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Distributed Models of Thread-Level Speculation

I. I NTRODUCTION

This paper applies thread level speculation to an area in
which it has not been previously attempted, namely distributed
systems, and finds that, besides the obvious parallelization
benefit, this may effectively reduce the communication and
dispatch overhead inherent to such architectures.

Distributed Software Component Architectures (DSCA)
provide a mechanism for software modules to be developed
independently, using different programming languages. These
components can be combined in various configurations, to con-
struct distributed applications. [1] proposes generic component
architecture “extension” that provides support for parameter-
ized (generic) components, and can be easily adapted to work
on top of various SCAs (CORBA [2], DCOM[3]).

There is increasing interest in the subject of automatically
exporting generic libraries across their initial language bound-
aries. Our experiments have exposed part of C++’s STL and
Aldor’s [4] BasicMath libraries for use across the Generic
IDL (GIDL) [1] and Alma [5] frameworks respectively. This
work has also revealed several performance issues. First,
the overhead associated with inter-component communication
stalls can be quite significant. In the context of a distributed ap-
plication, the network and dispatching overhead may become
dominant. This is especially true for object-oriented languages
since they expose smaller average method length. Second, sep-
arate compilation of components hinders traditional compiler
optimizations such as inlining.

This paper explores the novel application of speculative
techniques to a distributed environment that address the afore-
mentioned issues. We propose two models of Thread-Level
Speculation (TLS) that can discover parallelism that is not
exploitable using traditional parallelizing compiler techniques.
Their application can yield substantial performance benefits,
even in the case when the underlying hardware is not a
multiprocessor.

The first model attempts to overlap the client-server commu-
nication overhead with useful computation performed on the
server side in the form of speculation. This allows multiple
remote invocations to be replaced with fewer calls that the
server expands in multiple speculative iterations of the same
code. We obtained speed-ups as high as191% when the
client and server share the same machine, and353% in the
distributed case.

The second model simulates “procedure inlining”. The
server (master) runs a predictor program that approximates
the code that was supposed to be executed by the client. The
client validates the correctness of the predicted version of the
program using results sent back by the server. This model
obtains speed-ups as high as1154%when the client and server
share the same machine, and2110% for the distributed case.

The remainder of this paper is organized as follows. In
Sections II-A and II-B we provide an overview of our

GIDL and TLS frameworks respectively. We then describe the
application of TLS to a distributed heterogeneous environment
in Section III. Afterward, in Section IV we report and analyze
the performance benefits of exploiting the parallelism enabled
by TLS in order to speed-up client-server applications. Finally,
we conclude with the contributions of this paper and future
work in Section V.

II. BACKGROUND

A. Distributed Generic Multi-Language Architectures

There a very few mainstream distributed heterogeneous
software component architectures in use today. Most notable
are CORBA [2], and Microsoft’s DCOM [3] (integrated in
the recently emerged .NET framework). These architectures
employ a specification language to describe the interfaces that
the client objects call, and the object implementations provide,
separating the specification and the implementation aspects
of a module. Generic Interface Definition Language (GIDL)
[1] is a generic extension of such a language (CORBA’s
IDL [6]), that allows applications using parameterized or
generic types to be exposed to a heterogeneous environment.
It defines a common model for parametric polymorphism that
can be meaningfully supported by various languages, and
resolves different binding times and different semantics of
parametric polymorphism in various programming languages.
The GIDL model captures the notion of both qualified and
unqualified type parameters, i.e., parameters restricted, or not,
to satisfy particular interfaces (for example, the generic type
A in Test<A: BaseClass> is restricted to extend the
BaseClass interface). In the context of this paper the GIDL
is layered on top of the CORBA SCA.

