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1 MOTIVATION, HARDWARE TRENDS AND TECHNOLOGICAL CONSTRAINTS
The material presented in this chapter is an incomplete summary of the introductory chapter 1
of the “Parallel Computer Organization and Design” book [19]. The hardware track of the PMPH
course follows several chapters of the book, but these are not covered by lecture notes, for obvious
(copyright) reasons. If the student would like to gain a deeper understanding of the hardware
material, beyond what the lecture slides can offer, the course organizers recommend that the student
acquires the book—it is a good one! The very simplified and adapted material presented in this
section serves only as motivation for the software track of PMPH.

The over-arching motivation for the PMPH course is given by The Moore’s Law1 [46]:
“The number of transistors in a dense integrated circuit doubles about every two years.”

This law has been commonly rephrased as:
“Compute power doubles every 19-to-24 months, while the cost effectiveness keeps pace.”

Cost effectiveness is typically expressed as the ratio between the performance and the cost of
hardware, and “keeping pace” intuitively means that the increase in performance is free of charge,
i.e., performance increases exponentially while the cost remains roughly the same.

Parallel architectures have been a very popular topic in the academic community, starting from
early 80’s—as demonstrated by a multitude of papers published in top conferences specialized
in both hardware and software, such as the International Symposium on Computer Architecture
(ISCA) and International Conference on Parallel Processing (ICPP). In essence, a large body of
scientific work predicted (since the 80’s) that the demise of single-CPU systems was inevitable
and fast approaching. It took however almost two decades (mid 2000) until this prediction was
ultimately validated in practice.
What happened in the meantime was the so called “killer-micro” effect: The additional hard-

ware resources generated by the rapid increase in transistor density were utilized to increase the
speed/frequency of the single-CPU systems. This resulted in complex designs of muscled (single)
processors, relying on out-of-order (data-flow) execution model, that were capable of (i) storing in
their pipelines thousands of instructions and (ii) executing hundreds of instructions per cycle.
The divergence between academia and industry was primarily motivated by a very pragmatic

consideration: muscling the single-CPU architecture was seen as the path of least resistance, since
it allowed all existent software to directly benefit from improvements without necessitating any
modification/adjustment. In contrast, the transition to parallel architectures requires significant
re-writing of the code base, which is not only tedious, but highly nontrivial: It requires reasoning
about loop parallelism, and furthermore, it requires reverse-engineering a set of commonly-applied
optimizations, tributary to the sequential-thinking era—e.g., related tomemory and register savings—
which significantly obfuscate the parallel semantics of the underlying algorithm.2 Suffice to say
that in that period (90’s - mid 2000), multi-processor architectures were seen in the commercial
arena only as exotic extensions of a single-processor architecture.

In 2004 Intel cancels the design of the Pentium4 @4GHz uniprocessor, which signals a tectonic
shift towards multiprocessor design. From this point on, academia and industry are in agreement:
all future architectures must adopt some form of massive parallelism in order to keep the Moore’s
Law alive. What prompted the shift to multiprocessor was that the uniprocessor design hit some
walls (or reached a peak), beyond which it was impractical to scales this technology. Common
1Moore’s Law is an observation and projection rooted in historical trends and does not constitute a physical or natural law.
2Of note, one of the mainstream programming languages of the time was Fortran77; many loops were implemented with
jump instructions, and the RAM memory was in the range of kilobytes to several megabytes, which prompted aggressive
memory reuse across loop iterations that obfuscate parallelism.
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examples are the power wall—e.g., the dynamic power is proportional to the cube of frequency—and
the memory wall—the seemingly exponentially-increasing performance gap between processor
and memory.
The rest of this chapter will briefly look at the hardware trends related to the critical compo-

nents of a parallel system—processor and memory—and will briefly review a set of important
technological constraints—such as power, reliability, wire delays, design complexity. The intent
is to demonstrate that parallel-hardware design fits well with the trends and addresses well the
technological constraints.

