

We expose AD to the user via two higher-order functions,
jvp and vjp, which correspond to forward and reverse mode
AD, respectively.5 The types of jvp and vjp are

jvp : (f : α→ β)→ (x : α)→ (dx : α)→ β

vjp : (f : α→ β)→ (x : α)→ (dy : β)→ α

Each transforms a function f : α → β into its derivative
(if it exists) at x : α. The additional arguments dx : α and
dy : β for jvp and vjp correspond to the input tangents and
output adjoints, respectively. That is, if the input x to f is
perturbed by dx, jvp reports how much the output changes,
which is why it returns something of type β. On the other
hand, vjp answers how much x must change to observe an
output difference of dy, returning something of type α.

Forward mode (jvp) is implemented in close analog to
the dual number formulation described in [10] and won’t
be discussed further. Reverse mode is more complex due to
computing adjoints in reverse program order, storing of inter-
mediate program variables, and the accumulation of derivatives
into adjoint variables, which turn any read of a variable in
the original program into an accumulation in the transformed
program.

B. Source Language

We perform our transformation on a data-parallel language
which expresses all available parallelism by arbitrary nesting
of second-order array combinators (SOACs), e.g., map, re-
duce, and scan.

A map applies a function to each element of an array,
producing an array of the same length:

map f [a0, a1, . . . , an−1] ≡ [f a0, f a1, . . . , f an−1]

4The first contribution to each adjoint in
←−
P is written with = instead

of += for brevity; instead, adjoints could first be initialized to 0 and all
accumulations could be written with +=.

5jvp stands for “Jacobian-vector product”; jvp f x dx computes
J(f(x)) · dx, where J(f(x)) is the Jacobian of f at x. vjp stands for
“vector-Jacobian product”; vjp f x dy computes dy⊺ · J(f(x)).

Note that function application is curried and is denoted by
spaces, e.g., the imperative f(x, y, z) is written as f x y z.
Map is analogous to the imperative parallel loop

forall i = 0 . . . n - 1
as[i] = f(as[i])

where as = [a0, a1, . . . , an−1]. Further SOACs will be intro-
duced as necessary. For simplicity, we allow SOACS to be
called with k-ary functions wherein the SOAC is applied to k
equal-length arrays. For example,

map g as bs ≡ [g a0 b0, g a1 b1, . . . , g an−1 bn−1]

where as = [a0, a1, . . . , an−1] and bs = [b0, b1, . . . , bn−1].
The source language supports higher-order functions, poly-

morphism, modules, and similar high-level features, which
are compiled away using a variety of techniques [15], [16]
before we perform AD. The only remaining second-order
functions are the SOACs. Lambdas (i.e., unnamed functions)
can only appear syntactically in SOACs and vjp/jvp, and
are not values. As such we do not suffer from “perturbation
confusion” [17]. Further, a significant battery of standard
optimizations (CSE, constant folding, aggressive inlining) is
also applied prior to AD.

The language is written in A-normal form [18] (ANF): all
subexpressions are variable names or constants with the ex-
ception of the body expression of loops, if-then-else-
expressions and let-expressions. let-expressions consist of
a series of bindings—which we also call statements—followed
by a sequence of one or more returns which follow the in
keyword (i.e., in separates the bindings from the returns), for
example,

let a = 5 in (let b = a * a in b)

evaluates to 25. The language is purely functional: re-
definitions of the same variable should be understood as a
notational convenience for variable shadowing. let x += y
is syntactic sugar for let x = x + y, where x is shadowed.
The language supports a functional flavor of in-place updates
based on uniqueness types [7]. We write let xs[i] = x as
syntactic sugar for let xs′ = xs with [i] ← x, which
has the semantics that xs′ is a copy of xs in which the
element at index i is updated to x, but also provides the
operational guarantee that the update will be realized in place.
The language also features sequential loops, which have the
semantics of a tail-recursive function:

let y = loop x = x0 for i = 0 . . . n - 1 do e

The loop is initialized by binding x0 to x. Each iteration of
the loop executes e and binds the result of the expression to x,
which is used on the subsequent iteration. The loop terminates
after n iterations and the final result of e is bound to y.

C. Example: using vjp and jvp to solve k-means.

def cost points centers =
sum (map (λp → min (map (dist2 p) centers))

points)

def kmeans (k: i64) (n: i64) (d: i64) (b: i64)
(points: [n][d]f32) =

loop (centers: [k][d]f32 = . . .) for i < b do
let (cost’, cost’’) =

jvp2 (λx → vjp (cost points) x 1) centers
(replicate k (replicate d 1))

let dx = map (map (/)) cost’ cost’’
in map (map (-)) centers dx

Fig. 2. Applying reverse (vjp) and forward (jvp2) AD to solve k-means.
jvp2 f x dx returns both the primal value and the derivative (jvp only
returns the derivative); this is useful because Newton’s method requires both
the gradient (cost’) and the diagonal of the Hessian (cost’’). dist2
computes the Euclidean distance.

k-means clustering is an optimization problem where given
n points P in a d-dimensional space we must find k cluster
centroids C that minimize the cost function

f(C) =
∑
p∈P

min
{
||p− c||2, c ∈ C

}
(3)

f can be minimized using Newton’s method [19], which itera-
tively finds the minimizing cluster locations via the recurrence

Ci+1 = Ci −H(f(Ci))
−1∇f(Ci)

until convergence, where H(f(Ci)) is the Hessian of f and
∇f(Ci) is the gradient of f . Since the centroids are indepen-
dent from each other, H(f(Ci)) is a diagonal matrix and the
above computation can instead be written as

Ci+1 = Ci −∇f(Ci)⊘ diag(H(f(Ci))

where ⊘ is element-wise division and diag(H(f(Ci)) is the
vector containing the diagonal elements of H(f(Ci)). This
avoids computing the full Hessian as well as its inverse—
an expensive operation! Figure 2 shows Futhark code with a
function cost which implements the cost function (eq. (3))
along with a function kmeans which minimizes it and ex-
ploits sparsity of the Hessian via the recurrence above (realized
by a loop); this shows how the jvp/vjp interface allows
the programmer to exploit sparsity. Note the nesting of vjp
inside of jvp2, which allows the gradient to be differentiated
to produce the Hessian.6

III. REVERSE MODE AD BY REDUNDANT EXECUTION

This section discusses the manner in which our transfor-
mation bridges scopes without requiring an explicit tape: sec-
tion III-A gives an example and sketches the overall structure
of the analysis, section III-B demonstrates the analysis of
loops, and section III-C discusses the trade-offs related to
redundant execution.

6∇f(Ci) can be directly computed by vjp; since H(f(Ci)) =
J(∇f(Ci)), diag(H(f(Ci))) = H(f(Ci)) · 1 is just a Jacobian-vector
product and may be directly computed with a single iteration of jvp on
∇f(Ci) (computed by vjp), where 1 is a vector of all 1s.

1 let x = a + b 1f let x = a + b
2 let res = x * c 2f let res = x * c
in res 2r let x = c * res

2r let c += x* res
1r let a += x
1r let b += x

in (a, b, c)

stm
— stms
body

−−−→
stms

←−−−
stms

←−→
stms

fvsbody

Fig. 3. An example of applying the vjpbody rule (see fig. 4) to a code body:
the code on the left shows the original body and the code on the right shows
the resulting differentiated body. The line numbers 1f and 2f indicate that
the line corresponds to the forward sweep of lines 1 and 2 (of the original
program), respectively. 1r and 2r indicate that the line is part of the return
sweep corresponding to lines 1 and 2, respectively.