B. Thread-Level Speculation

Thread-level speculation is an aggressive parallelization
technique that can be applied to regions of code which cannot
be parallelized using traditional static compiler techniques.
Threads execute out of order, modifying their own state, and
merge their changes into the global non-speculative state only
when it is determined that the locations it read-from and
wrote-to do not result in a data dependency violation. TLS,
with its high inter-thread communication costs, is enabled by
the emergence of chip-multiprocessors (CMP). CMPs contain
multiple tightly-coupled processor cores on a single chip,
which significantly reduce the costs of interprocessor commu-
nication. Their emergence has come about as the cost-benefit-
ratio of instruction-level parallelism offered by superscalar
VLIW processors has grown [7]. Even though commercial
CMPs currently exist in the market [8], the cache coherency
mechanism needed for speculation is not yet present.

TLS can be applied at the loop and method/function levels.
At the loop level, speculative threads concurrently execute
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iterations of a loop out of sequential order even when these
may contain a true dependence. The thread assigned to the
lowest numbered iteration is referred to as themasterthread
since it encapsulates both the correct sequential state and
control-flow. It is the speculative cache coherency mechanisms
job to detect the data dependencies across threads and initiate
a rollback. In servicing a rollback the speculative state needs to
cleared and the threads affected by the violation are restarted
to carry out the cancelled iterations. Method-level speculation
overlaps the execution of a called method with the code
downstream from the call-site. The region following the call
is executed speculatively while the main thread executes the
called method. In general, the downstream speculative region
is quite small since data dependencies will occur between the
parameters or return value of the two code segments. However,
the length of a speculative region can be expanded through
the use of value prediction. Simple, and efficient two-value
and stride predictors can be applied to free up some possible
dependencies with good results [9].

Even without hardware support, we set out to explore the
benefits of TLS and implemented a software framework. Sim-
ilar to [10], reads/writes of speculative locations are replaced
with calls to functions which simulate the data dependency
checking that would be present in a speculative cache protocol.
However, our approach is at a much higher level than that of
[10] who implemented their speculative framework in a mix
of C, and assembly.

The initial idea behind our framework was to incorporate
TLS into the repertoire of an adaptive dynamic optimizer such
as JikesRVM[11]. Profiling could detect situations in which
speculation might be applicable and even resolve statically
unsolvable distance-vector equations which rely upon run-
time values. This monitoring of the run-time state could be
used to possibly reduce the number of dependence violations
encountered by initiating threads separated by the observed
dependence distance. The addition of TLS to a traditional
parallelizing compiler could provide speed-ups where data
dependence analysis fails to conclusively determine if depen-
dencies exist across loop iterations. The access to the true
run-time behavior of a program that a dynamic compiler has
could as be used to direct the shape of the iteration space
by identifying whether a block or cyclic iteration pattern is
most applicable. Further adding to the adaptability of the
system, profiling can be integrated into the rollback handler.
The ratio of rollbacks to commits could be monitored and if an
unacceptable threshold is reached, the run-time compiler could
remove the speculative code. Many hardware based schemes
suffer from the inability to control the amount of memory
required by speculative threads in order to keep the main
state isolated from the speculative state [12]. In our software
approach we can resize or set an upper bound on the size of
the speculative cache as needed.

In order for us to perform speculation in general Java
programs (as opposed to very regular scientific applications) it
is clear that a dynamic compiler carrying out the speculative
transformations must be able to plug in speculatively aware
versions of the Java class libraries. Specifically, in order
to speculate on many common code sequences speculative

versions of the collection classes, such asList , are needed.
Consider the common situation of iterating thought aList .
Given a speculative version of theList class, a dynamic
compiler could replace the use of the sequential library with
a speculative version which cuts theList into segments
dependent upon the number of available processors. Each
processor would then visit in parallel only its assigned part of
the List , and dependency checking would be hidden behind
the scenes in the implementation of the speculativeList
class.

III. D ISTRIBUTED APPLICATIONS OFTHREAD-LEVEL

SPECULATION

This section introduces two TLS models, inspired by [10]
and [13], which can be applied in a potentially multi-language,
distributed environment. Performance improvements are de-
rived from two aspects. First, the communication overhead is
reduced by eliminating stalls between the client and the server,
and secondly, by taking advantage of the server/client support
for parallel execution. In most situations the second model
yields better speed-ups compared to the first. However, in
environments where security is of concern, the code migration
aspect of the second approach might forbid its use.

