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Abstract

We examine what is necessary to allow generic libraries to be used naturally in
a multi-language, potentially distributed environment. Our approach is to treat a
library as a software component and to view the problem as one of component ex-
tension. Language-neutral library interfaces usually do not support the full range
of programming idioms that are available when a library is used natively. We in-
vestigate how to structure the language bindings of the neutral interface to achieve
a better expressibility and code re-use. We use generalized algebraic data types to
express and reason about the component interfaces. We furthermore address how
language-neutral interfaces can be extended with import bindings to recover the
desired programming idioms. We also address the question of how these extensions
can be organized to minimize the performance overhead that arises from using ob-
jects in manners not anticipated by the original library designers. We use C++ as
an example of a mature language, with libraries using a variety of patterns, and
use the Standard Template Library as an example of a complex library for which
efficiency is important. By viewing the library extension problem as one of compo-
nent organization, we enhance software composibility, hierarchy maintenance and
architecture independence.
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1 Introduction

Library extension is an important problem in software design. In its simplest
form, the designer of a class library must consider how to organize its class
hierarchy so that there are base classes that library clients may usefully spe-
cialize. More interesting questions arise when the designers of a library wish to
provide support for extension along multiple, independent dimensions of the
library’s behavior. In this situation, there are questions of how the extended
library’s hierarchy relates to the original library’s hierarchy, how objects from
independent extensions may be used and how the extensions interact.

This paper examines the question of library extension in a heterogeneous en-
vironment. We consider the situation where software libraries are made avail-
able as components in a multi-language, potentially distributed environment.
In this setting, the programmer finds it difficult and rather un-safe to com-
pose libraries based on low level language-interoperability solutions. Therefore,
components are usually constructed and accessed through some framework
such as corba [14], dcom [6] or the .net framework [5]. In each case, the
framework provides a language-neutral interface to a constructed component.
These interfaces are typically simplified versions of the implementation lan-
guage interface to the same modules because of restrictions imposed by the
component framework. Restrictions are inevitable: Each framework supports
some set of common features provided by the target languages at the time
the framework was defined. However, programming languages and our un-
derstanding of software architecture evolves over time, so mature component
frameworks will lack support for newer language features and programming
styles that have become common-place in the interim. If a library’s interface
is significantly diminished by exporting it through some component architec-
ture, then it may not be used in all of the usual ways that those experienced
with the library would expect. Programmers will have to learn a new interface
and, in effect, learn to program with a new library.

We have described previously the Generic Interface Definition Language frame-
work, gidl [8], a corba idl extension with support for parametric polymor-
phism and (operator) overloading, which allows interoperability of generic
libraries in a multi-language environment. gidl is designed to be a generic
component architecture extension. Here “generic” has two meanings: First
gidl encapsulates a common model for parametric polymorphism that ac-
commodates a wide spectrum of requirements for specific semantics and bind-
ing times of the supported languages: C++, Java, and Aldor [16]. Second, the
gidl framework can be easily adapted to work on top of various idl-based
component-systems in use today such as corba, dcom, jni [15].
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This paper explores the question of how to structure the gidl C++ language
bindings to achieve two high-level goals: The first goal is to design the ex-
tension framework as a component that can easily be plugged-in on top of
different underlying architectures, and together with other extensions. The
second goal is to enable the gidl software components to reproduce as much
of their original native language interfaces as possible, and to do so without
introducing significant overhead. This allows programmers familiar with the
library to use it as designed. In these contexts, we identify the language mech-
anisms and programming techniques that foster a better code structure in
terms of interface clarity, type safety, ease of use, and performance.

While our earlier work [8] presented the high-level ideas employed in imple-
menting the gidl extension mechanism, this paper takes a different perspec-
tive, in some way similar to that of Odersky and Zenger [11]. They argue that
one reason for inadequate advancement in the area of component systems is
the fact that mainstream languages lack the ability to abstract over the re-
quired services. They identify three language abstractions, namely “abstract
type members, selftype annotations, and modular mixin composition” that en-
able the design of first-class value components (components that use neither
static data nor hard references to the required modules).

We look at the gidl extension as a component that can be employed on
top of other underlying architectures and which can be, at its turn, further
extended. Consequently, we identify the following as desirable properties of
the extension:

• The extension interface should be type-precise and it should allow type-
safety reasoning with respect to the extension itself. The type-safety result
for the whole framework would thus be derived from the ones of the exten-
sions and of the underlying architecture.

• The extension should be split into first-class value components. In the gidl
case for example, one component should encapsulate the underlying archi-
tecture specifics and be statically generated. The other one should gener-
ically implement the extension mechanism. This would allow gidl to be
plugged in with various backend-architectures without modifying the com-
piler.

• The extension should preserve the look and feel of the underlying architec-
ture, or at least not complicate its use.

• The extension overhead should be within reasonable limits, and there should
be good indication that compiler techniques may be developed to eliminate
it.

In the context of gidl’s C++ bindings, we identify the language concepts and
programming strategies that enable a better code structure in the sense de-
scribed above. We particularly recognize the generalized algebraic data types
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paradigm [17] to be essential in enforcing a clear and concise meta-interface of
the extension. In agreement with [11], we also find that the use of (C++ sim-
ulated) abstract type members, and traits allows the extension to be split into
first-class value components. This derives the obvious software maintenance
benefits.

The second part of this paper reports on an experiment where we have used
gidl to export part of the C++ Standard Template Library (stl) functionality
to a multi-language, potentially distributed use. We had two main objectives:

The first objective was to determine to what degree the interface translation
could preserve the coding style “look and feel” of the original library. Ideally,
the stl and its gidl-exported programs should differ only in the types used.
This allows the stl programmers to easily “learn” to use the gidl interface
to write for example distributed applications. More importantly, this opens
the door to a richer composition between gidl and stl objects, as enabled
by the stl orthogonal design of its domains. For example gidl iterators are
themselves valid stl iterators and thus they can be manipulated by the stl
containers and algorithms. In this context we investigate the issues that pre-
vent the translation to conform with the library semantics, the techniques to
amend them, and the trade-offs between translation ease-of-use and perfor-
mance.

The second objective was to determine whether the interface translation could
avoid introducing excessive overhead. We show how this can be achieved
through the use of various helper classes that allow the usual stl idioms
to be used, while avoiding unnecessary copying of aggregate objects.

The rest of the paper is organized as follows. Section 2 briefly recalls the gadt
programming technique, and gives a high-level review of the gidl framework.
Section 3 presents the rationale for employing gadt-based techniques to ex-
tend existing frameworks, and outlines the issues to be addressed when trans-
lating the stl library to a heterogeneous environment. Section 4 describes
the design of the gidl bindings for the C++ language. Section 5 describes the
“black-box” type translation of the stl library to a multi-language, distributed
environment via gidl and discusses certain usability/efficiency trade-offs. Fi-
nally Section 6 presents some concluding remarks.

2 Background

The first subsection of this chapter introduces at a high-level the generalized
algebraic data types [17,4] (gadt) concept and illustrates its use through a cou-
ple of examples. The second subsection briefly recounts the architectural de-
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data Exp t where
Lit :: Int -> Exp Int
Plus :: Exp Int -> Exp Int -> Exp Int
Equals :: Exp Int -> Exp Int -> Exp Bool
Fst :: Exp(a,b) -> Exp a

eval :: Exp t -> t
eval e = case e of

Lit i -> i
Plus e1 e2 -> eval e1 + eval e2
Equals e1 e2 -> eval e1 == eval e2
Fst e -> fst (eval e)

Fig. 1. gadt-Haskell interpreter example.

sign of the gidl framework and the semantics of the parametric polymorphism
model it introduces. A detailed account of this work is given elsewhere [8].