Rule vjpbody refers to a body body = stms in res:
vjpbody(res, stms in res)⇒←−→stms in (res, fvsbody)

where
←−→
stms← vjpstms(stms) and fvsbody ← FV(body)

Rule vjpstms simply folds over each statement:
vjpstms(stm, stms)⇒ (

−−−→
stms, vjpstms(stms),

←−−−
stms)

where (
−−−→
stms,

←−−−
stms)← vjpstm(stm)

Rule vjpstm for a scalar multiplication statement:
vjpstm(let x = a * b)⇒ (

−−−→
stms,

←−−−
stms)

where
−−−→
stms← let x = a * b
←−−−
stms← let a += b * x, let b += a * x

Rule vjpstm for an array indexing statement:
vjpstm(let y = a[i])⇒ (let y = a[i], let y = upd i y a)

Rule vjpλ refers to a lambda function λx1 . . . xn → body:
vjpλ(res, λx1 . . . xn → stms in res)⇒ λx1 . . . xn →

←−→
body

where
←−→
stms in (, fvsbody)← vjpbody(res, body)
←−→
body ←←−→stms in fvsbody

Fig. 4. The vjp code transformation for several syntactic categories. x denotes
the adjoint of x, FV(body) denotes the free variables of body,

−−−→
stms and←−−−

stms denote the forward and return sweeps generated for stms.

A. Transformation Rules Across Scopes

Figure 3 illustrates the reverse AD transformation on simple
example. The transformation acts on a body, which consist of
a list of statements (stms) followed by a result (in res), as
depicted in the code on the left of fig. 3. The right side of
the figure shows the result of the transformation: it consists
of a forward sweep,

−−−→
stms, which is a re-execution of the

statements from the original program to bring into scope any
variables which may be needed in the return sweep, and the
reverse sweep itself,

←−−−
stms, which computes the new adjoint

contributions to each variable, in reverse program order. The
forward and return sweeps together constitute the statements
of the differentiated body, which we label

←−→
stms. Finally, the

result of the differentiated body consists of the adjoints of the
free variables in the body, fvsbody , which are a, b, and c. Only
these adjoints can contribute to the adjoints of other program
variables: all bound variables within the body will be out of
scope once the body returns. In the following sections, the

reverse mode transformation vjp is implemented as a syntax-
directed translation [20], where translation rules are defined
for each syntactic category of the language. Figure 4 shows
the primary translation rules for the vjp transformation and
illustrates the treatment of new scopes.

We elide symbol table bookkeeping and assume that the
adjoint x of a variable x is always available.7 The vjpbody
rule refers to a body of statements, which always starts a
new scope. The rule first extends the environment by binding
the body result res to its adjoint res (not shown).8 The
statements of the transformed body (

←−→
stms) are those gener-

ated by vjpstms; the vjpstms rule highlights the redundant
execution mechanism that removes the need to implement the
tape as a separate abstraction. Each statement stm is processed
individually (by vjpstm), producing a sequence of statements
on the forward sweep (

−−−→
stms), that brings into scope whatever

information is necessary to execute the return sweep for that
statement (

←−−−
stms), which is always organized in the reverse

order of the original statements.
The return sweep of an array-indexing statement

let y = a[i] must update a[i] with the contribution of
y, which is accomplished in the rule by let y = upd i y a.
Semantically, upd i v a returns a but with the value at index
i changed to be v + a[i]. Operationally, the array a is directly
modified in-place. To preserve purely functional semantics,
we require that the “old” a and its aliases are never accessed
again, similar to the in-place updates of section II-B.

Finally, rule vjpλ transforms an anonymous function; its
result is obtained by calling vjpbody on the function body. Note
that x1, . . . , xn are free variables in body, so their adjoints are
among fvsbody .

B. Demonstrating the Transformation of Loops

Figure 5 (b) shows the result of vjpstms applied to the loop
in fig. 5 (a). The forward sweep of the loop (lines 2−9) consists
of the original loop except that its result and body are modified
to checkpoint into array ys the value of y at the start of each
iteration. ys is also declared as loop variant and initialized to
ys0, which is allocated (by scratch) just before the loop
statement. Importantly, only the loops of the current scope are
checkpointed; an inner-nested loop would be re-executed, not
checkpointed.

The return sweep of the loop (lines 12 − 19) consists of a
loop that iterates backward from mk − 1 down to 0: the first
statement (line 15) re-installs the value of y of the current
iteration from the checkpoint, so that the forward sweep of
the loop body

−−−−−→
stmsloop can be re-executed to bring into scope

the variables needed by the return sweep of the loop body←−−−−−
stmsloop. The result of the reversed loop body (line 18) is the
adjoint of the original result, y′, together with the adjoints of
the free variables used in the loop, fvs′l. These are declared

7In practice, either the adjoint is available or it hasn’t had any contributions
yet and hence a statement can be inserted which initializes the adjoint to a
zero element of the appropriate type and shape.

8This is safe since the transformation works backwards, hence the adjoint
res is already available from the outer scope.

(a) Original loop
stmsbefore
let y′′ =
loop y = y0
for i = 0 . . .mk - 1 do
stmsloop
in y′

stmsafter

(c) Strip-mined loop
stmsbefore
let y′′ =
loop y1 = y0
for i1 = 0 . . .m - 1 do
. . .
loop yk = yk−1

for ik = 0 . . .m - 1 do
let y = yk
let i =
i1 * mk−1 + . . .+ ik

stmsloop
in y′

stmsafter

(b) Reverse AD of loop
1
−−−−−−−→
stmsbefore

2 let ys0 = scratch(mk,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)
6 for i = 0 . . .mk - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)

10
−−−−−−→
stmsafter

11
←−−−−−−
stmsafter

12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = mk - 1 . . . 0 do
15 let y = ys[i]

16
−−−−−→
stmsloop

17
←−−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

20
←−−−−−−−
stmsbefore

Fig. 5. (a) A loop, (b) the result of applying reverse AD to it,
and (c) the result of strip-mining it into a depth-k loop nest. In (b),
vjpbody(y, stmsloop in y′) is called to generate

−−−−−−→
stmsloop,

←−−−−−−
stmsloop,

and fvs′l, as defined in fig. 4.

as variant through the loop (line 13) such that the updates of
all iterations are recorded.9 Finally, the statement at line 19
semantically updates the adjoint of the loop initializer y0 with
the result of the loop y′′′. This is because the first executed
instruction of the source loop sets y = y0 and the adjoint of y
corresponding to the first iteration is the same as the adjoint
of the loop result since the return sweep executes backwards.

With our strategy, the original loop is executed twice (lines
8 and 16). Strip-mining a loop of count mk into a depth-k loop
nest, as shown in fig. 5 (c), would suffer at worst a re-execution
overhead factor of k+1 when differentiated; however, it would
have a much smaller memory overhead than the original loop
as each of the k loops of count m checkpoints its own variable,
resulting in a memory footprint that is proportional to mk
rather than mk.10 When m is constant, this results in the
logarithmic space and time overhead case of the time-space
tradeoff studied by Siskind and Pearlmutter [21]. We exploit
the tradeoff in a simple and practical way by allowing the
user to annotate the loops with a constant strip-mining depth,
which is applied automatically before AD.

We conclude by noting that sequential loops are the only
construct that require iteration checkpointing and that, impor-
tantly, parallel constructs do not because the input of parallel
loops do not depend on the result of other iterations.

C. Perfect Nests Do Not Incur Redundant Execution

Figure 6 shows the code generated by applying vjp to
a function whose body consist of perfectly nested scopes.

9fvsl0 is the adjoint of the free variables prior to entering the loop.
10The checkpoint of each of the k loops stores m versions of y.

let xss = map (λc as→ if c then . . . else map (λa→ a*a) as) cs ass
let ass = map (λc as xs→

let xs = if c then . . . else map (λa→ a*a) as
in if c then . . .

else let xs′ = map (λa→ a*a) as
let as = map (λa x→ let x = a * a

in 2 * a * x
) as xs

in as
) ass xss

Fig. 6. The body of the function generated by applying reverse AD to
λass→ map(λc as→ if c then . . .else map(λa→ a*a) as) cs ass.
Red denotes the re-execution of the forward trace in each (new) scope. Note
that all re-executions are dead code; this is guaranteed when the original
code consists of perfectly nested scopes.

While we have not yet discussed how all constituents are
differentiated (map is discussed in section IV-E), this is not
important for the moment. What is important is to notice that
the re-execution of the forward trace for each of the four
scopes11—denoted in red in the figure—is dead code.

The rationale is that perfectly nested scopes (other than
loops) are guaranteed to not introduce recomputation because,
by definition, their bodies consist of one (composed) state-
ment. Hence their result cannot possibly be used in the return
sweep12 and it does not have to be returned because it has
been recomputed in the parent scope.