Throughout this paper we assume that the server’s through-
put is reasonable low (that is, the server has some idle time and
is not over-run with clients requesting its services). Section III-
A presents an overview of our approach, while Sections III-B
and III-C introduce the two speculation models respectively.

A. Overview

Fig. 1. An example of a simple object-oriented client program.

Figure 1.A presents an example of a general, object-
oriented, client program, and Figure 1.B displays its normal
(sequential) execution. However, if the loop can be executed
concurrently, as evident in Figure 1.C, then the speed-up can
be quite substantial. Figure 1.D shows the diagram’s temporal
execution of the first two concurrent iterations. After some
number of iterations, thepipeline stabilizes. Examining Fig-
ure 1.E, we see that the costs of the communication is amelio-
rated. The communication costs could be further decreased by
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module TLSPackage {
exception TLS_Dependence_Violation { long thread_num; };
interface Speculative_Variable {

void reset(in long tid, in long max_tid);
void commitValueInFront(in long tid);
void start_speculation();

};
interface Splitable_Variable<T:Splitable_Variable<T> > :

Speculative_Variable {
typedef sequence<T> Seq_T;
Seq_T splitSpeculativeVariable(in long nr);
void recombineIterators(in Seq_T s);

};
};

interface GetValueObject {
long getValue(); void setValue(in long val);

};

module IteratorPackage {
interface Iterator<T> :

TLSPackage::Splitable_Variable<Iterator<T>>{ // *
long isEmpty(); void step();
T value(); void resetIterator();

};
};

module ContainerPackage { //...
interface Vector<T:GetValueObject, C:Comparator<T> > :

Container<T,C>, TLSPackage::Speculative_Variable{ // *
T elementAt(in long i);
void setElementAt(in T obj, in long i);
T Spec_elementAt(in long i, in long thread_num); // *
void Spec_setElementAt( // *

in T obj, in long i, in long thread_num
)raises (TLSPackage::TLS_Dependence_Violation); //....

}; //....
}; //....

Fig. 2. GIDL specification. Lines marked with * denote TLS support

“inlining” the client code into the server. Additionally, server-
side parallelism can be effectively exploited. This becomes
more important as the granularity of a method increases.

Figure 1 displays an ideal FortranDOALLparallelization of
the program. However, this is not possible since the code is
split and separately compiled between the client and the server.
To achieve this, we employ our distributed TLS models that
are discussed in Sections III-B and III-C.

B. Distributed Speculation Model

This section provides an overview of our TLS framework
and describes its application to a distributed environment. Our
model differs from that of a typical TLS scheme by the fact
that the speculative variables may reside on a remote machine
and therefore are not directly accessible by the client. How-
ever, the remote object whose methods uses these variables
can act as a proxy for them. If the method’s parameters are
also remote objects, than recursively, their server is required
to provide parallelization support for the operations that are
invoked upon them. If support for speculative parallelization
is unavailable, and the code cannot be proven to be free of
data-dependencies then speculation is not applied.

Figure 3 presents part of a two-client program that uses the
services provided by a server that implements the functionality
of the GIDL specification presented in Figure 2 (ignore for the
moment the lines marked with* and theTLSPackage mod-
ule). Assuming that the server’s code is available for analysis,
note that the client code cannot be conservatively parallelized

due to the loop-carried true data-dependence of distance1
in client A, and due to the indirect access of the vector’s
vect elements in clientB (see the lines marked*** ). In
both cases, profiling information combined with code analysis
performed on the client may (non-conservatively) suggest that
a region of rich-parallelism has been discovered. Suppose
the if branch is cold, considering thehot path the code
“resembles” a data-dependence free loop (modulo the data
dependences introduced by possible object aliasing). Given
these hindrances to parallelization our speculative framework
can be employed.

