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Abstract

This paper introduces a novel application of thread-level speculation to a distributed heterogeneous environment. We propose
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initial model, and 21 times for the second.
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Distributed Models of Thread-Level Speculation

I. INTRODUCTION GIDL and TLS frameworks respectively. We then describe the

This paper applies thread level speculation to an areaafplication of TLS to a distributed heterogeneous environment
which it has not been previously attempted, namely distributéyiSection Ill. Afterward, in Section IV we report and analyze
systems, and finds that, besides the obvious parallelizatié¥ Performance benefits of exploiting the parallelism enabled
benefit, this may effectively reduce the communication ay TLS in order to speed-up client-server applications. Finally,
dispatch overhead inherent to such architectures. we conclude with the contributions of this paper and future

Distributed Software Component Architectures (DSCAWork in Section V.
provide a mechanism for software modules to be developed
independently, using different programming languages. These Il. BACKGROUND
components can be combined in various configurations, to cgq- Distributed Generic Multi-Language Architectures
struct distributed applications. [1] proposes generic componentrpare g very few mainstream distributed heterogeneous

architecture “extension” that provides support for paramet&lstare component architectures in use today. Most notable
ized (generlc_) components, and can be easily adapted to ngg CORBA [2], and Microsoft's DCOM [3] (integrated in
onTtr(1)p Of. various S.CA.S (CORBA [hZ]’ D%QM[g]f)' ) Ihe recently emerged .NET framework). These architectures
ere 1s increasing |_nterest In t € su .].eCt o automatica ploy a specification language to describe the interfaces that
ex.portmg generic libraries across their initial language bounﬁie client objects call, and the object implementations provide,
Z?des" OL: egpta-rlrlaenrfsllzavg ex;f:)osed part 6+€ iTLGand separating the specification and the implementation aspects
or's [4] BasicMath libraries for use across the Generigs 3 module. Generic Interface Definition Language (GIDL)
IDL (GIDL) [1] and Alma [5] frameworks respectl_vely. Th|s_ 1] is a generic extension of such a language (CORBA's
work has also rev_ealed s_ev_eral performance issues. F|_ [6]), that allows applications using parameterized or
the overhead associated with inter-component communication i types to be exposed to a heterogeneous environment.
stalls can be quite significant. In the context of a distributed a “defines a common model for parametric polymorphism that
plication, the network and dispatching overhead may becomg, he meaningfully supported by various languages, and
dominant. This is especially true for object-oriented Ianguagﬁ?solves different binding times and different semantics of

since they expose smaller average method Ien_g_th. Second,_ fellametric polymorphism in various programming languages.
arate compilation of components hinders traditional compil he GIDL model captures the notion of both qualified and

optimizations such as inlining. _unqualified type parameters, i.e., parameters restricted, or not,

This paper explores the novel application of speculati . : : .
. _ . satisfy particular interfaces (for example, the generic type
techniques to a distributed environment that address the afo,g\e? v p ( P 9 yp

tioned i W ¢ dels of Thread-L in Test<A: BaseClass> is restricted to extend the
mentioned ISSues. Ve propose two mode’s 0 reac- eY:ueAseCIass interface). In the context of this paper the GIDL
Speculation (TLS) that can discover parallelism that is n

exploitable using traditional parallelizing compiler techniqueig. layered on top of the CORBA SCA.

Their application can yield substantial performance benefits, )
even in the case when the underlying hardware is notba Thréad-Level Speculation
multiprocessor. Thread-level speculation is an aggressive parallelization

The first model attempts to overlap the client-server commigchnique that can be applied to regions of code which cannot
nication overhead with useful computation performed on thxe parallelized using traditional static compiler techniques.
server side in the form of speculation. This allows multipl&hreads execute out of order, modifying their own state, and
remote invocations to be replaced with fewer calls that therge their changes into the global non-speculative state only
server expands in multiple speculative iterations of the samaen it is determined that the locations it read-from and
code. We obtained speed-ups as high184% when the wrote-to do not result in a data dependency violation. TLS,
client and server share the same machine, 38®P6 in the with its high inter-thread communication costs, is enabled by
distributed case. the emergence of chip-multiprocessors (CMP). CMPs contain

The second model simulates “procedure inlining”. Thewultiple tightly-coupled processor cores on a single chip,
server (master) runs a predictor program that approximatgbich significantly reduce the costs of interprocessor commu-
the code that was supposed to be executed by the client. Tingation. Their emergence has come about as the cost-benefit-
client validates the correctness of the predicted version of ttaio of instruction-level parallelism offered by superscalar
program using results sent back by the server. This moddlIW processors has grown [7]. Even though commercial
obtains speed-ups as highkb4% when the client and server CMPs currently exist in the market [8], the cache coherency
share the same machine, a2ti10% for the distributed case. mechanism needed for speculation is not yet present.