It follows that overheads can be optimized by known
transformations that create perfect nests [13], [22] rooted in
loop distribution and interchange, which are also supported
by the Futhark compiler [12]. With their help, we commonly
expect the forward sweep to be executed twice:

1) Once for the outermost scope because programs typi-
cally consist of multiple nests and also the user may
require the result of the original program.

2) Once for the innermost scope that typically performs
scalar computation, which is cheap to recompute. In
comparison, vectorization or the use of tape would
require such scalars to be retrieved from global memory,
which has (an) order(s) of magnitude higher latency.

Note that loops whose variant values are addition-based ac-
cumulations also do not introduce recomputation, since the
differentiation of plus does not require primal values.

IV. REWRITE RULES FOR PARALLEL CONSTRUCTS

This section presents in detail the differentiation rules for
reduce, reduce-by-index, and map. Additionally, an overview
for the rules for scan and scatter is given.

A. Reduce

A reduce combines all elements of an array with a binary
associative operator ⊙:

reduce ⊙ e⊙ [a0, a1, . . . , an−1] ≡ a0 ⊙ a1 ⊙ · · · ⊙ an−1

11The outermost scope (scope 0) is the function’s body, which consists
of an outer map whose function’s body (scope 1) consists of an if, whose
else-body (scope 2) consists of an inner map, whose function body (scope
3) consists of a multiplication.

12Nested loops also need to be flattened into a single loop, because, even
if perfectly nested, they may be kept alive due to checkpointing needs.

where e⊙ is the neutral element of ⊙. For each ai, we can
group the terms of the reduce as

a0 ⊙ · · · ⊙ ai−1︸ ︷︷ ︸
li

⊙ ai ⊙ ai+1 ⊙ · · · ⊙ an−1︸ ︷︷ ︸
ri

and then directly apply the main rule for reverse AD given in
eq. (2), which results in

ai +=
∂(li ⊙ ai ⊙ ri)

∂ai
y

where li and ri are constants and can be computed by
exclusive scans,13 + denotes a potentially vectorized addition
that matches the datatype, and y is the variable bound to the
result of reduce. The code for the right-hand side can be
generically generated as a function f that is mapped over each
ai, li, ri:

f ← vjpλ (y, λ(li, ai, ri)→ li ⊙ ai ⊙ ri)

except f is modified to not return the adjoints of li and ri
since they aren’t needed.

In the general case, the forward sweep is the original reduce
statement. Letting as = [a0, a1, . . . , an−1] and assuming for
simplicity that ⊙ has no free variables, the return sweep is

let ls = scanexc ⊙ e⊙ as
let rs = reverse as ▷

scanexc (λx y → y ⊙ x) e⊙ ▷ reverse
let as += map f ls as rs

where ▷ is the pipe forward operator which enables composing
functions left-to-right, e.g., x ▷ f ▷ g = g (f x).

This translation is AD-efficient, but requires 8 memory
accesses per element in comparison to one in the original
reduce. Fortunately, standard operators admit more efficient
translations. Specialized rules for addition, min, and max are
known [23].14

When the reduction operator is multiplication, we have

∂(li ∗ ai ∗ ri)
∂ai

y = li ∗ ri ∗ y

and discriminate three cases:
1) If all as’s elements are nonzeros, then li ∗ ri = y/ai and

y ̸= 0, hence we update each element as ai += y/ai y.
2) If exactly one element at index i0 is zero, then li ∗ ri is

zero for all other elements and ai0 += y ∗ y.
3) Otherwise, ∀i, li ∗ ri = 0 and as remains unchanged.
The forward sweep is a reduce applied to an extended

operator that computes the number of zeros in as and the
product of non-zero elements (by a map-reduce operation),
followed by setting the reduced result y accordingly. The
return sweep computes the contributions by a parallel map
and updates adjoints as discussed before.

13scanexc ⊙ e⊙ [a0,a1,...,an−1] ≡ [e⊙, a0, a0⊙a1, ..., a0⊙...⊙an−2]
14The return sweep for (vectorized) addition adds y to each element of

as. For min/max, the forward sweep computes the minimal/maximal element
together with its first occurring index iy , i.e., let (y, iy) = argmin as, and
the return sweep updates only the adjoint of that element: let as[iy] += y.

B. Reduce-by-index

Reduce-by-index generalizes a histogram computation [24]
by allowing the values from an array (as) that fall into the
same bin (i.e., an index from inds) to be reduced with an
arbitrary associative and commutative operator ⊙ with neutral
element e⊙, where the number of bins m is typically smaller
than the number of index-value pairs n:

let hs = reduce_by_index ⊙ e⊙ inds as

which has the semantics

loop hs = replicate m e⊙ for i = 0 . . . n - 1 do
let hs[inds[i]] ⊙ = as[i] in hs

Similar reasoning to that used for reduce suggests that two
scans need to be applied to each subset of elements that fall in
the same bin in order to compute the li and ri terms for each
i. The contributions to the adjoint as are then computed—
as in the reduce case—by map f ls as rs. Assuming a
constant key size, the scans can be implemented with the right
asymptotic complexity by radix sorting as according to the
corresponding bins (to ensure elements falling in the same
bin are consecutive) and then by applying irregular segmented
scans (forward and reverse) on the result. Since sorting is
expensive in practice, we support specialized implementations
for common operators:15 the forward sweep consists of the
reduce_by_index statement, but enhanced with extended
operators, and the return sweep is similar to reduce, except that
in the update formula of as[i], one replaces y with hs[inds[i]].

C. Scan

The rule for scan can be derived by differentiating its
imperative, loop-based formulation and then applying loop
distribution to separate a map from a recurrence of the form

xn−1 = an−1, xi = ai + bi · xi+1, i = n− 2 . . . 0

which is known to accept a parallel formulation rooted in
a scan whose operator is a generalization of linear function
composition [25]. Here, bi is a d×d matrix and ai and xi are
vectors of length d. If d is a constant, e.g., the array elements
are tuples of scalars, the work-depth asymptotic is preserved
but the translation is still not AD-efficient. We however support
vectorized operators for scan efficiently by interchanging the
scan inside the map:

scan (map ⊙) e⊙ xs ⇒
transpose xs ▷ map (scan ⊙ e⊙) ▷ transpose

and generate specialized code for the vectorized-plus operator.

D. Parallel Scatter

let ys = scatter xs is vs produces an array ys by
updating in-place the array xs at the m indices in is16 with
corresponding values of vs. The forward sweep saves the

15Addition, multiplication, min, and max.
16No duplicates are allowed in is.

elements of xs that are about to be overwritten prior to
performing the update:

let xssaved = gather xs is
let ys = scatter xs is vs

where gather xs is has the same semantics as
map (λi→ xs[i]) is. The return sweep (1) first updates the
adjoint of vs with the elements gathered from ys, then (2)
creates the adjoint of xs by zeroing out the elements from ys
that were subject to the update, and (3) restores xs to its state
before the update (from xssaved):

let vs += gather ys is
let xs = scatter ys is (replicate m 0)
let xs = scatter ys is xssaved

Both sweeps have O(m) work and O(1) depth.

E. Map

Consider the map

let xs = map (λa→ stms in x) as

If the lambda has no free variables, the return sweep is

let as = map (λ(a, a0, x)→
−−−→
stms

←−−−
stms in a0 + a) as as xs

where a is the new contribution to the adjoint of each a,
computed in

←−−−
stms.

A naive way of handling free variables is to turn them into
bound variables. E.g., converting map (λi → as[i]) is into
map (λ(i, as′)→ as′[i]) is (replicate n as) where n is
the size of is. This is asymptotically inefficient for partially
used arrays, as here, as the adjoint will be mostly zeroes.

In an impure language, adjoint updates for free variables
can be implemented as a generalized reduction [26],17 wherein
the adjoint of a free array variable as[i] could be updated
with an operation as[i] += v, implemented with atomics
or locks in the parallel case. In our pure setting, we instead
introduce accumulators that preserve purity and guarantee the
generalized reduction properties at the type level. An array can
be temporarily turned into an accumulator with withacc:18

withacc : [d]α → (acc(α)→ acc(α))→ [d]α

Intuitively we view accumulators as a write-only view of an
array. Semantically, accumulators are lists of index/value pairs,
each denoting an update of an array. When we use upd on an
accumulator, we add an index/value pair to this list, returning
a new accumulator. Operationally, upd immediately writes
to the underlying array and does not actually maintain a list
of updates in memory. The purpose of accumulators is to

17A loop is a generalized reduction if all its cross-iteration dependencies
are due to variables X that only appear in “reduction” statements of the form
X[is[i]] ⊙= exp, where exp does not contain X , and ⊙ is associative and
commutative.