// A)
for(int i=0; i<dim[0]; i++) {

GetValueObject gvo = vect.elementAt( new Long_GIDL(i) );
int elem = gvo.getValue().getValue(); elem *= ...;
if(elem>(-1)) gvo.setValue(new Long_GIDL(elem));
else {

GetValueObject gvo1;
if(i>0) {

gvo1 = vect.elementAt( new Long_GIDL(i-1) ); //***
elem = (long)gvo1.getValue().getValue();elem*= ...;

} else elem = ...;
gvo1 = factoryImpl.createComparableObject

(new Long_GIDL(elem));
vect.setElementAt(gvo1, new Long_GIDL(i));

}
}

// B)
for(; index_it.isEmpty().getValue()!=0; index_it.step()) {

Long_GIDL ind = index_it.value();
GetValueObject gvo = vect.elementAt(ind); //***
int elem = gvo.getValue().getValue(); elem *= ...;
if(isValidElement(elem)) {

GetValueObject gvo = factoryImpl.createComparableObject
(new Long_GIDL(elem));

vect.setElementAt(gvo, ind); // ***
}

}

Fig. 3. Two client code regions which are rich in speculative parallelism.

The client announces to the server that speculation is about
to commence, and provides the required information regarding
the speculative region. The TLS module used by the GIDL
stub will invoke the target-language compiler (Java in our
example) to compile the respective methods with support for
speculation, thus generating some new (speculative-related)
methods on the server side. While it is clear how this transfor-
mation would be implemented we are currently performing it
by hand. Furthermore, it will modify the GIDL specification
to also include speculation (lines marked with* together with
the TLSPackage module in Figure 2), and re-compile it to
update the client and server stubs.

Each interface that is found to contain at least
one speculative method is required to inherit from the
TLSPackage::Speculative Variable interface (see
Figure 2). Essentially, such an interface functions as a proxy
for the speculative variables identified in its speculative-
methods (as they do not have distributed support). Information
received from the client will aid the server-side compiler to
prune the number of variables that are considered speculative.
However, if this is the only modification, the client-code
labelledB in Figure 3 will generate many rollbacks due to the
iterator step operation. To solve this,Iterator extends
the Splittable Variable interface, allowing each spec-
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ulative thread to work with disjoint (separate) iterators (refer
to Section II-B for speculative support for container classes).

T[] arr; TLS.Arrays.Spec_Arr_RefU1D<T> spec_arr;
ArrayList<GIDL.TLSPackage.Speculative_Variable> Spec_Vars;
final public void start_speculation() {

spec_arr=new TLS.Arrays.Spec_Arr_RefU1D<T>(arr,1,1,ob_T);
Spec_Vars.add(spec_arr);

}
final public void Spec_setElementAt(T ob, Long_GIDL a1) {

arr[a1.getValue()] = ob;
}
final public void Spec_setElementAt(

T ob, Long_GIDL a1, Long_GIDL th
) throws _TLSPackage.TLS_Dependence_Violation {

int th_num = th.getValue();
try {

spec_arr.Speculative_Store(a1.getValue(), th_num, ob);
} catch(TLS.Dependence_Violation exc) {

throw new _TLSPackage.TLS_Dependence_Violation(th_num);
}

}

Fig. 4. Part of the server-side speculative code for ContainerPackage::Vector

Figure 4 presents thesetElementAt method and its
speculative versionSpec setElementAt . Notice that
the generated speculative code differs very little from the
original. Specifically, it receives an extra parameter, the id of
the thread executing the method (th ). Second, the speculative
operation is guarded by atry-catch block. If a violation
is detected than the exception is forwarded as a GIDL
exception onto the client. Finally, the container that may
be the source of a data-dependence violation (arr:T[] )
is replaced with a speculative version (in this case the
spec arr:TLS.Arrays.Spec Arr RefU1D<T>).
Figure 4 displays the implementation of the
start speculation() method exported by the
GIDL.TLSPackage.Speculative Variable
interface. It initializes the variables on which data-dependence
violations might occur, and stores them in a container. The
reset and commitValueInFront methods (omitted
from Figure 4 due to space constraints) traverse the list of
speculative variables encapsulated by this class (Vector )
and re-initializes them, or updates the original location that
they shadow, respectively. These methods are invoked when
handling a rollback or when speculation has succeeded
and the speculative state should be merged with the true
non-speculative state, respectively.