The remainder of this paper is organized as follows. In TLS can be applied at the loop and method/function levels.
Sections 1I-A and [I-B we provide an overview of ourAt the loop level, speculative threads concurrently execute



iterations of a loop out of sequential order even when thesgersions of the collection classes, suchL&g , are needed.
may contain a true dependence. The thread assigned to @ensider the common situation of iterating thoughtist
lowest numbered iteration is referred to as thasterthread Given a speculative version of thest class, a dynamic
since it encapsulates both the correct sequential state aodpiler could replace the use of the sequential library with
control-flow. It is the speculative cache coherency mechanismsspeculative version which cuts tHdst into segments
job to detect the data dependencies across threads and initilgeendent upon the number of available processors. Each
a rollback. In servicing a rollback the speculative state needspimcessor would then visit in parallel only its assigned part of
cleared and the threads affected by the violation are restartedList , and dependency checking would be hidden behind
to carry out the cancelled iterations. Method-level speculatitimie scenes in the implementation of the speculatiis
overlaps the execution of a called method with the coddass.
downstream from the call-site. The region following the call
is executed speculatively while the main thread executes theIII D ISTRIBUTED APPLICATIONS OFTHREAD-L EVEL
called method. In general, the downstream speculative region "
is quite small since data dependencies will occur between the SPECULATION
parameters or return value of the two code segments. HoweverThijs section introduces two TLS models, inspired by [10]
the length of a speculative region can be expanded througid [13], which can be applied in a potentially multi-language,
the use of value prediction. Simple, and efficient two-valugistributed environment. Performance improvements are de-
and stride predictors can be applied to free up some possifl&d from two aspects. First, the communication overhead is
dependencies with good results [9]. reduced by eliminating stalls between the client and the server,
Even without hardware support, we set out to explore tegd secondly, by taking advantage of the server/client support
benefits of TLS and implemented a software framework. Sirfor parallel execution. In most situations the second model
ilar to [10], reads/writes of speculative locations are replacggklds better speed-ups compared to the first. However, in
with calls to functions which simulate the data dependeneyironments where security is of concern, the code migration
checking that would be present in a speculative cache protocgdpect of the second approach might forbid its use.
However, our approach is at a much higher level than that ofThroughout this paper we assume that the server’s through-
[10] who implemented their speculative framework in a migyt is reasonable low (that is, the server has some idle time and
of C, and assembly. is not over-run with clients requesting its services). Section IlI-
The initial idea behind our framework was to incorporat@ presents an overview of our approach, while Sections I11-B

TLS into the repertoire of an adaptive dynamic optimizer sugthd 111-C introduce the two speculation models respectively.
as JikesRVMJ[11]. Profiling could detect situations in which
speculation might be applicable and even resolve statically
unsolvable distance-vector equations which rely upon ruA- Overview
time values. This monitoring of the run-time state could be
used to possibly reduce the number of dependence violatior D. Diagram forthe B, Sequential
encountered by initiating threads separated by the observe Aist two 1 erutions  <wecetton diagreim

. .. S A. Sequential Cliert Code
dependence distance. The addition of TLS to a traditiona o uio; ien:ien
parallelizing compiler could provide speed-ups where date ettt i
dependence analysis fails to conclusively determine if depen o2 et tioTa 2
dencies exist across loop iterations. The access to the tri o3.remotelmvocation3._.;
run-time behavior of a program that a dynamic compiler has . pipeline
could as be used to direct the shape of the iteration spac c ferrun—tike #to0p stabilizes
by identifying whether a block or cyclic iteration pattern is  DOALL30I=LN

most applicable. Further adding to the adaptability of the — olremotelmocationit..y

system, profiling can be integrated into the rollback handler ~ oremotelmocation2i..