2.1 Generalized Algebraic Data Types

Functional languages such as Haskell and ML support generic programming
through user-defined (type) parameterized algebraic datatypes (padts). A
datatype declaration defines both a named type and a way of constructing
values of that type. For example a binary tree datatype, parameterized under
the types of the keys and values it stores, can be defined as below.

data BinTree k d = Leaf k d |
Node k d (BinTree k d) (BinTree k d)

Both value constructors have the generic result type BinTree k d, and any
value of type BinTree k d is either a leaf or a node, but it cannot be statically
known which. BinTree is an example of a regular datatype since all its recur-
sive uses in its definition are uniformly parameterized under the parametric
types k and d.

Generalized algebraic data types (gadts) enhance the functional program-
ming language padts by allowing constructors whose results are instantiations
of the datatype with other types than the formal type parameters. Figure 1
presents part of the definition of the types needed to implement a simple lan-
guage interpreter. Note that all the type-constructors (Lit, Plus, Equals, and
Fst) refine the type parameter of Exp, and use the Exp datatype at different
instantiations in the parameters of each constructor. Also, Fst uses the type
variable B that does not appear in its result type. These are recognized as
attributes of the gadt concept.
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public class Pair<A,B> { /* ... */ }
public abstract class Exp<T> {
public abstract T eval();

}

public class Plus : Exp<int> {
Exp<int> e1, e2;
public Plus(Exp<int> a, Exp<int> b) {
e1 = a; e2 = b;

}
public override int Eval() {
return e1.Eval() + e2.Eval();

}
}

public class Lit : Exp<int> {
public Lit(int val) { /* ... */ } // ...

}
public class Equals : Exp<bool> {
public Equals(Exp<int> e1, Exp<int> e2) { /* ... */ } //...

}
public class Fst<A,B> : Exp<A> {
public Fst(Exp<Pair<A,B>> e) { /* ... */ } //...

}

Fig. 2. gadt-C# interpreter example.

Its usefulness is illustrated by the fact that one can now write a well-typed eval-
uator function (eval). Even if the types of the branches in the case expression
differ, they can be related to the declared type of the result by type-checking
the branches under equational assumptions. For example, from the definition
of the Plus constructor, both e1 and e2 have type Exp int, while the type of
Plus e1 e2 is Exp int. From the unification hypothesis, eval e1 and eval

e2 have type int, thus the result-type of eval(Plus e1 e2) is int. There-
fore on the Plus branch, the eval type is Exp int -> int (t is int) and the
type-checking succeeds. The example is inspired from [4] and is written in an
extension of Haskell with gadts.

Kennedy and Russo [4] show, among other things, that mainstream object
oriented programming languages such as Java and C# can express a large
class of gadt programs through the use of generics, subclassing and virtual
dispatch. A C# implementation of the interpreter using gadts is sketched
in Figure 2. The base idea is to represent the Haskell Exp T data-type as
an abstract C# class, and the Haskell value constructors as subclasses that
provide the implementation for the eval method. The gain of using gadt is
type-safety. With an implementation where Exp is not type parameterized and

6



the result-type of the eval method is Object, the evaluation may fail due to
type-errors (addition of a boolean with an integer value for example).

2.2 The GIDL Framework

The Generic Interface Definition Language framework [8] (gidl for short) is
designed to be a generic component architecture extension that provides sup-
port for parameterized components and that can be easily adapted to work on
top of various software component architectures in use today: corba, dcom,
jni. (The current implementation is on top of corba). We summarize the
gidl model for parametric polymorphism in Section 2.2, and briefly describe
the gidl architecture in Section 2.2. An in depth presentation of these topics
can be found in [8].

The GIDL language

gidl extends corba–idl [12] language with support for F-bounded paramet-
ric polymorphism, where type parameters can be qualified based on name or
structural subtyping. Figure 3 shows abstract data type (adt)-like gidl in-
terfaces for a binary tree that is type-parameterized under the types of data
and keys stored in the nodes. The type-parameter K in the definition of the
BinTree interface is qualified to export the whole functionality of its qualifier
Comparable<K>; that is, the comparison operations > and ==. gidl also sup-
ports a stronger qualification denoted by : that enforces a subtyping relation
between the instantiation of the type parameter and the qualifier. Figure 3
also presents the C++-gidl client code that builds a simple binary tree whose
root contains the data/key 7 and its two leafs contain the data/key 6 and
8. The tree.find(i8) call serches the tree for the node or leaf with the key
equal to 8 and return the data associated with it, in our case 8. Note that the
code is very natural for the most part; the only place where corba specifics
appear is in the creation of the factory object (fact).

The GIDL Extension Architecture

Figure 4 illustrates at a high level the design of the gidl framework. The
implementation employs a generic type erasure mechanism, based on the sub-
typing polymorphism supported by idl. A gidl specification compiled with
the gidl compiler generates an idl file where all the generic types have been
erased, together with gidl wrapper stub and skeleton bindings, which recover
the lost generic type information. Currently gidl provides language bindings
for C++, Java, and Aldor. Compiling the idl file creates the underlying ar-
chitecture (ua) stub and skeleton bindings. Every gidl-stub (client) wrapper
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/*********************** GIDL interface ***********************/

interface Comparable< K > {
boolean operator">" (in K k);
boolean operator"=="(in K k);

};
interface Integer : Comparable<Integer> { long getValue(); };

interface BinTree< K:-Comparable<K>, D > {
D getData();
K getKey();
D find(in K k);

};

interface Leaf< K:-Comparable<K>, D > : BinTree<K,D> {
void init(in K k, in D d);

};
interface Node< K:-Comparable<K>, D > : BinTree<K,D> {
BinTree<K,D> getLeftTree();
BinTree<K,D> getRightTree();

};

interface TreeFactory<K:-Comparable<K>, D> {
Integer mkInt(in long val);
BinTree<K,D> mkLeaf(in K k, in D d);
BinTree<K,D> mkNode( in K k, in D d,

in BinTree<K,D> right,
in BinTree<K,D> left

);
};

/*********************** C++ client code **********************/

TreeFactory<Integer, Integer> fact(...); // get a factory object

Integer i6=fact.mkInt(6),
i7=fact.mkInt(7),
i8=fact.mkInt(8);

BinTree<Integer, Integer> b6=fact.mkLeaf(i6,i6),
b8=fact.mkLeaf(i8,i8),
tree=fact.mkNode(i7,i7,b6,b8);

int res = tree.find(i8).getValue(); //8

Fig. 3. GIDL specification and C++ client code for a binary tree
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object references a ua-stub object. Every gidl-skeleton (server) wrapper in-
herits from the corresponding ua-skeleton type. This technique is somewhat
related with the “reified type” pattern of Ralph Johnson [3], where objects
are used to carry type information.

The solid arrows in Figure 4 depict method invocation. When a method of a
gidl stub wrapper object is called, the implementation retrieves the param-
eters’ ua-objects, invokes the ua method on these, and perform the reverse
operation on the result. The wrapper skeleton functionality is the inverse of the
client. The wrapper skeleton method creates gidl stub wrapper objects encap-
sulating the ua objects, thus recovering the generic type erased information.
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It then invokes the user-implemented server method with these parameters,
retrieves the ua idl-object or value of the result and passes it to the idl
skeleton.