Fig. 5. The Interaction between the Speculative Threads and the Thread
Manager

As depicted in Figure 5, the client starts speculative
execution by creating a thread-manager, and calling the
speculate method on it. The thread manager calls the
start speculation method on all local speculative vari-
ables, and on all the remote objects that act as proxies for
the speculative variables identified on the server. Furthermore,
it creates a pool of speculative threads (registered to itself)
and starts them. A speculative thread executes iterations cor-
responding to the sequential code, except that it now references
local speculative variables and invokes the speculative handler
methods. At the end of an iteration the speculative thread
checks to see if any violations were detected by the other
threads. If so, the thread transitions into the waiting state.
Otherwise it is assigned a newid (sequential execution
iteration number), and checks to see whether the terminating
condition was met. If a thread catches a data-dependence
violation exception (thrown by local code or by the server),
it invokes therollbackSTs method on its thread manager,
which will set the manager’sbarrier id flag. In the end,
only the lowest id thread that has detected a rollback will
be alive. At this time, for each speculative variable the value
generated by the thread with the highestid less than or
equal to theid of the running thread is committed. Finally,
all the speculative variables are committed, and cleaned up.
Adaptability is built into the system by monitoring the ratio
of rollbacks to commits. If a predefined threshold is passed
then speculation is abandoned for sequential execution, oth-
erwise the speculative threads are awakened and speculation
continues.

C. Distributed Speculative-Inlining Model

The second speculative model presented here, inspired by
[13], achieves a speed-up in a similar manner as procedure
inlining. More precisely, the client provides the server (or vice
versa) with apredictor program that approximates the code
executed by the client. There are no constraints associated
with the distilled program. However, in order to produce a
good speed-up, it needs to achieve a high prediction accuracy.
The server (master) runs the predictor program and sends
back to the client, records of the live variables computed
along the anticipated path through the client’s code. It is
the client’s responsibility to validate the correctness of the
master’s execution.

Our model differs from [13] in several ways. First, [13]
expects the distilled program to be much faster (a straight line
code segment of the dominant path) than the slave’s verifica-
tion code. In our case, we prefer theapproximateprogram to
be as close as possible to the original (and hence less likely
to contain a violation), because of the high cost associated
with a rollback. Second, our implementation is adapted to a
distributed environment, and therefore, is geared toward other
goals, such as network, and dispatching overhead elimination.
The parallelization of the predictor program becomes more
important for us as the iteration granularity increases.

There are two situations when program distillation is
most beneficial inside of our framework. The first is when
a method returns a predictable value. Consider a local
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object which is used as a branch condition (see Fig-
ure 3.B: if(client obj.IsValidElement(...)) );
in this case thehot branch will be added to the predictor but
without the test (the test will be a remote invocation from the
server point of view, and thus expensive). The second case,
is when the deletion of acold branch causes the number of
speculative variables to drastically decrease, or the predictor
code becomes conservatively parallelizable. In such a situation
the server may even employ a standard parallelization model
to achieve the greatest speed-up. In Figure 3.A, if thetrue
branch fromif(elem>-1) ... is found to behot then a
predictive program can be constructed by keeping the target,
and removing the cold path. Further analysis by the server-side
compiler of the predictor may conservatively discover that the
vector’s element holder (arr in Figure 4) will not generate
any data dependence violations.

The server side of the inlining speculative model is mainly
composed from two communicating instances of our TLS
framework, as shown in Figure 6.