The ratio of rollbacks to commits could be monitored and if an,, . mreeemocatoni-

unacceptable threshold is reached, the run-time compiler coul

remove the speculative code. Many hardware based schemcs

suffer from the inability to control the amount of memory9- 1. An example of a simple object-oriented client program.

required by speculative threads in order to keep the main

state isolated from the speculative state [12]. In our softwareFigure 1.A presents an example of a general, object-

approach we can resize or set an upper bound on the sizeénted, client program, and Figure 1.B displays its normal

the speculative cache as needed. (sequential) execution. However, if the loop can be executed
In order for us to perform speculation in general Jawoncurrently, as evident in Figure 1.C, then the speed-up can

programs (as opposed to very regular scientific applicationsp# quite substantial. Figure 1.D shows the diagram’s temporal

is clear that a dynamic compiler carrying out the speculatiexecution of the first two concurrent iterations. After some

transformations must be able to plug in speculatively awanember of iterations, th@ipeline stabilizes. Examining Fig-

versions of the Java class libraries. Specifically, in ordere 1.E, we see that the costs of the communication is amelio-

to speculate on many common code sequences speculatated. The communication costs could be further decreased by

E. pipelined execution




module TLSPacgage { . olation { long thread } due to the loop-carried true data-dependence of distance

exception TLS_Dependence_Violation { long thread_num; }; . . PRT )

interface Speculative Variable { in client A, and_due_ to the mdwect_access of the vector’s
void reset(in long tid, in long max_tid); vect elements in clientB (see the lines market* ). In

void commitValuelnFront(in long tid); ™, . . . . .
void start_speculation(); both cases, profiling information combined with code analysis

; performed on the client may (non-conservatively) suggest that
interface Splitable_Variable<T:Splitable_Variable<T> > :

Speculative_Variable { - a region of rich-parallelism. ha; been discovered. Suppose
typedef selzquence|<T> Seq_t;;( | ) the if branch iscold, considering thehot path the code
Seq_T splitSpeculativeVariable(in long nr); « ”
void recombinelterators(in Seq. T s): resembles a_data-dependence f_ree qup (mo_dul_o the (_jata

I3 dependences introduced by possible object aliasing). Given
b these hindrances to parallelization our speculative framework
interface GetValueObject { can be employed.

long getValue(); void setValue(in long val);
I A

module IteratorPackage {
interface lterator<T> :
TLSPackage::Splitable_Variable<Iterator<T>>{ // *

for(int i=0; i<dim[0]; i++) {
GetValueObject gvo = vect.elementAt( new Long GIDL(i) );
int elem = gvo.getValue().getValue(); elem *= ..

lon iISEmpty(); void step();
to g valuz();'o o rez(e)tlterator()' |ffeler~?>( 1)) gvo.setValue(new Long_GIDL(eIem))
. ; ' else
¥ k GetValueObject gvol;
’ if(i>0) {
module ContainerPackage { J gvol = vectelementAt( new Long_GIDL(i-1) ); //***
interface Vector<T:GetValueObject, C:Comparator<T> > : } elg(laegle; (I:ng).gvol.getVaIue().getVaIue();eIem*:

Container<T,C>, TLSPackage::Speculative_Variable{ // *
T elementAt(in long i);

void setElementAt(in T obj, in long i);

T Spec_elementAt(in long i, in long thread_num); // *

gvol = factorylmpl.createComparableObject
(new Long_GIDL(elem));
vect.setElementAt(gvol, new Long_GIDL(j));

void Spec_setElementAt( I * t
in T obj, in long i, in long thread_num !
Jraises (TLSPackage:: TLS_Dependence_Violation); //.... Il B)
¥ 3/ . for(; index_it.isEmpty().getValue()!=0; index_it.step()) {
T Long_GIDL ind = index_it.value();
i . K i GetValueObject gvo = vect.elementAt(ind); [+
Fig. 2. GIDL specification. Lines marked with * denote TLS support int elem = gvo.getValue().getValue(); elem *= ...;

if(isvalidElement(elem)) {
GetValueObject gvo = factorylmpl.createComparableObject
(new Long_GIDL(elem));
“inlining” the client code into the server. Additionally, server- vect.setElementAt(gvo, ind); [/