The extension introduces an extra level of indirection with respect to the
method invocation mechanism of the underlying framework. This is the price
to pay for the generality of the approach: this generic extension will work
on top of any ua vendor implementation while maintaining backward com-
patibility. However, since the gidl wrappers are mainly storing generic type
information, one can anticipate that the introduced overhead can be elimi-
nated by applying aggressive compiler optimizations.

3 Problems Statement and High-Level Solutions

This section states and motivates the main issues addressed by this paper, and
presents at the high-level the methods employed to solve them: Section 3.1
summarizes the rationale and the techniques we have used to structure the
gidl language bindings. Section 3.2 outlines the main difficulties a heteroge-
neous translation of the stl library has to overcome, and points to a solution
that preserves the library semantics and programming patterns.

3.1 Software Extensions via GADTs

Among the gadt applications, the literature enumerates: strongly typed eval-
uators, generic pretty printing, generic traversal and queries and typed LR
parsing. This paper exhibits another important application of the gadt con-
cept: in the context of software architecture extensions. This section describes
things at a high-level, while Section 4 presents in detail the C++ binding.

Section 2.2 introduced gidl as a generic extension framework that enhances
corba with support for parametric polymorphism. The gidl wrapper objects
can be seen as an aggregation of a reference to the corresponding corba
object, the generic type information associated with them and the two-way
casting functionality they define (corba-gidl types). It follows that a gidl
wrapper is composed of two main components: the functionality described in
the gidl interface, and the casting functionality needed by the system for the
two way communication with the underlying framework (corba).

In this way, we deal with two parallel type hierarchies: the original one (corba)
and the one of the extension (gidl). Figure 5 shows that each type of the ex-
tension encapsulates the functionality to transform back and forth between
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class Foo_CORBA { /* ... */ }
class Foo_GIDL {

Foo_CORBA obj; /* ... */
Foo_CORBA getOrigObj () { return obj; }
void setOrigObj (Foo_CORBA o) { ... }
static Foo_CORBA _narrow (Foo_GIDL o) { ... }
static Foo_GIDL _lift (Foo_CORBA o) { ... }
static Foo_GIDL _lift (CORBA_Any a) { ... }
static CORBA_Any _any_narrow(Foo_GIDL a) { ... }

}

Fig. 5. Pseudocode for the casting functionality of the Foo GIDL gidl wrapper.
Foo CORBA is its corresponding corba class. CORBA Any-type objects can store any
corba-type values.

class Base_GIDL<T_GIDL, T_CORBA> {
T_CORBA getOrigObj () { return obj; }
void setOrigObj (T_CORBA o) { ... }
static T_CORBA _narrow (T_GIDL o) { ... }
static T_GIDL _lift (T_CORBA o) { ... }
static T_GIDL _lift (CORBA_Any a){ ... }
static CORBA_Any _any_narrow(T_GIDL a) { ... } /* ... */

}
class Foo_GIDL : Base_GIDL<Foo_GIDL, Foo_CORBA> ...

Fig. 6. gadt pseudocode for the casting functionality of the Foo GIDL gidl wrap-
per.

values of its type and values of its corresponding corba type, and also be-
tween values of its type and values of the corba type Any. Values of type Any
can store any other corba type values, so gidl uses type Any as the erasure
of the non-qualified type-parameter.

This functionality can be expressed in an elegant way via gadts, by writing
a parameterized base class that contains the implementation for the casting
functionality together with a precise interface, and by instantiating this base
class with corresponding pairs of gidl-corba types. Figure 6 demonstrates
this approach. We see three main advantages for integrating the gidl casting
functionality via gadts:

• This functionality is written now as a system component and not mangled
inside the gidl wrapper. It can be integrated either by inheritance (see the
C++ mapping), or by aggregation (see the Java mapping).

• In addition it constitutes a clear meta-interface that characterizes all the
pairs of types from the two parallel hierarchies, and makes it easier to reason
about the type-safety of the gidl extension.

• Finally, this approach is valuable from a code maintenance / post facto ex-
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1. Vector< Long, RAI<Long>, RAI<Long> > vect = ...;
2. RAI<Long> it_beg=vect.begin(), it_end=vect.end(), it=it_beg;
3. while(it!=it_end)
4. *it++ = (vect.size() - i);
5. sort(it_beg, it_end); cout<<*it_beg<<endl;

Fig. 7. C++ client code using a gidl translation of stl. RAI and Vector are the
gidl types that model the stl random access iterator and vector types; sort is the
native stl function.

tension point of view. The casting functionality code is dependent on the
underlying framework (corba, jni, dcom). Implementing it as a meta-
program (see the C++ mappings), besides the obvious software maintenance
advantages of being static and written only once (thus short), allows the
gidl compiler to generate generic code that is independent on the under-
lying architecture. Porting the framework on top of a new architecture will
require rewriting this static code, reducing the modifications to be done at
the compiler’s code generator level.

The problem with this approach is that if the Foo GIDL interface is a subtype
of say Foo0 GIDL then it inherits the casting functionality of Foo0 GIDL – an
undesired side-effect. The C++ binding addresses this problem by making the
gidl wrapper inherit from two components: one which respects the original
inheritance hierarchy and which contains the functionality described in the
gidl specification, and one implementing the system functionality
(i.e. Base GIDL<Foo GIDL, Foo CORBA>).
This method breaks the subtyping hierarchy between the gidl wrappers, and
instead mimics subtyping by means of automatic conversion. This solution
will be discussed in detail in Section 4. Since Java does not support automatic
conversions, the Java mapping defines the casting component as an inner class
of the gidl wrapper, and uses a mechanism that resembles virtual types in
order to retrieve and invoke the proper caster. The gidl Java bindings are
not however the subject of this paper.

3.2 Preserving the STL Semantics and Code Idioms

Figure 7 gives an example of gidl client code that retrieves a vector’s iterator
(it beg), updates it, sorts it and displays its first element. To allow such code,
the translation needs to conform with both the native library semantics and
its coding idioms.

First, to preserve the stl semantics, certain type properties must be enforced
statically. For example, the parameters of the sort function need to belong
to an iterator type that allows random access to its elements. As discussed in
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Section 5.1 these properties are expressed at the gidl interface level by means
of parametric polymorphism and operator overloading.

Second, for the (distributed/gidl) program to yield the expected result, it
and it beg have to reference different gidl implementation instances that
initially reference the same stl iterator as their internal representation. As
the while-loop is executed, only the stl iterator corresponding to the it

implementation-object should be incremented (++). Otherwise, after the exe-
cution of the while-loop (lines 3− 4), it beg will also point to its end. More-
over, the instruction *it++ = i is supposed to update the value of the it-
erator’s current element. Neither of these requirements is achieved with the
gidl semantics of the C++ mapping. As detailed in Section 5.3, we can obtain
the expected behavior with an extension mechanism applied to the gidl stubs
that overrides the default behavior in favor of one that satisfies the stl coding
style.

4 Building a Natural C++ Interface from GIDL

This section presents the rationale behind the gidl C++ bindings. We start by
presenting the gadt approach used to implement the casting functionality of
the gidl wrapper objects. We then show how the gidl inheritance hierarchies
are implemented and comment on the language features that we found most
useful in this context. Finally, we demonstrate the ease of use of the gidl
extension and reason about the soundness of the translation mechanism.