18For simplicity we treat only single-dimensional arrays in this section, but
the idea also works in the multi-dimensional case. This type for withacc
allows only a single result corresponding to the array being updated. In
practice, we also need to be able to return an arbitrary secondary result.

allow the compiler to reason purely functionally, in particular
ensuring that all data dependencies are explicit, while allowing
efficient code generation. Accumulators are similar to the
accumulation effects in Dex [8] and have the same motivation.
The main difference is that Dex requires every part of the
compiler to be effect-aware.

Free array-typed variables in map are thus turned into
accumulators while generating return sweep code for the
map, during which we can perform the updates directly. We
allow implicit conversion between accumulators and arrays of
accumulators, as this allows us to directly map them. E.g.,

let xs = map (λi→ as[i]) is

results in the return sweep code

let as = withacc as (λasacc →
map (λ(i, x, as)→ upd i x as) is xs asacc)

where we treat asacc as an array of accumulators when
passed to map and treat the result of the map as a single
accumulator. This is efficient because accumulators have no
runtime representation and it saves us from tedious boilerplate.
The equivalent imperative (generalized reduction) code is

forall k = 0 . . .length(is) - 1
as[is[k]] += xs[k]

During the lifetime of the accumulator, the underlying array
may not be used—this prevents observation of intermediate
state. These rules can be encoded in a linear type system and
mechanically checked, which we do in our implementation,
but exclude from the paper for simplicity.

Accumulators are sufficient to express the adjoint compu-
tation inside maps because (1) any read from an array a[i] is
turned into an accumulation on a[i] and (2) the only place on
the return sweep where a can be read outside an accumulation
statement is the definition of a, which by definition is the last
use of a, hence it is safe to turn it back into an array there.

V. IMPLEMENTATION AND OPTIMIZATIONS

We have implemented the reverse AD transformation as
a pass in the publicly available Futhark compiler.19 The
presented transformation rules were tuned to preserve fusion
opportunities, both with constructs from a statement’s differ-
entiation and across statements.

Since accumulators were not supported in the original lan-
guage, we have implemented them throughout the compiler—
for the GPU backends, they ultimately boil down to atomic
updates, such as atomicAdd in CUDA. Accumulators, how-
ever, often result in suboptimal performance because they
access memory in an uncoalesced fashion and are subject
to conflicts, i.e., threads simultaneously accessing the same
location. In this regard, section V-A presents optimizations
aimed at turning accumulators into more specialized constructs
(e.g., map-reduce) that can be better optimized. Section V-B
discusses several omitted issues, namely how to optimize
checkpointing for arrays that are constructed by in-place
updates inside loop nests and how to support while loops.

19https://github.com/diku-dk/futhark

A. Optimizing Accumulators

We demonstrate our accumulator optimizations on matrix-
matrix multiplication. To aid readability, we use an im-
perative notation in which we omit withacc: forall
loops denote map operations and as[i, k] += v denotes
let as = upd (i, k) v as.

The code below assumes as ∈ Rm×q and bs ∈ Rq×n and
computes cs ∈ Rm×n by taking the dot product of each row
of as and column of bs.

forall i = 0 . . .m - 1
forall j = 0 . . . n - 1

cs[i, j] = sum (map (*) as[i, :] bs[:, j])

Differentiating the code above results in the return sweep

forall i = 0 . . .m - 1
forall j = 0 . . . n - 1
forall k = 0 . . . q - 1

as[i, k] += bs[k, j] * cs[i, j]

bs[k, j] += as[i, k] * cs[i, j]

which is not efficient, because (temporal) locality is sub-
utilized. To address this, we have designed and implemented a
pass aimed at turning common cases of accumulator accesses
into reductions. The analysis searches for the first accumulator
directly nested in a perfect map nest and checks whether its
indices are invariant across any of the parallel dimensions. In
the example above, as is accumulated on indices [i, k] that
are both invariant to the parallel index j. In such a case, the
map nest is split into two: the code on which the accumulated
statement depends and the code without the accumulator
statement,20 which is simplified and treated recursively. The
map nest encapsulating the accumulation is reorganized such
that the invariant dimension (j) is moved innermost.21 The
accumulation statement is taken out of this innermost map,
which is modified to produce (only) the accumulated values,
whose sum is rewritten to be the value accumulated by as:

forall i = 0 . . .m - 1
forall k = 0 . . . q - 1

sa = sum (map (*) bs[k, :] cs[i, :])
as[i, k] += sa

forall k = 0 . . . q - 1
forall j = 0 . . . n - 1

sb = sum (map (*) as[:, k] cs[:, j])

bs[k, j] += sb

The code now consists of two matrix multiplication-like
kernels (with different parallel forall dimensions than the
original). These are optimized by a later pass that performs
block and register tiling whenever it finds an innermost map-
reduce whose input arrays are invariant to one of the outer
parallel dimensions. We have extended this pass (1) to support
accumulators, (2) to keep track of the array layout—i.e.,
transposed or not, (3) to copy from global to shared memory in

20The optimization fires only if the number of redundant access to global
memory introduced by splitting the map nest is less than two.

21It is always safe to interchange parallel loops inwards.

System CPU GPU API
A100 2×AMD EPYC 7352 NVIDIA A100 CUDA 11.6
MI100 2×AMD EPYC 7352 AMD MI100 ROCm 5.0.1
2080Ti 2×Intel E5-2650 NVIDIA 2080Ti CUDA 11.3

Fig. 7. Systems used for benchmarking.

coalesced fashion for any layout, and (4) to exploit some of the
parallelism of the innermost dot product, inspired from [27].

This optimization is responsible for nearly a one-order-of-
magnitude speedup at the application level for benchmarks
dominated by matrix multiplication.22

B. Loop Optimizations and Limitations

As discussed in section III, loop-variant variables are saved
at the entry of each iteration by default. This technique does
not preserve the work asymptotic of the original program when
a loop variant array is modified in-place. For example, the loop
below constructs an array of length n in O(n) work, but the
checkpointing of the forward sweep requires O(n2) work:

loop xs = xs0 for i = 1 . . . n - 1 do
let xs[i, j] = as[i, j] + xs[i− 1, j] in xs

Iteration-level checkpointing is not needed if the loop nest
does not have any false dependencies (WAR+WAW):23 since
no value is “lost” through the loop nest, it is sufficient to
checkpoint xs only once at the entry to the outermost loop
of the nest. Moreover, re-execution is safe because all the
overwrites are idempotent. We allow the user to annotate loop
parameters that are free of false dependencies: they’re check-
pointed upon entry to the loop nest and restored just before
entering the return sweep of the nest. Techniques in automatic
parallelization can be used to automatically check the safety
of such annotations, statically [28], dynamically [29], and
anywhere in between [30].

A second issue relates to while loops, on which we cannot
perform AD directly because their statically unknown itera-
tion count hinders the allocation of checkpointing arrays. To
address this issue, the user may annotate a while loop with
an iteration bound n. The while loop is then transformed into
an n-iteration for loop that contains a perfectly nested if-then-
else expression, which only executes the valid iterations of the
while loop. In the absence of such annotation, the loop count
is computed dynamically by an inspector.

Finally, a limitation of the current implementation is that
it does not support loop-variant parameters that change their
shape throughout the loop. In principle this can be handled by
dynamic re-allocations, but this might be expensive on GPUs.

VI. EXPERIMENTAL EVALUATION

A. Parallel Hardware and Methodology

We benchmark on three different Linux systems, detailed in
fig. 7. We report mean runtime for 10 runs (following an initial

22Such as GMM and LSTM, which are evaluated in sections VI-F and VI-G.
23The absence of false dependencies means that the loop has only true

(RAW) dependencies or no dependencies at all.