side parallelism can be effectively exploited. This become§
more important as the granularity of a method increases.
Figure 1 displays an ideal Fortrd&OALLparallelization of Fig. 3. Two client code regions which are rich in speculative parallelism.
the program. However, this is not possible since the code is
split and separately compiled between the client and the serverThe client announces to the server that speculation is about
To achieve this, we employ our distributed TLS models th& commence, and provides the required information regarding
are discussed in Sections 1lI-B and 1lI-C. the speculative region. The TLS module used by the GIDL
stub will invoke the target-language compiler (Java in our
example) to compile the respective methods with support for
speculation, thus generating some new (speculative-related)
This section provides an overview of our TLS frameworknethods on the server side. While it is clear how this transfor-
and describes its application to a distributed environment. Omation would be implemented we are currently performing it
model differs from that of a typical TLS scheme by the fadty hand. Furthermore, it will modify the GIDL specification
that the speculative variables may reside on a remote machin&lso include speculation (lines marked withiogether with
and therefore are not directly accessible by the client. Hotlke TLSPackage module in Figure 2), and re-compile it to
ever, the remote object whose methods uses these variabiedate the client and server stubs.
can act as a proxy for them. If the method’s parameters areEach interface that is found to contain at least
also remote objects, than recursively, their server is requirede speculative method is required to inherit from the
to provide parallelization support for the operations that afLSPackage::Speculative _Variable interface (see
invoked upon them. If support for speculative parallelizatioRigure 2). Essentially, such an interface functions as a proxy
is unavailable, and the code cannot be proven to be freefof the speculative variables identified in its speculative-
data-dependencies then speculation is not applied. methods (as they do not have distributed support). Information
Figure 3 presents part of a two-client program that uses tteceived from the client will aid the server-side compiler to
services provided by a server that implements the functionalipyune the number of variables that are considered speculative.
of the GIDL specification presented in Figure 2 (ignore for theowever, if this is the only modification, the client-code
moment the lines marked with and theTLSPackage mod- labelledB in Figure 3 will generate many rollbacks due to the
ule). Assuming that the server’s code is available for analysiterator step operation. To solve thislterator extends
note that the client code cannot be conservatively parallelizéiak Splittable _Variable interface, allowing each spec-

B. Distributed Speculation Model



ulative thread to work with disjoint (separate) iterators (refer As depicted in Figure 5, the client starts speculative
to Section 1I-B for speculative support for container classegxecution by creating a thread-manager, and calling the
speculate  method on it. The thread manager calls the
start _speculation method on all local speculative vari-

T[] arr; TLS.Arrays.Spec_Arr_RefU1D<T> spec_arr;

ArrayList<GIDL.TLSPackage.Speculative_Variable> Spec_Vars; ables, and on all the remote objects that act as proxies for
final public void start_speculation() { i i H i
S T S, oo russn e Shecullve vaabls denifid on e server Putherore
Spec_Vars.add(spec_arr);
b S and starts them. A speculative thread executes iterations cor-
final public void Spec_setElementAt(T ob, Long_GIDL al) { . . .
arral.getValue()] = ob; responding to the sequential code, except that it now references
. N local speculative variables and invokes the speculative handler
final public void Spec_setElementAt( . . .
T ob, Long GIDL al, Long_GIDL th methods. At the end of an iteration the speculative thread
) tf:]fto‘ivrf @Trhsf’a&kggf\gfe—(?epe”dence—V'O'a“°“ { checks to see if any violations were detected by the other
try { ' ' threads. If so, the thread transitions into the waiting state.
spec_arr.Speculative_Store(al.getvalue(), th_num, ob); Otherwise it is assigned a newd (sequential execution
} catch(TLS.Dependence_Violation exc) { . . . .
throw new _TLSPackage.TLS_Dependence_Violation(th_num); iteration number), and checks to see whether the terminating
} condition was met. If a thread catches a data-dependence

i violation exception (thrown by local code or by the server),

Fig. 4. Part of the server-side speculative code for ContainerPackage::Vedtanvokes therollbackSTs method on its thread manager,
which will set the manager'barrier _id flag. In the end,
Figure 4 presents theetElementAt  method and its Only the lowest id thread that has detected a rollback will
speculative versionSpec _setElementAt . Notice that Pe alive. At this time, for each speculative variable the value

the generated speculative code differs very litle from tH@enerated by the thread with the highést less than or
original. Specifically, it receives an extra parameter, the id §fual to theid of the running thread is committed. Finally,
the thread executing the methati (. Second, the speculative@!! the speculative variables are committed, and cleaned up.
operation is guarded by @my-catch  block. If a violation Adaptability is built into the system by monitoring the ratio

is detected than the exception is forwarded as a GIDf rollbacks to commits. If a predefined threshold is passed
exception onto the client. Finally, the container that mai?en speculation is abandoned for sequential execution, oth-
be the source of a data-dependence violatiar:T[] ) €rwise the speculative threads are awakened and speculation
is replaced with a speculative version (in this case t{@ntinues.