4.1 The Generic Base Class

Figure 8 presents a simplified version of the base class for the wrapper object
whose gidl type is String, WString or some interface. The type parameter
T denotes the current gidl class, A is its corresponding corba class, while
A v denotes the corba smart pointer helper type that assists with memory
management and parameter passing. The BaseObject class inherits from the
ErasedBase class that stores the type-erased representation under the form of
a void pointer, and from the GIDL Type, the supertype of all gidl types. The
fillObjFromAny and fillAnyFromObj functions abstract the corba func-
tionality of creating an object from a corba Any-type value, and vice-versa.
They are re-written for the String/WString types as the corba specific calls
differ. The implementation provides overloaded constructors, assignment op-
erators and accessor functions that work over various corba and gidl types,
allowing the user to manipulate in an easy and transparent way gidl wrapper
objects.
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1 class ErasedBase { protected: void* obj; };
2 template<class T,class A,class A_v> class BaseObject :
3 public ErasedBase, public GIDL_Type<T> {
4 protected:
5 static void fillObjFromAny(CORBA::Any& a, A*& v) {
6 CORBA::Object_ptr co = new CORBA::Object();
7 a>>=co; A* w = A::_narrow(co); v = w;
8 }
9 static void fillAnyFromObj(CORBA::Any& a, A* v) { a<<=v; }
10 public:
11 typedef A GIDL_A; typedef A_v GIDL_A_v; typedef Self T;
12
13 BaseObject(A* ob) { this->obj = ob; }
14 BaseObject(const A_v& a_v) {this->obj=a_v._retn();}
15 BaseObject(const T& ob) { this->obj = ob.obj; } //
16 BaseObject(const GIDL::Any_GIDL& ob)
17 {T::fillObjFromAny(*ob.getOrigObj(),getOrigObj());}
18 template<class GG> BaseObject(
19 const BaseObject<GG,GG::GIDL_A,GG::GIDL_A_v>& o
20 ) { this->obj = (A*)o.getOrigObj(); }
21 /*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/
22
23 operator A*() const { return (A*)obj; }
24 template < class GG > operator GG() const{
25 GG g; // test GG superclass of the current class!
26 if(0) { A* ob; ob = g.getOrigObj(); }
27 void*& ref = (void*&)g.getOrigObj();
28 ref = GG::_narrow(this->getOrigObj()); return g;
29 }
30 A*& getOrigObj() const { return (A*) obj; }
31 void setOrigObj(A* o) { obj = o; }
32
33 static A*& _narrow(const T& ob){return ob.getOrigObj();}
34 static CORBA::Any* _any_narrow(const T& ob) { /* ... */ }
35 static T _lift(CORBA::Any& a, T& ob)
36 { T::fillObjFromAny(a,ob.getOrigObj()); return ob; }
37 static T _lift(CORBA::Object* o) { return T(A::_narrow(o));}
38 static T _lift(const A* ob) { return T(ob); }
39 /*** SIMILAR: _lift(A_v) AND _lift(CORBA::Any& v) ***/
40 };

Fig. 8. The base class for the gidl wrapper objects whose types are gidl interfaces.
(We have omitted the inline keyword)

The generic constructor (lines 18-20) receives as a parameter a gidl object
whose type is in fact GG. The use of BaseObject<GG, GG::GIDL A,GG::GIDL A v>,
together with the cast to A* in line 20, statically checks that the instantiation
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template<class K, class D> BinTree {
protected: ::BinTree* obj;
public: // system functionality

void setOrigObj(::BinTree* o) { obj = o; }
// GIDL specification functionality /* ... */

};
template<class K, class D> Node : public virtual BinTree<K, D> {

protected: ::Node* obj;
public: // system functionality

void setOrigObj(::Node* o) { obj = o; }
// GIDL specification functionality

BinTree<K,D> getLeftTree() { /* ... */ }
};

Fig. 9. Naive translation for the C++ mapping

of the type GG is a gidl interface type that is a subtype of the instantiation
of T (with respect to the original gidl specification). This irregular use of the
BaseObject type constructor is one of the gadt characteristics. Note also
the use of the type members GG::GIDL A and GG::GIDL A v. The mapping
also defines a type-unsafe cast operator (lines 24-29) that allows the user to
transform an object to one of a more specialized type. The implementation,
however, statically ensures that the result’s type is a subtype of the current
type.

4.2 Handling Multiple Inheritance

We now present the rationale behind the C++ mapping of the gidl inheritance
hierarchies. There are two main requirements that guided our design:

• As far as the representation is concerned, each gidl wrapper stores precisely
one (corresponding) corba-type object: its erasure. This is a performance
concern. It is important to keep the object layout of the gidl stub wrapper
small.

• In terms of functionality, the gidl wrapper features only the casting func-
tionality associated with its type; in other words the system functionality
is not subject to inheritance. This is a type-soundness, as well as a perfor-
mance concern.

Throughout this section we refer to the gidl specification in Figure 3. We
first examine the shortcomings of a näıve translation that would preserve the
inheritance hierarchy among the generated gidl wrappers. Figure 9 shows
such an attempt. If each gidl wrapper stores its own representation as an
object of its corresponding corba-type, the wrapper object layout will grow
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template<class K,class D> class Leaf_P : public BinTree_P<K,D>{
protected:
virtual void* getErasedObj() = 0;
::Leaf* getObject_Leaf(){ return (::Leaf*)getErasedObj(); }

public:
void init(const K& a1, const D& a2) {
CORBA::Object_ptr& a1_tmp = K::_narrow(a1);
CORBA::Any& a2_tmp = *D::_any_narrow(a2);
getObject_Leaf()->init(a1_tmp, a2_tmp);

}
};
template<class K,class D> class Leaf :

public virtual Leaf_P< K, D >,
public BaseObject<Leaf<K,D>,::Leaf,::Leaf_var>

{
protected:
typedef Leaf<K,D> T;
typedef BaseObject<T,GIDL_A,GIDL_A_v> BT;
void* getErasedObj() { return obj; }

public:
Leaf() : BT() { }
Leaf(const GIDL_A_v a) : BT(a) { }
Leaf(const GIDL_A* a) : BT(a) { }
Leaf(const T & a) : BT(a) { }
Leaf(const Any_GIDL & a) : BT(a) { }
template <class GG> Leaf(
const BaseObject<GG, GG::GIDL_A, GG::GIDL_A_v>& a

) : BT(a) { }
/*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/

};

Fig. 10. Part of the C++ generated wrapper for the gidl::Leaf interface. ::Leaf
and ::Leaf var are corba-types

exponentially. An alternative would be to store the representation under the
form of a void pointer in a base class and to use virtual inheritance (see
the BaseObject class in Figure 8). However, then the system is not type-
safe, since the user may call, for example, the setOrigObj function of the
BinTree class to set the obj field of a Node gidl wrapper. Now calling the
Node::getLeftTree method on the wrapper will result in a run-time error.
This happens because the Node wrapper inherits the casting functionality of
the BinTree wrapper.

Figure 10 shows our solution. The abstract class Leaf P models the inheri-
tance hierarchy in the gidl specification: it inherits from BinTree P and it
provides the implementation for the methods defined in the Leaf gidl inter-
face (n.n. init). Our mechanism resembles Scala [9] traits [10]. Leaf P does
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not encapsulate state and does not provide constructors, but inherits from
the BinTree P “trait”. It provides the services promised by the corresponding
gidl interface, and requires an accessor for the corba object encapsulated in
the wrapper (the getErasedObj function).