Tool BA D-LSTM GMM HAND
Comp. Simple

Futhark 13.0 3.2 5.1 49.8 45.4
Tapenade 10.3 4.5 5.4 3758.7 59.2
Manual 8.6 6.2 4.6 4.6 4.4

Fig. 8. ADBench sequential overheads; lower is better.

run that is discarded), which includes all overheads, except
transferring program input and result arrays between device
and host. We report the absolute runtime of the differentiated
and primal program and the “overhead” of differentiation that
corresponds to the ratio between the two. In optimal AD,
this ratio (counted in number of operations) is supposed to
be a small constant [31], hence the ratio serves as a good
measure of the efficiency of an AD implementation. We also
report the memory usage of the primal (when applicable) and
differentiated program on the dataset with maximal memory
consumption for each experiment.

B. ADBench: Sequential AD Overhead

ADBench is a collection of benchmarks for comparing
different AD tools [32] to which we have added Futhark
implementations. We compile to sequential CPU code on
the A100 system and report the the AD overhead using
the largest default dataset for each benchmark. We compare
against Tapenade [1] and manually differentiated programs.
The results are shown in fig. 8.

Futhark does well, in particular managing to outperform
Tapenade in four out of five cases. For the exception, BA, the
bottleneck is packing the result (which is a sparse Jacobian) in
the CSR format expected by the tooling, which is code that is
not subject to AD. The HAND benchmark has two variants: a
“simple” one that computes only the dense part of the Jacobian
and a “complicated” one that also computes a sparse part.
Tapenade handles the latter poorly. On HAND, both Tapenade
and Futhark perform poorly compared to manually differen-
tiated code. Both BA and HAND produce sparse Jacobians
where the sparsity structure is known in advance, which is
exploited by passing appropriate seed vectors to jvp/vjp.

C. Comparison with Enzyme

Enzyme is an LLVM compiler plugin that performs reverse
mode AD, including support for GPU kernels [14]. We have
ported several benchmarks in order to compare our solution
with Enzyme, with results in fig. 9. The Enzyme overheads
are copied directly from [14]. RSBench and XSBench each
constitute a large parallel loop that contains inner sequential
loops and control flow, as well as indirect indexing of arrays.
Our overhead is slightly smaller, although this may come
down to micro-optimizations. LBM comprises a sequential
loop containing a parallel loop. As Enzyme currently only
supports differentiation of a single kernel, this requires some
manual bookkeeping of the tape, whereas Futhark automat-
ically handles the loop. Our overhead is significantly lower
than Enzyme’s; possibly because we can handle the tape more
efficiently across the outer sequential loop.

Benchmark Primal runtimes (s) AD overhead
Original Futhark Futhark Enzyme

RSBench 2.311 2.127 3.9 4.2
XSBench 0.244 0.239 2.7 3.2
LBM 0.071 0.042 3.4 6.3

Fig. 9. Enzyme results, showing absolute runtimes and AD overheads. The
Enzyme AD overheads are taken from [14]. RSBench and XSBench were
measured on the 2080Ti, while LBM is measured on the A100, similar to the
systems used in the Enzyme paper. For LBM the workload is 120 × 120 ×
150 for 100 iterations. RSBench and XSBench use the “small” datasets with
10, 200, 000 and 17, 000, 000 “lookups”, respectively.

Data Futhark (ms) PyTorch JAX JAX(vmap)
Manual AD (ms) (ms) (ms)

A
10

0 D0 12.6 41.1 41.1 15.5 27.5
D1 19.0 10.6 8.7 2.1 107.9
D2 94.3 108.9 922.0 206.5 976.4

M
I1

00

D0 24.6 35.6 94.5 − −
D1 22.5 10.5 40.2 − −
D2 309.5 264.2 2303.2 − −

Fig. 10. k-means clustering performance measurements for three dif-
ferent workloads. The JAX and JAX(vmap) implementations use array
intrinsics and a vectorizing map, respectively. D0 = (5, 494019, 35),
D1 = (1024, 10000, 256), D2 = (1024, 2000000, 10) where each tuple
is formatted as (k, n, d); k is the number of clusters and n the number of
d-dimensional points. D0 corresponds to the KDD Cup dataset [33]. D1 and
D2 were randomly generated. All data consists of 32-bit floating points.

D. Case Study 1: Dense k-means clustering

In this section, we benchmark the k-means example of
section II-C. As shown in fig. 2, in Futhark the cost function
(eq. (3)) is written via nested map and reduce operations. In
first-order languages like PyTorch, the cost function must be
realized via array primitives; to efficiently compute the cost
function, we expand the all pairs norm between points P and
centroids C: ||P − C||2 = P 2 + C2 − 2PCT . In expanded
form, all terms can be computed using vectorized operations,
with the PCT term being computed by matrix multiplication.

We compare against a hand-written Futhark histogram-
based implementation as well as AD-based implementations
in PyTorch and JAX on three qualitatively different datasets.
In PyTorch and JAX, array intrinsics like matrix multiplication
(and the differentiation thereof) are compiled to extremely effi-
cient hand-tuned GPU code; to better compare with Futhark’s
programming model, a second JAX implementation using
JAX’s vectorizing map operation, vmap, was written in close
analog to the Futhark implementation. The results are shown
in fig. 10. When the histograms benefit from the optimizations
discussed in [24], the hand-written implementation can show
significant speedup over our AD approach: up to 3.3× on D0

on the A100. When they cannot, the AD approach can be faster
due to differing amounts of parallelism. Additionally, note that
the MI100 uses Futhark’s OpenCL backend, which—unlike
CUDA—doesn’t support floating-point atomic add operations.
Instead, atomic updates are implemented via a spinlock which
can result in significant additional overhead in the atomic
histogram updates of the manual implementation and, to a
lesser extent, accumulator updates in the AD implementation.
Futhark AD is on par with or significantly faster than PyTorch

Futhark (s) PyTorch (s) JAX (s)
Workload Manual AD

A
10

0 movielens 0.06 0.16 1.47 0.38
nytimes 0.09 0.30 5.24 1.35

scrna 0.16 0.58 9.32 8.91

M
I1

00

movielens 0.44 5.32 3.24 −
nytimes 0.44 9.55 11.58 −

scrna 0.42 2.87 20.81 −
Fig. 11. Sparse k-means performance measurements for three NLP work-
loads. k = 10 for all datasets, with a fixed iteration count of 10 and a
32-bit representation. The movielens dataset uses data from the ML 20M
dataset described in [34] with dimensions (139K, 131K) and a density of
0.11%. The nytimes and scrna datasets are the same as used in [35], with
dimensions (300K, 102K) and (66K, 27K) and densities of 0.23% and
7.3%, respectively.

Data n d K n d K
D0 1k 64 200 D3 10k 64 25
D1 1k 128 200 D4 10k 128 25
D2 10k 32 200 D5 10k 128 200

Fig. 12. GMM ADBench parameters for the datasets used in fig. 13; n
is the number of points, d the dimensionality of the input data, and K
the number of Gaussian distributions. All datasets use 64-bit floats. The
corresponding datasets may be found on the ADBench GitHub repository
(https://github.com/microsoft/ADBench).

on all datasets (as high as 8.5× on the A100 and 8.7×
on the MI100). The intrinsics-based JAX implementation
demonstrates significant speedup over Futhark on the D0

and D1 datasets, but Futhark demonstrates a 1.9× speedup
on the larger D2 dataset. On D0, the vmap-based JAX
implementation has a 1.5× speedup over Futhark, but Futhark
demonstrates speedups of around 10× on the other two
datasets, likely a product of the fact that preservation of nested
parallelism becomes more impactful as the number of clusters
increases—we surmise JAX’s vectorizing/flat approach limits
locality optimizations. Our approach pays further dividends
still: if the number of points is made larger, beyond D2’s
two million, the PyTorch and JAX implementations run out of
memory due to manifesting the entire n × k array of point-
cluster distances.

E. Case Study 2: Sparse k-means clustering

We have implemented a sparse formulation of k-means
clustering, which uses a dense representation for the centroids
and a sparse representation for the input points. The Futhark
implementations use the CSR format, while PyTorch and JAX
both use the COO format.24 As explained in the previous
section, we compute the cost with vectorized operations in
the PyTorch and JAX implementations.