spec _arr:TLS.Arrays.Spec _Arr _RefU1D<T>).

Figure 4  displays the implementation of  th&; pistributed Speculative-Inlining Model

start _speculation() method exported by the ) o
GIDL.TLSPackage.Speculative Variable The second speculative model presented here, inspired by
interface. It initializes the variables on which data-dependente’l: achieves a speed-up in a similar manner as procedure
violations might occur, and stores them in a container. THEINING. More precisely, the client provides the server (or vice
reset and commitValuelnFront methods (omitted versa) with apredlcyor program that approxma?es the cer
from Figure 4 due to space constraints) traverse the list %ecuted py.the client. There are no constraints associated
speculative variables encapsulated by this clagscior ) with the d|st|lleq program. Hovyever, in order .to'produce a
and re-initializes them, or updates the original location thgP°d SPeed-up, it needs to achieve a high prediction accuracy.
they shadow, respectively. These methods are invoked whelif Server iastej runs the predictor program and sends
handling a rollback or when speculation has succeedgfick to the client, records of the live variables computed

and the speculative state should be merged with the t@@ng the anticipated path through the clients code. It is
non-speculative state, respectively. the client’s responsibility to validate the correctness of the

master's execution.
Our model differs from [13] in several ways. First, [13]

Speculative Threads Thread Manager

’ yexpects the distilled program to be much faster (a straight line
s Barner L~ ;zmwmm” , |code segment of the dominant path) than the slave’s verifica-
1 Lo ith 5| A R .
L | boot shouldRollbackitnt td)f..} tion code. In our case, we prefer thpproximateprogram to
o s e e} be as close as possible to the original (and hence less likely
i i —— to contain a violation), because of the high cost associated
’!ﬂmm;f 115yl the spec vars  necessry with a rollback. Second, our implementation is adapted to a
rolt =fulse; call start_; ation on each sepc var . . . .
Pl kSTH1d, his) { il i distributed environment, and therefore, is geared toward other
o tbtetd Wit .. # credte the speculative thread pool . . .. .
L 1 reglsier and start the spec ihteads goals, such as network, and dispatching overhead elimination.
5 g e it # watt for spec thieads to finish The parallelization of the predictor program becomes more
A s ! # commit the speculative state H H H H H
|| S s ; important for us as the |t_erat|on granularity increases.
A/ J L J There are two situations when program distillation is

Fig. 5. The Interaction between the Speculative Threads and the Thrda@St beneficial inside of our framework. The first is when
Manager a method returns a predictable value. Consider a local



object which is used as a branch condition (see Figxcluded from the predictor is taken, then a violation has
ure 3.B: if(client _obj.IsValidElement(...)) ); occurred. The client throws a dependence-violation exception
in this case thénot branch will be added to the predictor buthat will be caught by the corresponding slave thread on the
without the test (the test will be a remote invocation from theerver-side. The slave thread manager will handle the rollback
server point of view, and thus expensive). The second caas, described in the previous section, additionally it will set
is when the deletion of &old branch causes the number othe barrier _id flag of the master thread manager to the
speculative variables to drastically decrease, or the predicior of the thread that detected the violation. Thus all of the
code becomes conservatively parallelizable. In such a situatimaster-threads are going to be in a waiting-state (all have an
the server may even employ a standard parallelization modt| greater tharbarrier _id , otherwise the corresponding
to achieve the greatest speed-up. In Figure 3.A, if titue sequence wouldn't have reached the client), and finally, only
branch fromif(elem>-1) ... is found to behotthen a one slave-thread (the thread with the lowest id that detected
predictive program can be constructed by keeping the targatrollback) is running. Only then are the speculative variables
and removing the cold path. Further analysis by the server-siciammitted and reinitialized. Control is then handed to the
compiler of the predictor may conservatively discover that thient which sequentially performs the iterations corresponding
vector’s element holdera¢r in Figure 4) will not generate to the records in the received sequence.
any data dependence violations.