Finally, the Leaf wrapper class aggregates the casting functionality and the
services promised by the gidl specification by inheriting from Leaf P and
BaseObject respectively. It rewrites the functionality that is not subject to
inheritance: the constructors and the assignment operators by calling the cor-
responding operations in BaseObject. Note that there is no subtyping relation
between the wrappers even if the gidl specification requires it. However, the
templated constructor ensures a type-safe, user-transparent cast between say
Leaf<A,B> and BinTree<A,B>.

4.3 Structuring C++ language bindings summary

To summarize, the C++ binding uses gadts and a technique that resembles
family polymorphism [18] to enforce a precise meta-interface of the extension.
The latter we simulate in C++ by using templates in conjunction with typedef

definitions. Further more, the functionality described in the gidl interface is
implemented via traits. We represent traits in C++ as abstract classes and the
required services as abstract virtual methods. The latter are provided by the
gidl wrapper that uses “mixins” to combine the two-way gidl-corba casting
with the functionality published in the specification. Our extension experiment
constitutes another empirical argument to strengthen Odersky and Zenger’s
claim that abstract type members, and modular mixin composition are vital in
achieving first-class value components. We would add Kennedy and Russo’s
application of the gadt technique in object oriented programming to that
list.

4.4 Ease of Use

One additional feature of the gidl framework, in our view, is that it is much
simpler to use than its underlying corba architecture. At a high-level, this
is accomplished by making the gidl wrappers to encapsulate a variety of
constructors, cast and assignment operators.

Figures 11A and B illustrate the corba/gidl code that inserts gidl/corba
Octet and String objects into Any objects, then performs the reverse opera-
tion and prints the results. Note that the use of corba specific functions, such
as CORBA::Any::from string, is hidden inside the gidl wrappers; the gidl
code is uniform with respect to all the types, and mainly uses constructors and
assignment operators. All gidl wrappers provide a casting operator to their
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// A. CORBA code
using namespace CORBA;
Octet oc = 1; Char* str = string_dup("hello"); Any a_oc, a_str;
a_str <<= CORBA::Any::from_string(str, 0);
a_oc <<= CORBA::Any::from_octet (oc);
a_oc >>= CORBA::Any::to_octet (oc);
a_str >>= CORBA::Any::to_string (str, 0);
cout<<"Octet (1): "<<oc<<" string(hello): "<<str<<endl;

// B. GIDL code:
using namespace GIDL;
Octet_GIDL oc(1); String_GIDL str("hello"); Any_GIDL a_oc, a_str;
a_oc = sh;
a_str = str;
oc = a_oc;
str = a_str;
cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// C. The implementation of the Any_GIDL::operator=
template<class T> void Any_GIDL::operator=(GIDL_Type<T>& b){
T& a = dynamic_cast<T&>(b);
if(!this->obj) this->obj = new CORBA::Any();
T::_lift(this->obj, a);

}

// D. GIDL Arrays
interface Foo<T> { //GIDL specification

typedef T Array_T[100];
T sum_and_revert(inout Array_T arr);

};

// E. C++ code using the GIDL specification above
Foo<Long_GIDL> foo = ...;
Foo<Long_GIDL>::Array_T arr;

for(int i=0; i<100; i++) {
Long_GIDL elem(i);
arr[i] = elem;

}

int sum = foo.sum_and_invert(arr);
Long_GIDL arr_0 = arr[0];
cout<<"sum (4950): "<<sum<<" arr[0] (99): <<arr_0<<endl;

Fig. 11. gidl/corba use of the Any type
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Data Type In Inout Out Return

fixed struct ct struct& struct& struct& struct

var struct ct struct& struct& struct& struct*

fixed array ct array array array array sl*

var array ct array array array sl* array sl*

any ct any& any& any*& any*

... ... ... ... ...
Table 1
corba types for in, inout, out parameters and the result. ct = const, sl = slice,
var = variable.

original corba-type object that is transparently used in the statement that
prints the two objects. Figure 11C presents the implementation of the generic
assignment operator of the Any GIDL type. Since GIDL Type is an abstract
supertype for all gidl types, its use in the parameter declaration statically
ensures that the parameter is actually a gidl object. By construction, the
only class that inherits from GIDL Type<T> is T, therefore the dynamic cast
is safe. Finally the method calls the T:: lift operation (see Figure 8) that
fills in the object encapsulated by the gidl Any wrapper with the appropriate
value stored in the T-type object.

Figure 11D presents one of the shortcomings of our mapping. The gidl wrap-
per for arrays, as for all the other gidl wrapper-types, has as representation
its corresponding corba generic-type erased object. The representation for
an Array T-type object will be an array of the corba Any type objects, since
the erasure of the non-qualified type-parameter T is the Any corba type.
Although the user may expect that a statement like arr[i] = i inside the
for-loop should do the job, this is not the case. The reason is that Any GIDL

does not provide an assignment operator or constructor that takes an int

parameter. (However, if Array T is defined as an array of longs the latter will
work since the Long GIDL type features the proper assignment operator).

Another simplification that GIDL brings refers to the types of the in, inout
and out parameter, and the type of the result. Table 1 shows several of these
types as specified in the corba standard. The gidl parameter passing scheme
is much simpler: the parameter type for in is const T&, for inout and out is
T&, for the result is T, where T denotes an arbitrary gidl type. The necessary
type-conversions are hidden in the gidl wrapper.
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4.5 Type-Soundness Discussion

We restrict our attention to the wrapper-types corresponding to the gidl
interfaces. The same arguments apply to the rest of the wrapper-types. Let
us examine the type-unsafe operations of the BaseObject class, presented
in Figure 8. Note first that any function that receives a parameter of type
Any GIDL or CORBA::Any is unsafe, as the user may insert an object of a
different type than the one expected. For example the Leaf(const Any GIDL&

a) constructor expects that an object of corba type Leaf was inserted in a:
the user may decide otherwise, however, and the system cannot statically
enforce it. It is debatable whether the introduction of generics to corba has
rendered the existence of the Any type unnecessary in gidl at the user level.
We decided to keep it in the language for backward compatibility reasons. The
drawback is that the user may manipulate it in a type-unsafe way.

In addition to these, there are two more unsafe operations:
template < class GG > operator GG() const { ... }
static T lift (const CORBA::Object* o) { ... }. The templated cast

operator is naturally unsafe, as it allows the user to cast to a more special-
ized type. The lift method is used in the wrapper to lift an export-based
qualified generic type object (:-), since its erasure is CORBA::Object*. Its
use inside the wrapper is type-safe; however, if the user invokes it directly, it
might result in type-errors.

Our intent is that the user access to the gidl wrappers should be restricted to
constructors, assignment and cast operators, and the functionality described
in the gidl specification, while the rest of the casting functionality should be
invisible. However this is not possible since the narrow and lift methods
are called in the wrapper method implementation to cast the parameters, and
hence need to be declared public.