Fig. 6. “Inlining” - like Speculative Model. This figure presents the
interaction between the Master/Slave Threads and the Slave Thread Manager

Master threads, registered to a master thread-manager, ex-
ecute out of order iterations of the distilled program. At the
end of every iteration, the live variables of the master threads
are packed into a record residing in a predefined location in
an array of sequences of records indexed by the thread’sid
(viewed as a bi-dimensional array – theMasters Array of Seqs
in Figure 6). Master threads are not permitted to over-write
non-null records since this means that the record has not yet
been committed because at least one thread is lagging behind.
When a sequence is filled up, it is inserted into theslavequeue
(Slaves Queue of Seqsin Figure 6) and a new, empty sequence
is placed in the table. The terminating condition of the master
threads is dictated by the client’s code.

The slave threads poll a sequence from the slave-queue
(if not empty, otherwise yield and try again). They request
the client (that now acts like a server) to verify the current
sequence containing several live-variable records. A slave-
thread’s exit condition is reached when all of the master-
threads are dead and no data in the slave-queue requires
verification. No explicit synchronization is required between
the master and slave threads except for guarded access to the
slave-queue.

The client is responsible for verification. If any of the
instructions that were not part of thepredictor program
(branch conditions excluded) are reached, or acold branch

excluded from the predictor is taken, then a violation has
occurred. The client throws a dependence-violation exception
that will be caught by the corresponding slave thread on the
server-side. The slave thread manager will handle the rollback
as described in the previous section, additionally it will set
the barrier id flag of the master thread manager to the
id of the thread that detected the violation. Thus all of the
master-threads are going to be in a waiting-state (all have an
id greater thanbarrier id , otherwise the corresponding
sequence wouldn’t have reached the client), and finally, only
one slave-thread (the thread with the lowest id that detected
a rollback) is running. Only then are the speculative variables
committed and reinitialized. Control is then handed to the
client which sequentially performs the iterations corresponding
to the records in the received sequence.

module MasterSlavePack {
interface Master1<

T: GetValueObject,
C: ContainerPackage::Comparator<T>

> {
void runMaster(in long i, in long j,

in long s, in long l,
in long sps, in long ms,
in ContainerPackage::Vector<T, C> vect

);
};
interface Slave1<T: GetValueObject> {

struct LiveVariables {
T elementAt_result; long thread_nr;
long getValue_result;

};
typedef sequence<LiveVariables> seq_LV;
void checkRecord(in seq_LV lv)

raises(TLSPackage::TLS_Dependence_Violation);
void performRollbackIteration(in seq_LV lv);

}; };
//...

Fig. 7. GIDL specification support for the inlining speculative model

Figure 7 presents the GIDL specification, corresponding
to the client program displayed in Figure 3.A, that is needed
by our “inlining speculative model”. When a client discovers
a suitable code region for speculation, it locally creates
and runs a slave checking-server (typeSlave1<...> ).
The Master1<E, C> createMaster1(Slave1<E>
slave) method creates a remote-object that upon invoking
the runMaster method will create the server-side two-level
TLS architecture described above. ThecheckRecord
method in theSlave1 interface performs the speculation
validation. If a dependence violation exception is thrown the
client is requested to sequentially execute several iterations
(performRollbackIteration(...) ).

As noted in the beginning of this section the inlin-
ing model almost always yields better speed-ups compared
to the first approach. This is due to the fact that the
number of remote calls performed by the two models is
1/(MasterCheckingSeqSize ∗ NrOfRemoteCallsPerIt
in favor of the inlining speculative model. However, client
code may reference many objects distributed across many
servers, among which some may not support code exchange
via a common intermediate representation (IR). Moreover,
security issues may disallow the sharing of certain pieces of
code or data. In this case, a combination of the two models
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TABLE I

1ST ARCHITECTURE(OVERLAPPING COMMUNICATION)

NR = CLIENT THREAD POOL SIZE,

G = “ REMOTE” METHOD GRANULARITY (INSTRUCTIONS)

nMc SPEED-UP COMPARED TO SEQUENTIAL.

n = NO. MACHINES, c = CLIENT VERSION

nMcR AS ABOVE, BUT WITH 1% ROLLBACK RATE.