Figure 11 shows runtimes on three publicly available sparse
NLP workloads. On the A100, our AD is slower than the
manual code by a factor between 2.5 − 3.7× due to an
optimization allowing updates to fit in the L2 cache [24].
On the A100, Futhark AD demonstrates speedups as high as
17.5× against AD competitors. On the MI100, PyTorch has

24PyTorch’s functional AD constructs (jvp and hvp) currently raise
runtime errors with CSR format. JAX’s transformations only support batch
COO representation.

Measurement D0 D1 D2 D3 D4 D5
A

10
0

PyT. Jacob. (ms) 7.4 15.8 15.2 5.9 12.5 64.8
Fut. Speedup 2.1 2.2 1.4 1.6 1.5 1.0
PyT. Overhead 3.5 4.9 2.8 3.2 4.0 3.2
Fut. Overhead 2.0 1.8 1.9 2.7 2.8 2.8

M
I1

00

PyT. Jacob. (ms) 20.9 51.5 42.5 20.7 38.5 193.1
Fut. Speedup 3.3 4.0 2.1 2.9 2.5 1.7
PyT. Overhead 5.9 5.3 2.4 2.6 3.1 2.8
Fut. Overhead 3.0 2.9 3.0 2.8 2.8 2.8

Fig. 13. GMM benchmark results on the A100 and MI100 systems. Fut. and
PyT. refer to Futhark and PyTorch, respectively. PyT. Jacob. is the time to
compute the full Jacobian of the objective function in PyTorch. On Futhark,
block and register tile sizes of 16 and 3 were used, respectively.

modest speedup over Futhark on the movielens dataset, but
Futhark is faster on the two other datasets.

F. Case Study 3: GMM

To evaluate the parallelism preservation of our AD trans-
formation, we compile the Futhark implementation of the
GMM benchmark from the ADBench suite to parallel CUDA.
We compare against ADBench’s implementation of GMM
in PyTorch (also run on CUDA), which we have improved
(by a > 10× factor) by vectorizing all comprehensions. We
benchmark on a selection of 1,000 and 10,000-point datasets
from ADBench, see fig. 12. The runtime of the primal program
is dominated by matrix multiplication (∼ 70%).

As discussed in section VI-D, matrix multiplication is a
primitive in PyTorch; we expect that differentiation of matrix
multiplication is implemented very efficiently. In Futhark there
are no such primitives: matrix multiplication is written with
maps, whose differentiation yield accumulators, which are
further optimized as described in section V-A. The bench-
mark results are shown in fig. 13. The results demonstrate
significant speedups over PyTorch on both systems, with an
average speedup of 1.65× on the A100 and of 2.75× on the
MI100. This demonstrates the feasibility of competitive AD
performance in the absence of array primitives.

G. Case Study 4: LSTM

Long Short-Term Memory (LSTM) [36] is a type of re-
current neural network architecture popular in named entity
recognition and part-of-speech tagging [37], [38]. We bench-
mark two LSTM networks with hyperparameters common in
natural language processing [37], [39]–[41]. The AD-based
implementations are based on the architecture in [36]. We also
compare against PyTorch’s torch.nn.LSTM class, which
wraps the NVIDIA cuDNN LSTM implementation [42] on
the A100 and AMD’s MIGraphX on the MI100; note that
both implementations are hand-written/optimized and feature
manual differentiation. The results are shown in fig. 14.
Futhark is about 3× faster than PyTorch on the A100 and
slightly less on the MI100. As with GMM, LSTM is dominated
by matrix multiplications. None of the AD-based implemen-
tations are competitive against the manual torch.nn.LSTM

Speedups
PyTorch Jacob. Futhark nn.LSTM JAX JAX(vmap)

A
10

0 D0 45.4ms 3.0 11.6 4.5 0.3
D1 740.1ms 3.3 22.1 6.4 0.9

M
I1

00 D0 89.8ms 2.6 4.0 − −
D1 1446.9ms 1.8 5.4 − −

Overheads
PyTorch Futhark nn.LSTM JAX JAX(vmap)

A
10

0 D0 4.1 2.1 2.7 3.5 1.4
D1 4.3 3.9 2.2 3.7 0.8

M
I1

00 D0 5.0 4.2 7.2 − −
D1 7.9 3.9 6.6 − −

Fig. 14. LSTM speedups and overheads on D0 = (1024, 20, 300, 192) and
D1(1024, 300, 80, 256) where each tuple is formatted as (bs, n, d, h); bs
is the batch size, n the sequence length, d the dimensionality of the input
data, and h the dimensionality of the hidden state. All data consists of 32-bit
floating points. nn.LSTM refers to the torch.nn.LSTM implementation.
Futhark was run with block and register tile sizes of 16 and 4.

Benchmark Mem. Depth Mem. Overhead
RSBench 9.9 MiB 6 1.4
XSBench 225 MiB 6 1.0
LBM 550 MiB 5 33.6
GMM 4.1 GiB 4 2.1
LSTM 0.84 GiB 4 2.1

Fig. 15. Primal memory footprints, maximal program depth, and the memory
AD overhead of the benchmarks. For benchmarks with multiple datasets,
the memory footprint is reported for the dataset with the largest memory
consumption (D5 for GMM and D1 for LSTM).

Benchmark Dataset Futhark Manual Futhark AD
Dense k-means D0 188 MiB 172 MiB
Sparse k-means scrna 2.7 GiB 2.7 GiB

Fig. 16. Memory footprint comparison between the manual and AD Futhark
implementations for dense and sparse k-means.

implementations.25 JAX performs up to two times faster than
Futhark when matrix multiplication is a highly optimized
primitive and up to ten times slower when it’s not.

H. Depth and Memory Consumption

Figure 15 shows the memory overhead (the ratio of the
memory footprint of the differentiated and primal programs)
and maximal program depths of the benchmarks. Futhark’s
memory overhead on LBM is large: this can be ameliorated by
annotating the outer loop to be strip-mined; doing so modestly
increases the AD overhead from 3.4 to 4.5, but decreases the
memory overhead from 33.6 to 8.7. The memory overheads of
the remaining benchmarks demonstrate the efficiency of our
approach: the forward and reverse passes combined should
use roughly twice as much memory as the primal program—
the remaining benchmarks achieve this or better. The GPU
benchmarks also feature non-trivial depth; nevertheless we
achieve competitive results, in part because the forward sweep
is often executed only once or twice, irrespective of depth—
see section III-C. Memory overheads aren’t applicable to the

25The results appear correlated with the ratio between peak FLOPS with
and without the usage of tensor cores.

k-means benchmarks, but it’s informative to compare the AD-
based implementations to the manual ones; fig. 16 shows that
the implementations all use a similar amount of memory.

VII. RELATED WORK

Reverse mode differentiation of reduce and scan is discussed
in [43]. Our rule for reduce is similar but was developed inde-
pendently [44] and we handle scan differently: our approach
is less efficient for complex operands because we manifest the
Jacobian matrices, but more efficient for single-value operands
on GPUs as it requires less shared memory to implement
the derived scan operator. Neither our scan rule nor the one
from [43] is asymptotics-preserving in general, but they are
for most scans that occur in practice.

F̃ is a functional array language that supports nested paral-
lelism. Its AD implementation uses the forward mode, along
with rewrite rules for exploiting sparsity in some cases [45].

Dex is a recent language built specifically to support effi-
cient AD. Empirical benchmarks for AD in Dex have not yet
been published, but we can compare with their approach [8].
In contrast to our conventional “monolithic” approach where
reverse mode AD is a transformation completely distinct from
forward mode, Dex uses a technique where the program is first
linearized, producing a linear map, after which this linear map
is then transposed, producing the adjoint code. Like Dex, we
do not support recursion or AD of higher-order functions. Dex
does not make direct use of a tape in the classical sense, but
instead constructs arrays of closures followed by defunction-
alization. The actual runtime data structures will conceptually
consist of multiple tapes in the form of multidimensional
irregular arrays. Dex does not report strategies for check-
pointing, or optimization of particular accumulation patterns
as in section V-A, or of tape accesses.