In fact, nowadays, commodity architectures available mainstream (such as GPUs) provide thou-
sands of cores and tens of thousands of hardware threads. What is problematic nowadays, is actually
the lack of (high-level) programming models and compiler optimizations that would allow the
development of commodity software to unleash the power of the already-available highly-parallel
hardware. This would be the subject of the other chapters of the software track of PMPH.

1.1 Abstractions
We will use the following abstractions, which we define rather informally.

A program is a set of statement performaing computational tasks, while a process/thread embeds
the execution of the computation. A good analogy is that a program is to process/thread what a
recipe is for cooking.

A processor (core) is the hardware entity capable of sequencing and executing the process/thread’s
instructions.

Multi-threaded cores support multiple hardware threads, each running in its hardware context.
A multiprocessor is a set of processors connected to execute a workload. They are mass produced,

off the shelf. Each multiprocessor consists of several cores—potentially with hardware multi-
threaded support—and several levels of cache. The trend has been (and still is) to migrate system
functions on the chip—e.g., memory controllers, external cache directories, network interface.

1.2 Processor Frequency and Number of Transistors
Figure 1 shows that historically, the clock rate (frequency) at which instructions are executed has
increased exponentially between 1990 to 2004.

The bolded line in the figure depicts an uniform increase of 1.19× per year, the dotted line depicts
an increase of 1.49× per year, and the continuous line marked with black rectangles depicts the
actual increase in the clock rate.

The 1.19 exponential corresponds to technology scaling: the same hardware is being built on new
technology. As silicon technology improves, the distances shrink (a.k.a., process shrinking). A new
technology generation happens about once every two years, and in each generation transistors’
switching speed increases about 41%, which directly translates to an increase in the clock rate.

Between the years 1990− 2002 the actual increase in clock rate has matched the 1.49 exponential:
clock rate has doubled every 21 months. If that trend would have continued, we would have had
processors running at 30GHz by 2008!
The difference between the 1.49 and 1.19 exponentials (up until 2002) corresponds to improve-

ments in the processor design. Examples include:

(1) Designing very-deep pipelines, consisting of 10−20 stages. Having more stages in the pipeline
means that each stage is less complex and thus it requires a smaller number of gates per
stage. This means that the execution of a stage is quicker, which allows to increase the clock
rate. Historically, the number of gate delays has dropped by 25% every process generation.
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Fig. 1. Processor’s Clock Frequency (Rate) between 1990-2008.

(2) aggressively exploiting instruction-level parallelism (ILP), for example by means of out-of-
order, speculative execution, which combine techniques such as register renaming, reordering
buffers, branch predication, lockup-free caches, speculative memory disambiguation.

(3) improvements in circuit design.
In 2004, Intel cancels the design of the Pentium4@4Ghz, and switches track to multi-core design.

This moment constitutes a tectonic shift away from the muscled deeply-pipelined uniprocessor.
The clock rate peaked in 2005 but has mostly stalled since 2002.

In essence, further increase of the clock rate is unsustainable because of a number of reasons:
• First, it is unfeasible to build deeper pipelines because it is difficult to imagine useful stages
that can be built from less than 10 gates (we have already reached that point).
• Second, the impact of technology scaling will be blunted in the future due to wire delays,
because the speed of wire transmission grows much slower than the switching speed.
• Finally, and perhaps most importantly, circuits clocked at higher rates consume more power,
and we have already reached the limits of power consumption in single-chip microprocessors.

However, it is still the case that each process generation—which roughly happens every two
years—offers an additional budget of resources, such as transistors, that can be utilized to increase
performance in other ways than sustaining clock-rate increases. Figure 2 shows historical data
related to how fast the feature size—a unit proportional to the gate length—has shrunk over the
years and how fast the number of transistors have grown. In essence, every two years we have a
new process generation, in which the feature size is reduced by about 30% every generation. The
number of transistors also seems to double every two years (according to Moore’s law), reaching
one billion in 2008.
The question thus becomes how to best utilize these hundreds of billion of transistors in the

quest for ever higher performance. The design of highly-parallel hardware is one (if not the only)
viable direction in this sense. For example the budget of transistors can be used to:
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Fig. 2. Historical data and prediction related to the feature-size shrinkage and the number of transistors
increase. The feature size is shown by the line starting in the top-left corner; the number of transistors is
shown in the line starting in the bottom-left corner.