A type-soundness result is difficult to formalize as we are unaware of such
results for (subsets of) the underlying corba architecture, and the C++ lan-
guage is type-unsafe. In the following we shall give some informal soundness
arguments for a subset of the gidl bindings. We assume that the user can
access only wrapper constructors and operators and only those that do not
involve the Any type. The precise gadt interface guarantees that the creation
of gidl objects will not yield type-errors. It remains to examine method in-
vocations. It is trivial to see from the implementation of the lift, narrow,
and any narrow functions (Figure 8) that the following relations hold:

G:: lift[A*]◦G:: narrow[G] (a) ∼ a

G:: lift[Object*]◦G:: narrow[G] (a) ∼ a

G:: lift[Any]◦G:: any narrow[G] (a) ∼ a

where [] is used for the method’s signature, ◦ stands for function composi-
tion, while g1∼g2 denotes that g1 and g2 are equivalent in the sense that
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// GIDL specification
interface Foo<T, I:-Test, E: Test> {
Test foo(inout T t,inout I i,inout E e);

}
// Wrapper stub for foo
template<class T, class I, classE>
GIDL::Test Foo<T,I,E>::foo( T& t, I& i, E& e ) {
CORBA::Any& et = T::_any_narrow(t);
CORBA::Object*& ei = I::_narrow(i);
CORBA::Test*& ee = E::_narrow(e);
CORBA::Test* ret = getObjectFoo()->foo(et, ei, ee);
return GIDL::Test::_lift(ret);

}
// Wrapper skeleton for foo
template<class T, class I, class E> ::Test Foo_Impl<T,I,E>::foo
( CORBA::Any& et, CORBA::Object*& ei, ::Test*& ee ) {
T& t=T::_lift(et); I& i=I::_lift(ei); E& e=E::_lift(ee);
GIDL::Test ret = fooGIDL(t, i, e);
return GIDL::Test::_narrow(ret);

}

Fig. 12. gidl interface and the corresponding stub/skeleton wrappers for function
foo

they encapsulate the reference to the same corba object implementation.
(The reverse also holds.)

Figure 12 presents the gidl operation Foo::foo() and its C++ stub/skeleton
mapping. The stub wrapper will translate the parameter to an object of the
corresponding corba erased type via the narrow/ any narrow methods. The
skeleton wrapper does the reverse: lifts a corba type object to a corresponding
gidl type object. Since the instantiations for the T, I, and E type parameters
are the same on the client and server side, the above relations and the exact
gadt casting interface guarantee that the gidl object passed as parameter
to the stub wrapper by the client will have the same type and will hold a
reference to the same object-implementation as the one that is delivered to
the fooGIDL server implementation method. The same argument applies to
the result object.

5 Library Translation: Trappers

The immediate use of gidl is to enable applications that combine parameter-
ized, multi-language components. This section investigates another important
application: what is required to use gidl as a vehicle to access generic libraries
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beyond their original language boundaries, and what techniques can automate
this process? For the purpose of this paper, we restrict the discussion to the
simpler case when the implementation shares a single process space.

We find C++’s Standard Template Library (stl) to be an ideal candidate for
experimentation due to the wealth of generic types, the variety of operators,
and high-level properties such as the orthogonality between the algorithm and
container domains it exposes. Furthermore, the fact that, for performance rea-
sons, stl does not hide the representation of its objects poses new translation-
related challenges. In what follows, we review the stl library at a high level,
show the gidl specification for a server encapsulating part of stl’s function-
ality, identify and propose solutions to two issues that prevent the translation
from implementing the library semantics, and discuss the performance-related
trade-offs.

5.1 STL at a High Level

stl [2] is a general purpose generic library known for providing a high level of
modularity, usability, and extensibility to its components, without impacting
the code’s efficiency. The stl components are designed to be orthogonal, in
contrast to the traditional approach where, for example, algorithms are imple-
mented as methods inside container classes. This keeps the source code and
documentation small, and addresses the extensibility issue as it allows the user
algorithms to work with the stl containers and vice-versa. The orthogonality
of the algorithm and container domains is achieved, in part, through the use
of iterators: the algorithms are specified in terms of iterators that are exported
by the containers and are data structure independent. stl specifies for each
container/algorithm the iterator category that it provides/requires, and also
the valid operations exported by each iterator category. These are however
defined as English annotations in the standard, as C++ lacks the formalism to
express them at the interface level.

Figures 13 and 14 present excerpts of the gidl iterators and vector interfaces
respectively. We simulate selftypes [11] by the use of an additional generic type,
It, bounded via a mutual recursive export based qualification (:-). This ab-
stracts the iterators functionality: InpIt<T> exports ==(InpIt<T>) method,
while RaiIt<T> exports the ==(RaiIt<T>) method. An input iterator has
to support operations such as: incrementation (it++), dereferencing (*it),
and testing for equality/non-equality between two input iterators (it1==it2,
it1!=it2). A forward iterator allows reading, writing, and traversal in one
direction. A bidirectional iterator allows all the operations defined for the for-
ward iterator, and in addition it allows traversal in both directions. Random
access iterators are supposed to support all the operations specified for bidi-

22



interface BaseIter<T, It:-BaseIter<T; It> > {
unsigned long getErasedSTL(); It cloneIt();
void operator"++@p"(); void operator"++@a"();

};
interface InputIter<T,It:-InputIter<T;It> >:BaseIter<T,It>{
T operator"*" ();
boolean operator"==" (in It it);
boolean operator"!=" (in It it);

};
interface ForwardIter<T, It:-ForwardIter<T; It> >

: OutputIter<T, It>, InputIter<T; It>
{ void assign(in T t1); };

interface BidirIter<T, It:-BidirIter<T; It> >
: ForwardIter<T, It>
{ void operator"--@p"(); void operator"--@a"(); };

interface RandAccessIter<T,It:-RandAccessIter<T,It> >
: BidirIter<T, It> {

boolean operator">" (in It it);
/* same for "<", ">=", "<=" */
Iterator operator"+" (in long n);
Iterator operator"-" (in long n);
void operator"+=" (in long n);
void operator"-=" (in long n);
T operator"[]"(in long n);
void assign(in T obj, in long index);

};

interface InpIt<T> : InputIter<T, InpIt<T> > {};
interface ForwIt<T> : ForwardIter<T, ForwIt<T> >{};
interface BidirIt<T> : BidirIter<T, BidirIt<T> > {};
interface RAI<T> : RandAccessIter<T, RAI<T> >{};

Fig. 13. gidl specification for stl iterators; @p/@a disambiguate between pre-
fix/postfix operators

rectional iterator, plus operations as: addition and subtraction of an integer
(it+n, it-n), constant time access to a location n elements away (it[n]),
bidirectional big jumps (it+=n; it-=n;), and comparisons (it1>it2; etc).

The design of iterators and containers is non-intrusive as it does not assume
an inheritance hierarchy; we use inheritance between iterators only to keep
the code short. The STLvector container does not expect the iterators to be
subject to an inheritance hierarchy, but only to implement the functionality
described in the stl specification: RI is expected to share structural simi-
larity [1] with its qualifier RandAccessIter. Note that, unlike its underlying
architecture, gidl supports operator and method overloading.

23



interface STLvector
<T, RI:-RandAccessIter<T,RI>; II:-InputIter<T,II> > {
unsigned long getErasedSTL();
RI begin (); RI end(); T operator"[]"(in long n);
void insert(in RI pos, in long n, in T x);
void insert(in RI pos, in II first, in II last);
RI erase (in RI first, in RI last);
void assignAtIndex(in T obj, in long index);
T getAtIndex (in long index);
void assign (in II first, in II end);
void swap (in STLvector<T, Ite, II> v); //....