Nr G 1M1 1M1R 1M2 1M2R 2M1 2M1R 2M2 2M2R
4 10 1.35 1.30 1.30 1.23 2.23 2.05 2.05 1.98
8 10 1.55 1.51 1.56 1.52 3.01 2.72 3.24 2.71
16 10 1.65 1.53 1.62 1.53 3.36 2.76 3.36 2.68
32 10 1.91 1.47 1.69 1.44 3.22 2.37 3.46 2.27
4 103 1.31 1.28 1.30 1.28 2.09 2.03 2.13 2.03
8 103 1.51 1.45 1.53 1.48 3.12 2.72 3.16 3.07
16 103 1.62 1.46 1.62 1.46 3.29 2.94 3.47 2.66
32 103 1.73 1.48 1.70 1.35 3.53 2.31 3.53 2.17
4 104 1.25 1.23 1.32 1.26 2.25 2.03 2.04 1.86
8 104 1.36 1.27 1.50 1.38 2.71 2.35 2.78 2.39
16 104 1.41 1.24 1.55 1.32 2.83 2.35 3.17 2.41
32 104 1.44 1.25 1.63 1.24 2.73 2.01 3.41 2.05

is the preferred solution (if the code possesses high-level
parallelism). Themasteris selected by identifying the remote
object that is invoked most frequently. Predictive programs
corresponding to the functionality of the servers that support
a common communication IR and allow code migration will
be also inlined into the master. If the code exposes parallelism,
the execution time may be further decreased by concurrently
executing speculative iterations of the master thread. We can
see that one application may create a hierarchy of inlined spec-
ulations and overlapping speculative iterations (first model).

IV. RESULTS

Automatic library translation across language boundaries
is an area yet to be explored. Unfortunately, it is lacking
in formal benchmarks that can accurately measure the per-
formance effects associated with porting a non distributed
application into a distributed environment. We implemented
a GIDL-server which exhibits functionality similar to that
found in the STL of C++ (for example, containers, iterators,
etc). Our tests are based on variations of the two examples
used throughout this paper. The “remote” method granularity
was varied from10 to 10000 instructions (notice that each
iteration performs between 3 and 5 remote calls). Our tests
were carried out on two configurations. One configuration ran
on a single machine which acted as both client, and server
(2.4GHz P4/512 Mb). Another configuration employed two
machines on the same local network (both 800MHz P3/256Mb
RAM). All the machines we have used are running Linux.

We applied our TLS framework to distributed programming
in the anticipation that speed-ups could be obtained by over-
lapping network stalls with speculative computation, thereby
minimizing idle times. Table I shows the speed-ups obtained
by employing our first distributed TLS model compared to
sequential program execution. In a rollback-free (“ideal”) ex-
ecution, employing a higher number of client threads generates
a better speed-up (32 client threads achieve a1.91, 1.69,
3.22, 3.46 times speed-up). Our framework is rollback-
tolerant in the sense that it gracefully accommodates a 1%

TABLE II

2ND ARCHITECTURE(“ INLINING ”- LIKE SPECULATION)

G = “ REMOTE” METHOD GRANULARITY (INSTRUCTIONS)

SS= SLAVE SEQUENCE SIZE,

nMc SPEED-UP COMPARED TO SEQUENTIAL.

n = NO. MACHINES, c = CLIENT VERSION

nMcR AS ABOVE, BUT WITH 1% ROLLBACK RATE.

G SS 1M1 1M1R 1M2 1M2R 2M1 2M1R 2M2 2M2R
10 1 3.02 2.31 4.69 3.27 5.86 4.70 8.96 6.58
103 1 2.88 2.22 4.20 3.06 4.96 4.67 10.22 9.21
104 1 1.96 1.32 2.86 1.88 3.76 2.26 5.19 2.99
10 10 9.59 3.20 11.54 3.65 15.57 4.75 21.10 6.18
103 10 7.35 1.77 9.33 2.54 14.05 2.52 14.83 2.86
104 10 2.97 0.71 4.13 0.89 3.83 1.10 5.62 1.57

rollback probability. In examination of the cost of a rollback,
we notice that the performance difference with respect to the
ideal case decreases with the size of the thread pool. This
is due to the greater number of inter-thread dependencies
resulting in redundant work and increased synchronization
overhead. The observed number of threads that provided the
best speed-up was either8 or 16.