• enhance the parallelism of the memory system,
• to fetch and decode multiple instructions per clock,
• to run concurrently multiple hardware threads per core, for example in order to hide the
(high) latency of the memory system,
• to support thousands of cores that run threads in parallel on different cores.

1.3 Memory Wall! Which Memory Wall?
The term “memory wall” was coined to denoted the seemingly ever-growing gap between the
processor and memory speed. This wall is important because no matter how fast the processor is,
it still needs to wait for the memory system to deliver the data to be processed.

The historical trends related to memory have been that DRAM density increases 4× every three
years, but DRAM speed increases only 7% every year. This in comparison to the processor speed
increasing for a long time by 50% per year.
Figure 3 shows the historical data related to the memory wall, which is defined as the ratio

between the memory cycle and the processor cycle: In 1990, the memory wall was about 4, i.e.,
the processor was running at about 25MHz, while the memory cycle took about 150 nanoseconds.
(Since 1Hz is 1 cycle/sec, then the processor cycle was about 40 nanoseconds.)
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Fig. 3. Historical data related to the memory wall.

The memory wall has grown exponentially until 2002, when it reached 200, and the perception
was that the memory wall was going to last/grow forever. However, it has stopped growing and
actually has declined since 2004 because the clock rate of the uniprocessor could not be increased
anymore, while the DRAM speed still grows, albeit slower.

As such, the advent of multi- and many-core systems have rendered the memory wall obsolete,
but have introduced instead a bandwidth wall. This is because nowadays, the memory subsystem
needs to efficiently feed cores that execute threads in parallel, which means that the memory system
has to be capable of delivering multiple data in the same time, which is measured by bandwidth.

1.4 Technological Constraints
In the past, the main trade-off related to architecture design has been between cost (area) and time
(performance). Today, the architectural design is challenged by several technological limits, such as
power, wire delays, reliability, complexity of design. We will briefly examined each of them in the
following (sub)sections, and would conclude that parallel architectures seem to address well all
these constraints.

1.4.1 Power.
The major new constraint is power consumption, which is the sum of dynamic and static powers:

Total Power = 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐
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The dynamic power is consumed every time a gate is switching states, i.e., from 0 to 1 or from 1 to
0, hence it is mostly dissipated in processors. It can be computed by the formula:

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝛼 𝐶 𝑉 2 𝑓

where 𝑉 denotes the supply voltage, 𝑓 denotes the clock rate, 𝑇 denotes the temperature, and 𝛼
denotes the activity factor (i.e., 𝛼 𝑓 is the rate at which the gates switch). In a given circuit, an
increase in frequency requires a proportional increase in the supply voltage as well, and a decrease
in frequency allows similarly to reduce the supply voltage. It follows that the dynamic power
consumed is roughly proportional to the cubic power of the frequency, i.e., 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∼ 𝑓 3. As such,
dynamic power consumption clearly favors parallel processing over increasing the clock rate of
the uniprocessor. For example, increasing the frequency by a factor of 4× consumes 43 = 64× more
dynamic power, but replicating a uniprocessor running at the original frequency 4 times consumes
only 4× more dynamic power.
The static (leakage) power is dissipated in all circuits, at all times, no matter of frequency and

whether the circuit switches or not. In practice, it is dominated by cache leakage. It can be computed
with the formula:

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉 𝐼𝑠𝑢𝑏 ∼ 𝑉 𝑒−𝑘𝑉𝑇 /𝑇

where 𝑉𝑇 denotes the threshold voltage—the voltage at which a transistor switches off. One can
observe that the leakage power increases exponentially as 𝑉𝑇 is reduced and as 𝑇 is increased.
The leakage power was negligible 15 years ago, but since the feature size and the threshold

voltage decreases with every process generation, the leakage is getting worse. Currently, the leakage
power has overtaken dynamic power as the major source of dissipation.