};

Fig. 14. gidl specification for stl vector

As observed in [8], the gidl interface is expressive, self-describing, and enforces
the stl specification requirements at a high-level. Another interesting aspect
is that gidl stub wrappers for iterators are themselves valid stl iterators:
They encapsulate the functionality specified by stl. They can also encapsulate
the necessary type aliasing definitions, either by specifying them directly in
the gidl specification, or by making the gidl stub wrapper extend the stl
base class of their corresponding iterator category. For example InputIter

stub extends the stl class input iterator<T,int>. The latter is achieved by
enriching the gidl specification with meta data.

5.2 Implementation Approaches

gidl is designed to be a generic extension framework that can plug in var-
ious back-ends as underlying architectures. An orthogonal, but nevertheless
important, direction is to employ gidl as middleware for exporting generic li-
braries’ functionality to different environments than those for which they were
originally designed. Our approach is to use a black-box translation scheme that
wraps the library objects into gidl objects and to study what other constructs
are required to enforce the library semantics.

Figure 15 exemplifies our approach. Each implementation of a gidl type
holds a reference to the corresponding stl object that can be accessed via
the getErasedSTL function in the form of an unsigned long value. The im-
plementation of the erase function retrieves the stl objects corresponding
to the gidl wrapper parameters, calls the stl erase function on the stl
vector reference, and creates a new gidl server corresponding to the iterator
result. Note that the semantics of the erase function are irrelevant in what
the translation mechanism is concerned.
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template <class T,class It,class It_impl,class II>
class STLvector_Impl :
virtual public ::POA_GIDL::STLvector<T, It, II>,
virtual public ::PortableServer::RefCountServantBase

{
private: vector<T>* vect;
public:
STLvector_Impl() { vect = new vector<T>(10); }
virtual GIDL::UnsignedLong_GIDL getErasedSTL()

{ return (CORBA::ULong)(void*)vect; }
virtual void assign(T& val, GIDL::Long_GIDL& ind)

{ (*vect)[ind] = val; }
virtual T getAtIndex(GIDL::Long_GIDL& ind)

{ return (*vect)[ind]; }
virtual T operator[](GIDL::Long_GIDL& a1_GIDL)

{ return (*vect)[a1_GIDL]; }
virtual It erase( It& it1_GIDL, It& it2_GIDL ) {
T* it1 = (T*)it1_GIDL.getErasedSTL();
T* it2 = (T*)it2_GIDL.getErasedSTL();
vector<T>::iterator it_r = vect->erase(it1, it2);
It_impl* it_impl = new It_impl(it_r, vect->size());
return (*it_impl->_thisGIDL());

} // ...
};

template<class T,class It,class It_impl>
class InputIter_Impl :
virtual public POA_GIDL::InputIter<T, It>,
virtual public BaseIter_Impl<T, It, It_impl>,
virtual public ::PortableServer::RefCountServantBase

{
// private: T* iter; field inherited from BaseIter_Impl
public:
virtual It cloneItGIDL()

{ return (new It_impl(iter))->_thisGIDL(); }
virtual GIDL::UnsignedLong_GIDL getErasedSTL()

{ return (CORBA::ULong)(void*)iter; }
virtual T operator*() { return *iter; }
virtual GIDL::Boolean_GIDL operator==(It& it1_GIDL) {
CORBA::ULong d1 = this->iter;
CORBA::ULong d2 = it1_GIDL.getErasedSTL();
return (d1==d2);

};
};

Fig. 15. gidl vector and input iterator server implementations.
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1. typedef GIDL::Long_GIDL Long;
2. typedef GIDL::RAI<Long> rai_Long;
3. typedef GIDL::InpIt<Long> inp_Long
4. typedef GIDL::STLvector<Long,rai_Long,rai_Long>
5. Vect_Long;
6. Vect_Long vect = ...;
7. rai_Long iter = vect.begin();
8. rai_Long rai_end = vect.end();
9. rai_Long rai_beg = iter; // problem 2
10.
11. int count = 0;
12. while( rai_beg!=rai_end ) {
13. if(*rai_beg!=33)
14. *rai_beg++ = count++; // problem 1
15. }
16. cout<<*iter<<endl;

Fig. 16. gidl client code that uses the stl library.

The gidl code in Figure 16 provides, in our opinion, the look and feel of
regular stl code. The only thing that differs are the types for the vector and
iterators (lines 1-4). A vector is obtained in line 6. The rai beg and rai end

iterators point to the start and the end of the vector element sequence. Then
the loop in lines 12-15 assigns new values to the vector’s elements.

There are, however, two problems with the current implementation. The first
appears in line 14 where dereferencing is followed by an assignment as in
*rai=val. In C++ this assigns the value val to the iterator’s current element.
The gidl code does not accomplish this: the result of the * operator is a
Long GIDL object whose value is set to val. The iterator’s current element is
not updated as no request is made to the server. The origin of this problem is
that gidl does not support reference-type results, since the implementation
and client code are not assumed to share the same process space.

The second problem surfaces in line 16, where the user intends to print the
first element of the vector. The copy constructor of the gidl wrapper does not
create a new implementation object, but instead aliases it: After line 9 is exe-
cuted, both rai beg and iter share the same implementation. Consequently,
at line 16 all three iterators point to the end of the vector. The easy fix is
to replace line 9 with rai Long rai beg = iter.clone() or with rai Long

rai beg = iter+0. We are aiming, however, for a higher degree of composi-
tion between gidl and stl components, where for example gidl iterators can
be used as parameters to stl algorithms. Since the stl library code is out of
our reach, the direct fix is not an option.

One way to address the first problem is to introduce a new gidl parameterized
type, say WrapType<T>, whose object-implementation stores a T value while
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its gidl interface provides accessors for it:
interface WrapType<T> { T get(); void set(in T t) } .
WrapType is a special gidl type: its constructors and assignment operators
call the set function, while its cast operator calls the get function to re-
turn the encapsulated T-type object. Instantiating the iterator and vector
over WrapType<T> instead of T fixes the first issue. The main drawback of
this approach is that it adds an extra indirection. In order to get the T type
object two server calls are performed instead of one. Furthermore, it is not
user-transparent, as the iterators and vectors need to be instantiated over the
WrapType type. The next section discusses the techniques we employed to deal
with these issues.

5.3 Trappers and Wrappers

We preserve the stl’s programming idioms under gidl by extending the gidl
wrapper with yet another component that enforces the library semantics. Fig-
ure 17 illustrates our approach. RaiIt Lib refines the behavior of its corre-
sponding gidl wrapper RAI to match the library semantics.

First, it provides two sets of constructors and assignment operators. The one
that receives as parameter a library wrapper object clones the iterator imple-
mentation object, while the other one aliases it. The change in Figure 16 is to
make rai Long and Vect Long alias RaiIt Lib<Long> and
STLvect Lib<Long,rai Long,rai Long> types, respectively. Now iter/rai end

alias the implementation of the iterators returned by the begin/end vector
operations, while rai beg clones it (see lines 7, 8, 9). At line 16 iter points
to the first element of the vector, as expected.