The server side of the inlining speculative model is mainly,qye mastersiaverack {
composed from two communicating instances of our TLShterface Masterl<

. . T: GetValueObject,
framework, as shown in Flgure 6. C: ContainerPackage::Comparator<T>

>{
Master Threads void runMaster(in long i, in long j,
in long s, in long |,
Slave Thread Manager in long sps, in long ms,
in ContainerPackage::Vector<T, C> vect
);

if fall }
9 C} interface Slavel<T: GetValueObject> {
,) L, struct LiveVariables {
] : T elementAt_result; long thread_nr;
Q & long getValue_result;
Masters Array of Seqs .

whileftrue) f

- 17y foradictor_Har);,
}c?e%s\:(ﬂ-ur:,w;’f.

Slave Threads

typedef sequence<LiveVariables> seq_LV;

void checkRecord(in seq_LV Iv)

Shaves Quene of Seqs raises(TLSPackage:: TLS_Dependence_Violation);
void performRollbacklteration(in seq_LV Iv);

sag = guauapoll();

ty
:M{'e.cks\:lﬂe\cafd{:e\q H

Fig. 6. “Inlining” - like Speculative Model. This figure presents the }/}
interaction between the Master/Slave Threads and the Slave Thread Manager

Fig. 7. GIDL specification support for the inlining speculative model
Master threads, registered to a master thread-manager, ex-
ecute out of order iterations of the distilled program. At the Figure 7 presents the GIDL specification, corresponding
end of every iteration, the live variables of the master threatts the client program displayed in Figure 3.A, that is needed
are packed into a record residing in a predefined location by our “inlining speculative model”. When a client discovers
an array of sequences of records indexed by the thrédd’s a suitable code region for speculation, it locally creates
(viewed as a bi-dimensional array — thtasters Array of Seqs and runs a slave checking-server (tyfavel<..> ).
in Figure 6). Master threads are not permitted to over-writthe Masterl<E, C> createMasterl(Slavel<E>
non-null records since this means that the record has not gitve) method creates a remote-object that upon invoking
been committed because at least one thread is lagging behthd.runMaster method will create the server-side two-level
When a sequence is filled up, it is inserted intostevequeue TLS architecture described above. TheheckRecord
(Slaves Queue of SesFigure 6) and a new, empty sequencenethod in theSlavel interface performs the speculation
is placed in the table. The terminating condition of the mastealidation. If a dependence violation exception is thrown the
threads is dictated by the client's code. client is requested to sequentially execute several iterations
The slave threads poll a sequence from the slave-qudperformRollbackliteration(...) ).
(if not empty, otherwise yield and try again). They request As noted in the beginning of this section the inlin-
the client (that now acts like a server) to verify the currerihg model almost always yields better speed-ups compared
sequence containing several live-variable records. A slate- the first approach. This is due to the fact that the
thread’'s exit condition is reached when all of the mastenumber of remote calls performed by the two models is
threads are dead and no data in the slave-queue requiré&\/asterCheckingSeqSize * NrO f RemoteCallsPerlt
verification. No explicit synchronization is required betweeim favor of the inlining speculative model. However, client
the master and slave threads except for guarded access toctide may reference many objects distributed across many
slave-queue. servers, among which some may not support code exchange
The client is responsible for verification. If any of thevia a common intermediate representation (IR). Moreover,
instructions that were not part of thpredictor program security issues may disallow the sharing of certain pieces of
(branch conditions excluded) are reached, orodd branch code or data. In this case, a combination of the two models




TABLE | TABLE I

1ST ARCHITECTURE(OVERLAPPING COMMUNICATION) 2ND ARCHITECTURE(“INLINING "- LIKE SPECULATION)
NR = CLIENT THREAD POOL SIZE G = “REMOTE’ METHOD GRANULARITY (INSTRUCTIONS)
G = “REMOTE’ METHOD GRANULARITY (INSTRUCTIONS) SS= SLAVE SEQUENCE SIZE
nMc SPEEDUP COMPARED TO SEQUENTIAL nMc SPEEDUP COMPARED TO SEQUENTIAL
n = NO. MACHINES, ¢ = CLIENT VERSION n = NO. MACHINES, ¢ = CLIENT VERSION
nMcR AS ABOVE, BUT WITH 1% ROLLBACK RATE. nMcR AS ABOVE, BUT WITH 1% ROLLBACK RATE.