The time-space tradeoff for reverse mode AD is systemat-
ically studied by Siskind and Pearlmutter [21]. Tapenade [1]
supports a wealth of checkpointing techniques; our loop strip-
mining technique is a practical and simple special case of that.

Enzyme shows the advantage of performing AD after stan-
dard compiler optimizations have simplified the program [46].
Like Enzyme, we apply our AD transformation on a program
that has already been heavily optimized by the compiler.
But where Enzyme is motivated by performing AD on a
post-optimization low-level representation, our work takes
advantage of pre-AD optimizations, the information provided
by high-level parallel constructs, and post-AD optimizations.

Enzyme has also been applied to GPU kernels, where
it makes use of AD-specific GPU memory optimizations
including caching tape values in thread-local storage as well
as memory-aware adjoint updates [14]. We achieve equivalent
performance, but our approach is not based on differentiating
single kernels—indeed, the GPU code we generate for a differ-
entiated program may have a significantly different structure
than the original program. For example, the optimized adjoint
code for a matrix multiplication requires two matrix multipli-
cations, each its own kernel, as discussed in section V-A.

Recent AD work on OpenMP details an approach to reverse
mode AD for parallel loops [47]. Updates to free variables
in loops are handled by sharing adjoints across threads and
atomic updates; our approach to map is similar, but preser-
vation of nested parallelism allows us to identify and reduce
some updates into a single atomic update.

ML practitioners use tools such as PyTorch [5] that in-
corporate AD. These are less expressive than our language
and do not support true nested parallelism, but instead require
the program to use flat (although vectorized) constructs. On
the other hand, they can provide hand-tuned adjoints for the
primitives they do support. JAX is another such example; it
supports automatic differentiation of pure Python code and
just-in-time (JIT) compilation to XLA HLO [6], [48]. Unlike
PyTorch, JAX also features a vectorizing map operation which
often yields good performance on some workloads. However,
applying (reverse) AD on flat-parallel (vectorized) code may
prevent further memory-locality optimizations; our approach
applies AD to nested-parallel code, which enables further
optimization opportunities, as demonstrated by our treatment
of matrix multiplication-like computations.

Reverse AD has also been implemented in DSLs for stencil
computations [49]. The challenge here is to combine AD
with loop transformations such that the resulting code is a
stencil itself and thus can be optimized with the repertoire of
existent optimizations. AD has also been described for tensor
languages that support constrained forms of loops, which in
particular has the benefit of not requiring the use of tapes [50].

VIII. CONCLUSIONS

We have presented a fully operational compiler implementa-
tion of both reverse and forward mode AD in a nested-parallel,
hardware-neutral functional language. Our transformation is
based on using redundant execution to eliminate the need
for an explicit tape and is performed before the parallelism
of a program is mapped to hardware. It thus benefits from
specialized rules for parallel constructors and flexibility in
aggressively optimizing the original and AD code indepen-
dently. Our experimental evaluation shows that our approach is
effective in practice and competitive with both well-established
frameworks that encompass more specialized languages such
as PyTorch and JAX and with newer research efforts aimed at
a lower-level language, such as Enzyme.

ACKNOWLEDGMENTS

We are grateful to Rory Mitchell for suggesting the AD
formulation of k-means, to Lotte Bruun and Ulrik Larsen for
integrating the AD rules for scan and reduce-by-index, and to
Martin Elsman for using Futhark’s AD infrastructure.

This work has been supported by the Independent Research
Fund Denmark (DFF) under the grants Deep Probabilistic
Programming for Protein Structure Prediction and FUTHARK:
Functional Technology for High-performance Architectures,
and by the UCPH Data+ grant: High-Performance Land
Change Assessment.

REFERENCES

[1] M. Araya-Polo and L. Hascoët, “Data flow algorithms in the
Tapenade tool for automatic differentiation,” in Proceedings of
the European Congress on Computational Methods in Applied
Sciences and Engineering (ECCOMAS 2004), P. Neittaanmäki,
T. Rossi, S. Korotov, E. Oñate, J. Périaux, and D. Knörzer,
Eds. Jyväskylä, Finland: University of Jyväskylä, 2004, online at
http://www.mit.jyu.fi/eccomas2004/proceedings/pdf/550.pdf.

[2] A. Griewank, D. Juedes, and J. Utke, “Algorithm 755: ADOL-C:
A package for the automatic differentiation of algorithms written in
C/C++,” ACM Transactions on Mathematical Software (TOMS), vol. 22,
no. 2, pp. 131–167, 1996.

[3] B. A. Pearlmutter and J. M. Siskind, “Reverse-mode AD in a
functional framework: Lambda the ultimate backpropagator,” ACM
Trans. Program. Lang. Syst., vol. 30, no. 2, Mar. 2008. [Online].
Available: https://doi.org/10.1145/1330017.1330018

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “PyTorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[6] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang, “JAX: composable
transformations of Python+NumPy programs,” 2018. [Online].
Available: http://github.com/google/jax

[7] T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E.
Oancea, “Futhark: Purely functional GPU-programming with nested
parallelism and in-place array updates,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 556–571. [Online]. Available: http://doi.acm.org/10.1145/3062341.
3062354

[8] A. Paszke, D. D. Johnson, D. Duvenaud, D. Vytiniotis, A. Radul,
M. J. Johnson, J. Ragan-Kelley, and D. Maclaurin, “Getting to the
point: Index sets and parallelism-preserving autodiff for pointful array
programming,” Proc. ACM Program. Lang., vol. 5, no. ICFP, aug 2021.
[Online]. Available: https://doi.org/10.1145/3473593

[9] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. Devito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “The next
700 accelerated layers: From mathematical expressions of network
computation graphs to accelerated GPU kernels, automatically,” ACM
Trans. Archit. Code Optim., vol. 16, no. 4, oct 2019. [Online].
Available: https://doi.org/10.1145/3355606

[10] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: A survey,” J. Mach.
Learn. Res., vol. 18, no. 1, p. 5595–5637, Jan. 2017.

[11] F. Wang, D. Zheng, J. Decker, X. Wu, G. M. Essertel, and T. Rompf,
“Demystifying differentiable programming: Shift/reset the penultimate
backpropagator,” Proc. ACM Program. Lang., vol. 3, no. ICFP, Jul.
2019. [Online]. Available: https://doi.org/10.1145/3341700

[12] T. Henriksen, F. Thorøe, M. Elsman, and C. Oancea, “Incremental
flattening for nested data parallelism,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’19. New York, NY, USA: ACM, 2019, pp. 53–67. [Online].
Available: http://doi.acm.org/10.1145/3293883.3295707

[13] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08. New York,
NY, USA: ACM, 2008, pp. 101–113. [Online]. Available: http:
//doi.acm.org/10.1145/1375581.1375595

[14] W. S. Moses, V. Churavy, L. Paehler, J. Hückelheim, S. H. K.
Narayanan, M. Schanen, and J. Doerfert, “Reverse-mode automatic
differentiation and optimization of GPU kernels via Enzyme,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3476165

[15] M. Elsman, T. Henriksen, D. Annenkov, and C. E. Oancea, “Static
interpretation of higher-order modules in Futhark: Functional GPU
programming in the large,” Proceedings of the ACM on Programming
Languages, vol. 2, no. ICFP, pp. 97:1–97:30, Jul. 2018.

[16] A. K. Hovgaard, T. Henriksen, and M. Elsman, “High-performance
defunctionalization in Futhark,” in Symposium on Trends in Functional
Programming (TFP’18), September 2018.

[17] O. Manzyuk, B. A. Pearlmutter, A. A. Radul, D. R. Rush, and J. M.
Siskind, “Perturbation confusion in forward automatic differentiation of
higher-order functions,” Journal of Functional Programming, vol. 29, p.
e12, 2019.

[18] A. Sabry and M. Felleisen, “Reasoning about programs in continuation-
passing style.” SIGPLAN Lisp Pointers, vol. V, no. 1, pp. 288–298, Jan.
1992.

[19] L. Bottou and Y. Bengio, “Convergence properties of the k-means
algorithms,” in Advances in Neural Information Processing Systems,
G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7. MIT Press,
1994. [Online]. Available: https://proceedings.neurips.cc/paper/1994/
file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf

[20] T. A. Mogensen, Introduction to Compiler Design, 1st ed. Springer
Publishing Company, Incorporated, 2011.