Second, the RaiIt Lib class defines a new semantics for the * operator that
now returns a Trapper object. At a high-level, the trapper can be seen as a
proxy for performing read/write operations. Its design resembles the lazy eval-
uation technique and the C++ style of “mixin” programming. It captures the
container and the index and uses container-methods to perform the operation.
The “trapper” in Figure 17 extends its type parameter, and thus inherits all
the type parameter operations. In addition it refines the assignment operator
of T to call an iterator method to update its elements. This technique solves
the problem encountered at line 14 in Figure 16 and it can be applied in a
more general context to extend gidl with reference-type results. Note that the
use of the trapper is transparent for the user. The type TrapperIterStar does
not appear anywhere in the client code. Furthermore, objects belonging to this
type can be stored and manipulated as T& objects. For example, T& t = *it;

if(t<0) t=-t; will successfully update the iterator’s current element. This
requires however that the gidl wrappers declare the =(T&) operator virtual.
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template<class T,class Iter> class TrapperIterStar : public T {
protected:
Iter it;

public:
TrapperIterStar(const Iter& i)
{ it = i; obj = (*it).getOrigObj(); }

TrapperIterStar(const TrapperIterStar<T,Iter>& tr)
{ it = tr.it; obj = (*it).getOrigObj(); }

void operator=(const T& t)
{ it.assign(t); obj = t.getOrigObj(); }

void operator=(const TrapperIterStar<T,Iter>& tr)
{ it.assign(tr.getOrigObj()); obj = tr.getOrigObj(); }

};

template<class T> class RaiIt_Lib : public GIDL::RAI<T::Self> {
private:
typedef GIDL::RAI<T::Self> It;
typedef TrapperIterStar<T,It> Trapper;
typedef GIDL::BaseObject<It,::RAI,::RAI_var> GIDL_BT;

public:
typedef T Elem_Type;
typedef Self It;

RaiIt_Lib() : GIDL_BT() {}
RaiIt_Lib(const It& r): GIDL_BT(r.getOrigObj()) {}
RaiIt_Lib(const RaiIt_Lib<T>& r)

: GIDL_BT(r.cloneIt().getOrigObj()) {}

operator It() { return *this; }
Trapper operator*() { return Trapper( *this ); }

void operator=(const It& iter)
{ setOrigObj(iter.getOrigObj()); }

void operator=(const InpIt_Lib<T>& iter)
{ setOrigObj(iter.cloneIt().getOrigObj()); }

};

template<class T,class RI,class II> class Vect_Lib
: public GIDL::STLvector<T::Self,RI::Self,II::Self>{...}

Fig. 17. Library Iterator Wrapper and its associated Trapper that targets ease of
use.
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template<class T,class Iter> class TrapperIterStar {
protected: Iter it;
public:
TrapperIterStar(const Iter& i) { it = i; }
TrapperIterStar(const TrapperIterStar<T,Iter>& tr)

{ it = tr.it; }
operator T() { return *it; }

TrapperIterStar<T::Elem_Type, T> operator*() const
{ return *(*it); }

void operator=(const TrapperIterStar<T,Iter>& trap)
{ it.assign(trap.it.operator*()); }

void operator=(const T& t) { it.assign(t); }
};

Fig. 18. Trapper model that targets performance

We conclude this section with several remarks. It is easy to anticipate how
gidl metadata can drive the compiler to generate the library wrapper code
that captures the library semantics. All that is needed is the name of a method-
member: cloneIt for the iterator’s copy constructor and assign for the type-
reference result. When available, the library wrappers should replace the gidl
corresponding types. For example, when using an stl algorithm with gidl
iterators, the former should be parameterized by the library wrapper types.

Finally, note that nesting library wrappers is safe. The use of the Self abstract
type member in the extension clause of the iterator/vector library wrappers
ensures that the library and gidl wrappers hierarchies remain separated. For
example we have that

RaiIt Lib<RaiIt Lib<Long> > inherits from RAI< RAI<Long> >.
The consequence is that all the inherited operations have results belonging to
gidl types, and thus no un-necessary cloning operations are performed:

Vect Lib<Long,RaiIt Lib<Long>,RaiIt Lib<Long> > v;

RaiIt Lib<Long> it = vect.begin();

Further on, dereferencing or updating an element of a “composed” library
iterator works as expected. For example, consider the

RaiIt Lib<RaiIt Lib<Long> > it; **it=5;

instruction. The first * operation creates a trapper object belonging to the
TrapperIterStar< RaiIt Lib<Long>, RAI< RAI<Long> > >

type that inherits from the RaiIt Lib<Long> type. Therefore, the second *

operation is applied on a library wrapper object and thus the update works
correctly.
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Trapper Type 200000 20000 2000 200

EOU trapper 13.4 11.7 5 3.4

Perf. trapper I 1 1.4 1.5 1.68

Perf. trapper II 1 1.05 1.16 1.17
Table 2
The table shows the running-time ratio between trapper-based code and optimal
stl code that performs read/write operations on the iterator’s elements. The size
of the iterator is varied from 200000 to 200.

EOU trapper = the one in Figure 17 (ease of use).
Perf Trapper I = the one in Figure 18 (performance).
Perf Trapper II = improved version of the latter, which by-passes

the extra indirection introduced by the gidl wrappers.

5.4 Ease of use - Performance Trade-off

The trapper’s design is a trade-off between performance and ease of use. The
implementation above targets ease of use, since a trapper object can be dis-
guised and manipulated under the form of an object of type T&. An alternative,
targeting performance, can model the trapper as a read/write lazy evaluator
as shown in Figure 18. Note that the mix-in relation is cut off, and instead the
support for nested iterators is achieved by exporting the * operator. It follows
that if the trapper is captured as an object of type T& it will not behave as
expected when it is updated at a later time. The intent here is that a trapper
is subject to exactly one read or write operation (but not both), as in:
T t = *it++; *it = t; t.method1();.

The trapper’s purpose is to postpone the action until the code reveals the type
of the operation to be performed (read or write). Consequently, the construc-
tors and the = operators are lighter, while a write operation accesses the server
only once (instead of twice). Furthermore, this approach does not require the
= operator to be declared virtual in the gidl wrapper.

Table 2 shows the trapper-related performance results. Notice that the code
using the trapper targeting ease of use is from 3.4 to 13.4 times slower than
the optimal stl code, while the one targeting performance incurs an overhead
of at most 68%. As the iterator size increases, the cache lines are broken and
the overhead approaches 0. The test programs were compiled with the gcc
compiler version 3.4.2 under the maximum optimization level (-O3), on a 2.4
GHz Pentium 4 machine.

We found the trapper concept quite useful and we employed it to implement the
gidl arrays. The previous design was awkward in the sense that, for example,
the Long GIDL class was storing two fields: an int and a pointer to an int.
The latter pointed to the address of the former when the object was not an
array element and to the location in the array otherwise. All the operations

30



were effected on the pointer field. By contrast, the trapper technique allows a
natural representation consisting of only one int field.

6 Conclusions

We have examined a number of issues in the extension of generic libraries in
heterogeneous environments. We have found certain programming language
concepts and techniques to be particularly useful in extending libraries in
this context: gadt, family polymorphism and traits. Generic libraries that are
exported through a language-neutral interface may no longer support all of
their usual programming patterns. We have shown how particular language
bindings can be extended to allow efficient, natural use of complex generic
libraries. We have chosen the stl library as an example because it is atyp-
ically complex, with several orthogonal aspects that a successful component
architecture must deal with. The techniques we have used are not specific to
the stl library, and therefore may be adapted to other generic libraries. This
is a first step in automating the export of generic libraries to a multi-language
setting.
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