Our second model clearly yields substantial performance
benefits compared to the the first model as demonstrated in
Table II. There are two main reasons for this. First, we have
eliminated CORBA’s inherent remote-call dispatch costs by
“inlining” the client code into the server. All remote calls in
the initial code are now handled locally. Second, the network
overhead is reduced by batched communication of the live
variables. The server is configured to use15 concurrent slave
threads in order to “pipeline” the remote-client checking phase.

In an ideal (rollback-free) execution scenario, the applica-
tion of this model obtains impressive speed-ups. On a single
machine, execution time was9.6 and 11.5 times faster,
and 15.6 and 21.1 times faster over a distributed network
with a method granularity, and slave sequence size of10
(slave sequence size represents the number of records sent
in a batch for the client to check for correctness). However,
for a 1% rollback probability, the corresponding speed-up
decreases dramatically (3.20 – 6.18 ). This is because, in
our implementation, the rollbacks are handled by asking the
client to sequentially execute the iterations associated with
the sequence of records that have generated the violation
(10 in our case). We are currently working on enhancing
our architecture to better handle the rollback situation by
sequentially executing only the “guilty” iteration. However, the
rollback handling will remain expensive (see results in Table II
for sequence-size1) and influence our predicted program to
be more “correct” than “distilled”.

Table I and Table II show that for both our models, the
speed-up decreases when the method-granularity increases.
However, in this case, taking advantage of the machine’s (po-
tential) parallelism becomes very important. The final version
of this paper will include tests executed on a parallel server.

To summerize this section, the performance gain for our first
model (with respect to the sequential client program execution
time) depends on the size of the thread pool, on the remote
method granularity, and on the rollback ratio. The best speed-
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ups, for a rollback-free execution, are obtained with32 client
threads and range from144% to 191% when the client and
server share the same machine, and from353% to 341% for
the distributed case, when the method granularity varies from
10000 , to 10 respectively. For a1% rollback rate, the best
speed-ups are obtained using a number of threads between
8 and 16 . They range from127% to 153% for the single
machine case and from235% to 276% when the client and
server are across a local network, for a method granularity of
10000 and10 respectively.

The second model mimics “procedure inlining” and is very
effective in eliminating the distributed system overhead. For a
rollback-free execution we obtained speed-ups between297%
and 1154% for a single machine space, and between383%
and2110% for the distributed case, for a method granularity of
10000 and10 respectively. We also notice that a1%rollback
rate will substantially decrease these speed-ups, therefore we
prefer a more “correct” rather than a more “distilled” predictor.

V. CONCLUSION

This paper has examined the potential for thread level
speculation in a new area: the environment of distributed
software components. We have found that substantial speed-
ups may be achieved from this level of parallelism.

We propose two TLS models employed in a distributed
setting that substantially reduce the network and call dis-
patch overhead. Additional speed-up is achieved when the
underlying hardware is a multiprocessor. This becomes more
noticeable as the remote method granularity increases.

The first model performs concurrent speculative iterations
on the client, overlapping with communications. The second
model mimics procedure inlining to eliminate distributed sys-
tem overhead.

The performance gain depends on many factors. For the
first model speed-up ranges from1.4× to 1.9× on a single
machine, and about3.5× when distributed. For the second
model speed-up ranges roughly between3× and 11.5× on
one machine, and between3.8× and22.1× when distributed.
Allowing a 1% rollback rate gives a somewhat smaller speed
up for the first model, and substantially decreases speed-up
for the second model.

For the final version of this paper, we plan to enhance our
“inlining” like speculative architecture to better handle the
rollback situations, and to investigate how a multi-processor
server may influence the speed-ups as the method granular-
ity increases. The creation of speculatively aware container
classes proved to be a highly beneficial idea and warants futher
investigation to determine other commonly used libraries
where thread-level speculation can be exploited.
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