[21] J. M. Siskind and B. A. Pearlmutter, “Divide-and-conquer checkpointing
for arbitrary programs with no user annotation,” Optimization Methods
and Software, vol. 33, no. 4-6, pp. 1288–1330, 2018. [Online].
Available: https://doi.org/10.1080/10556788.2018.1459621

[22] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
C. Tenllado, and F. Catthoor, “Polyhedral parallel code generation
for CUDA,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp.
54:1–54:23, Jan. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2400682.2400713

[23] P. Hovland and C. Bischof, “Automatic differentiation for message-
passing parallel programs,” in Proceedings of the First Merged Interna-
tional Parallel Processing Symposium and Symposium on Parallel and
Distributed Processing, 1998, pp. 98–104.

[24] T. Henriksen, S. Hellfritzsch, P. Sadayappan, and C. Oancea, “Compiling
generalized histograms for GPU,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’20. IEEE Press, 2020.

[25] G. E. Blelloch, “Prefix sums and their applications,” 1990.
[26] B. Lu and J. Mellor-Crummey, “Compiler optimization of implicit

reductions for distributed memory multiprocessors,” in Proceedings of
the First Merged International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing, 1998, pp. 42–51.

[27] A. Rasch, R. Schulze, and S. Gorlatch, “Generating portable high-
performance code via multi-dimensional homomorphisms,” in 2019 28th
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2019, pp. 354–369.

[28] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S.
Lam, “Interprocedural Parallelization Analysis in SUIF,” Trans. on Prog.
Lang. and Sys. (TOPLAS), vol. 27(4), pp. 662–731, 2005.

[29] F. Dang, H. Yu, and L. Rauchwerger, “The R-LRPD Test: Speculative
Parallelization of Partially Parallel Loops,” in Int. Par. and Distr.
Processing Symp. (PDPS), 2002, pp. 20–29.

[30] C. E. Oancea and L. Rauchwerger, “Logical inference techniques
for loop parallelization,” in Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’12. New York, NY, USA: ACM, 2012, pp. 509–520.
[Online]. Available: http://doi.acm.org/10.1145/2254064.2254124

[31] A. Griewank and A. Walther, Evaluating derivatives: principles and
techniques of algorithmic differentiation. SIAM, 2008.

[32] F. Srajer, Z. Kukelova, and A. Fitzgibbon, “A benchmark of
selected algorithmic differentiation tools on some problems in
computer vision and machine learning,” Optimization Methods &
Software, vol. 33, no. 4–6, pp. 889–906, 2018. [Online]. Available:
https://doi.org/10.1080/10556788.2018.1435651

[33] (1999) KDD Cup 1999 data. [Online]. Available: http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html

[34] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, dec 2015.
[Online]. Available: https://doi.org/10.1145/2827872

[35] C. J. Nolet, D. Gala, E. Raff, J. Eaton, B. Rees, J. Zedlewski, and
T. Oates, “GPU semiring primitives for sparse neighborhood methods,”
2021. [Online]. Available: https://arxiv.org/abs/2104.06357

[36] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” 2014. [Online]. Available: https://arxiv.org/abs/1402.1128

[37] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
LSTM-CNNs,” Transactions of the Association for Computational Lin-
guistics, vol. 4, pp. 357–370, 2016.

[38] O. Rønning, D. Hardt, and A. Søgaard, “Sluice resolution without
hand-crafted features over brittle syntax trees,” in Proceedings of the
2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), 2018, pp. 236–241.

[39] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[40] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Computational
Linguistics, vol. 19, no. 2, pp. 313–330, 1993. [Online]. Available:
https://aclanthology.org/J93-2004

[41] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies, 2011, pp. 142–150.

[42] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cuDNN: Efficient primitives for deep
learning,” 2014. [Online]. Available: https://arxiv.org/abs/1410.0759

[43] A. Paszke, M. J. Johnson, R. Frostig, and D. Maclaurin, “Parallelism-
preserving automatic differentiation for second-order array languages,”
in Proceedings of the 9th ACM SIGPLAN International Workshop on
Functional High-Performance and Numerical Computing, ser. FHPNC
2021. New York, NY, USA: Association for Computing Machinery,
2021, p. 13–23. [Online]. Available: https://doi.org/10.1145/3471873.
3472975

[44] C. E. Oancea, T. Henriksen, and R. Schenck, “Reverse mode automatic
differentiation. Lecture Slides for the Parallel Functional Programming
MSc Course,” Dec. 2020. [Online]. Available: https://github.com/
diku-dk/pfp-e2020-pub/blob/master/slides/L8-reverse-ad.pdf

[45] A. Shaikhha, A. Fitzgibbon, D. Vytiniotis, and S. Peyton Jones,
“Efficient differentiable programming in a functional array-processing
language,” Proc. ACM Program. Lang., vol. 3, no. ICFP, jul 2019.
[Online]. Available: https://doi.org/10.1145/3341701

[46] W. S. Moses and V. Churavy, “Instead of rewriting foreign code for
machine learning, automatically synthesize fast gradients,” in Advances
in Neural Information Processing Systems 33, 2020.

[47] J. Hückelheim and L. Hascoët, “Source-to-source automatic
differentiation of OpenMP parallel loops,” 2021. [Online]. Available:
https://arxiv.org/abs/2111.01861

[48] R. Frostig, M. J. Johnson, and C. Leary, “Compiling machine learning
programs via high-level tracing,” Systems for Machine Learning, pp.
23–24, 2018.

[49] J. Hückelheim, N. Kukreja, S. H. K. Narayanan, F. Luporini,
G. Gorman, and P. Hovland, “Automatic differentiation for adjoint
stencil loops,” in Proceedings of the 48th International Conference
on Parallel Processing, ser. ICPP 2019. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3337821.3337906

[50] G. Bernstein, M. Mara, T.-M. Li, D. Maclaurin, and J. Ragan-
Kelley, “Differentiating a tensor language,” 2020. [Online]. Available:
https://arxiv.org/abs/2008.11256

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
The paper evaluates the performance of Futhark’s AD compiler
pass on ten benchmarks using the systems which are detailed in
the evaluation section, reproduced below for convenience:
System CPU GPU API
A100 2×AMD EPYC 7352 NVIDIA A100 CUDA 11.6
MI100 2×AMD EPYC 7352 AMD MI100 ROCm 5.0.1
2080Ti 2×Intel E5-2650 NVIDIA 2080Ti CUDA 11.3

On the A100, Python 3.8, JAX 0.3.4 and PyTorch 1.11.0 were used. On
the MI100, Python 3.8 and PyTorch 1.10.2 were used. Python-based
benchmarks were not run on the 2080Ti. The reported experiments
consist of the following:

• The ADBench benchmark suite, including BA, D-LSTM,
GMM, and HAND (CPU).

• RSBench, XSBench, and LBM, compared with Enzyme
(CUDA).

• 𝑘-means dense and sparse clustering, compared with a non-
AD manual implementation, PyTorch, and JAX (CUDA and
ROCm).

• GMM compared against PyTorch (CUDA and ROCm).
• LSTM compared against PyTorch, JAX, and manual library
implementations (CUDA and ROCm).

A complete artifact—containing everything necessary to run the
experiments—is available at https://doi.org/10.5281/zenodo.6853848.
Please note the following hardware and software requirements:

• A Linux distribution which supports Docker and the NVIDIA
Container Toolkit.

• An x86_64 CPU.
• A modern NVIDIA or AMD GPU similar to those used in
the paper with up-to-date drivers. Most of the benchmarks
require a large amount of memory, up to approximately 30
GiB.

• Approximately 20 GiB of free disk space.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:
Artifact 1
Persistent ID: 10.5281/zenodo.6853848
Artifact name: futhark-ad-sc22
Citation of artifact: Schenck, Robert, Rønning, Ola, Henriksen,

Troels, & E. Oancea, Cosmin. (2022). futhark-ad-sc22 (v1.0.4).
Zenodo. https://doi.org/10.5281/zenodo.6853848

Reproduction of the artifact with container: Please see the
README.md file contained in the repository archive at
https://doi.org/10.5281/zenodo.6853848.