Nr | G iM1 | IMIR 1M2 | IM2R 2M1 | 2M1R 2M2 | 2M2R G | SS| 1M1 | IMIR 1M2 | 1IM2K 2M1 | 2M1R 2M2 | 2M2K

4 10 | 1.35| 1.30 | 1.30 | 1.23 | 2.23 | 2.05 | 2.05 | 1.98 10 | 1 3.02 | 231 | 469 | 3.27 | 586 | 4.70 | 8.96 | 6.58
8 10 | 1.55| 151 | 1.56 | 1.52 | 3.01 | 2.72 | 3.24 | 2.71 103] 1 2.88 | 222 | 420 | 3.06 | 496 | 4.67 | 10.22| 9.21
16 | 10 | 1.65| 1.53 | 1.62 | 1.53 | 3.36 | 2.76 | 3.36 | 2.68 107 1 196 | 1.32 | 286 | 1.88 | 3.76 | 2.26 | 5.19 | 2.99
32|10 | 191 | 147 | 1.69 | 1.44 | 3.22 | 2.37 | 3.46 | 2.27 10 | 10 | 9.59 | 3.20 | 11.54] 3.65 | 15.57] 4.75 | 21.10] 6.18

4 103] 131 128 1.30 | 1.28 | 2.09 | 2.03 | 2.13 | 2.03 10°] 10 | 7.35 [ 1.77 | 9.33 | 2.54 | 14.05 2.52 | 14.83 2.86
8 105 151 | 1.45] 153 148 | 3.12 | 2.72 | 3.16 | 3.07 102 10 [ 2.97 | 071 | 413 ] 0.89 | 3.83 | 1.10 | 5.62 | 1.57
16 | 10°] 162 | 1.46 | 1.62 | 1.46 | 3.29 | 294 | 3.47 | 2.66
32 [ 103|173 148 1.70 | 1.35| 353 | 2.31 | 3563 | 2.17

4 [107] 125|123 [ 132 126 | 2.25 | 2.03 | 2.04 | 1.86 . —
8 1071 136 127 | 150 | 138 | 2711 235 | 278 | 239 | rollback probability. In examination of the cost of a rollback,

16 | 107 | 1.41 | 124 | 155 | 1.32 | 2.83 | 2.35 | 3.17 | 241 | we notice that the performance difference with respect to the
32[107[144[125[163]124]273[201[341[205] jdeal case decreases with the size of the thread pool. This
is due to the greater number of inter-thread dependencies
. ) . ) resulting in redundant work and increased synchronization
is the preferred solution (if the code possesses high-leyglerhead. The observed number of threads that provided the
parallelism). Themasteris selected by identifying the remotepegt speed-up was eithgror 16.
object that is invoked most frequently. Predictive programs o, second model clearly yields substantial performance
corresponding to the functionality of the servers that suppQJgnefits compared to the the first model as demonstrated in
a common communication IR and allow code migration wikkgpje |1. There are two main reasons for this. First, we have
be also inliped i_nto the master. If the code exposes parallelisgiminated CORBA's inherent remote-call dispatch costs by
the execution time may be further decreased by concurrentlyjining” the client code into the server. All remote calls in
executing speculative iterations of the master thread. We GR@ initial code are now handled locally. Second, the network
see that one application may create a hierarchy of inlined spggarhead is reduced by batched communication of the live
ulations and overlapping speculative iterations (first model)yariables. The server is configured to usge concurrent slave
threads in order to “pipeline” the remote-client checking phase.
IV. RESULTS In an ideal (rollback-free) execution scenario, the applica-
Automatic library translation across language boundariéien of this model obtains impressive speed-ups. On a single
is an area yet to be explored. Unfortunately, it is lackinghachine, execution time wa8.6 and 11.5 times faster,
in formal benchmarks that can accurately measure the pand 15.6 and21.1 times faster over a distributed network
formance effects associated with porting a non distributedth a method granularity, and slave sequence sizel®f
application into a distributed environment. We implemente@lave sequence size represents the number of records sent
a GIDL-server which exhibits functionality similar to thatin a batch for the client to check for correctness). However,
found in the STL of G+ (for example, containers, iteratorsfor a 1% rollback probability, the corresponding speed-up
etc). Our tests are based on variations of the two exampliacreases dramaticall.@0 — 6.18 ). This is because, in
used throughout this paper. The “remote” method granulariopr implementation, the rollbacks are handled by asking the
was varied from10 to 10000 instructions (notice that eachclient to sequentially execute the iterations associated with
iteration performs between 3 and 5 remote calls). Our teste sequence of records that have generated the violation
were carried out on two configurations. One configuration rd0 in our case). We are currently working on enhancing
on a single machine which acted as both client, and sengir architecture to better handle the rollback situation by
(2.4GHz P4/512 Mb). Another configuration employed twsequentially executing only the “guilty” iteration. However, the
machines on the same local network (both 800MHz P3/256MblIback handling will remain expensive (see results in Table Il
RAM). All the machines we have used are running Linux. for sequence-sizé&) and influence our predicted program to
We applied our TLS framework to distributed programmingge more “correct” than “distilled”.
in the anticipation that speed-ups could be obtained by over-Table | and Table Il show that for both our models, the
lapping network stalls with speculative computation, therelspeed-up decreases when the method-granularity increases.
minimizing idle times. Table | shows the speed-ups obtainétbwever, in this case, taking advantage of the machine’s (po-
by employing our first distributed TLS model compared ttential) parallelism becomes very important. The final version
sequential program execution. In a rollback-free (“ideal”) exsf this paper will include tests executed on a parallel server.
ecution, employing a higher number of client threads generatedlo summerize this section, the performance gain for our first
a better speed-uB2 client threads achieve’91, 1.69, model (with respect to the sequential client program execution
3.22, 3.46 times speed-up). Our framework is rollbacktime) depends on the size of the thread pool, on the remote
tolerant in the sense that it gracefully accommodates a Ifiethod granularity, and on the rollback ratio. The best speed-




ups, for a rollback-free execution, are obtained v@thclient  [4]
threads and range frot44% to 191% when the client and 5]
server share the same machine, and f&88% to 341% for

the distributed case, when the method granularity varies from
10000, to 10 respectively. For d@%rollback rate, the best [€]

speed-ups are obtained using a number of threads betwqqp

8 and 16. They range from127% to 153% for the single
machine case and fror235% to 276% when the client and
server are across a local network, for a method granularity of
10000 and10 respectively. [8]
The second model mimics “procedure inlining” and is very
effective in eliminating the distributed system overhead. For g
rollback-free execution we obtained speed-ups betv951%6
and 1154% for a single machine space, and betwe&83%
and2110%for the distributed case, for a method granularity gf
10000 and10 respectively. We also notice thatl&orollback
rate will substantially decrease these speed-ups, therefore we
prefer a more “correct” rather than a more “distilled” predictor, ;

V. CONCLUSION

This paper has examined the potential for thread level
speculation in a new area: the environment of distributétf!
software components. We have found that substantial speed-
ups may be achieved from this level of parallelism.

We propose two TLS models employed in a distributeld®!
setting that substantially reduce the network and call dis-
patch overhead. Additional speed-up is achieved when the
underlying hardware is a multiprocessor. This becomes more
noticeable as the remote method granularity increases.

The first model performs concurrent speculative iterations
on the client, overlapping with communications. The second
model mimics procedure inlining to eliminate distributed sys-
tem overhead.

The performance gain depends on many factors. For the
first model speed-up ranges fromdx to 1.9x on a single
machine, and about.5x when distributed. For the second
model speed-up ranges roughly betwelen and 11.5x on
one machine, and betwe8mB x and22.1x when distributed.
Allowing a 1%rollback rate gives a somewhat smaller speed
up for the first model, and substantially decreases speed-up
for the second model.

For the final version of this paper, we plan to enhance our
“inlining” like speculative architecture to better handle the
rollback situations, and to investigate how a multi-processor
server may influence the speed-ups as the method granular-
ity increases. The creation of speculatively aware container
classes proved to be a highly beneficial idea and warants futher
investigation to determine other commonly used libraries
where thread-level speculation can be exploited.
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