1.4.2 Reliability.
Hardware errors/failures can be classified into several categories:

• Transient Failures (Soft Errors). The charge stored in a transistor is 𝑄 = 𝐶 𝑉 , where 𝐶 is
the capacitance and𝑉 is the supply voltage. In every process generation the supply voltage is
reduced in order to maintain the electrical field at a constant strength. Thus𝑄 is considerable
reduced at every process generation, which results in every bit of storage in caches and
processors being more prone to flip bits due to various corruption sources, such as cosmic
rays, alpha particles radiating from the packaging material, electrical noise. In essence, the
device is operational, but the data has been partly corrupted. To protect against such faults,
DRAM/SRAM provide some form of error detection and correction capabilities.
• Intermittent/Temporary Failures occur due to environmental variations on the chip, such
as high temperature (hot spots). In order for the device to return to correct behavior, the
cause of the errors needs to be removed; for example the device should be switched off for
a while, so that the temperature drops. It follows that temporary failures last longer than
transient failures, but they still allow to continue execution (by temporarily switching off the
faulty device).
• Permanent Failures result in permanent damage to the device, which will never function
properly ever again, and thus the device must be isolated and replaced by a spare one.

Chip mutiprocessors promote better reliability than uniprocessor systems: For example, threads
can be used to redundantly perform the same computation, and a voting mechanism can be
employed to decide the correct answer, and to temporarily disable a core/resource. Similarly, faulty
cores can be detected and disabled automatically, while the remaining system remains functional,
albeit at a reduced capacity. This allows a natural failsafe degradation of the system.
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1.4.3 Wire Delays.
Each process generation shrinks distances, thus enhancing miniaturization. The consequence is
that transistors switch faster, but the propagation of signals on wire does not keep pace with this
scaling.
To understand why this happens we take a look at the underlying physics. The propagation

delay on a wire is proportional with the product between its resistance and capacitance ∼ 𝑅𝐶 . The
resistance, at its turn, is proportional with the ratio between the length and the cross-section area
of the wire, i.e., 𝑅 ∼ 𝐿/𝐶𝑆𝑎𝑟𝑒𝑎 . The length of the wire shrinks with every process generation due to
miniaturization; that is good! The problem however is that the cross-section area shrinks as well
due to the same reason, which annuls much of the length-shrinking benefits.

The impact of wire delays also favors multiprocessors, because communication traffic is hierar-
chical: most communication is local, while inter-core communication only happens occasionally.

1.4.4 Design Complexity.
Design verification has become the dominant cost of chip development today, and thus constitutes
a major design constraint. The principal reason is that chip density increases much faster than the
productivity of verification engineers. Much like in the case of software, this is due to the lack of
new, high-level, productivity-oriented tools that also run fast. Verification is required at several
levels of hardware design, such as:
• at the gate and register-transfer language level: verifying that the logic is correct,
• at the core level: verifying the correctness of forwarding and memory-disambiguation proto-
cols,
• at multicore level: verifying the cache-coherency and memory-consistency protocols.

To some extent, these verification difficulties have resulted in dedicating the vast majority of
chip resources to storage, simply because it is trivial to increase the size of caches, store/reorder
buffers, load/store/fetch queues, etc., without compromising the safety of the design.

The design complexity trend also favors multiprocessors, as it is much easier to replicate the same
structure multiple times than it is to design a large and complex system (or to bring improvements
to one such). Similar to the case of storage, scaling up the number of cores of a multiprocessor
should not raise major problems from a design perspective because, for example, any reasonable
design of the cache-coherency infrastructure should be parametric in the number of cores.

1.4.5 CMOS Meets Quantum Physics.
CMOS3 is rapidly reaching the limits of miniaturization: if the current trend continues, the feature
size—defined as half the distance between two metal wires—will be less than 10 nanometers by
year 2020. This means that the gate length, which is about half the feature size, would be in the
range of 5 nanometers.
The radius of the atom is between 0.1 and 0.2 nanometers, and is not affected at all by the

miniaturization trends. In essence, the gate length is quickly reaching the range of atomic distances,
which are governed by quantum physics, where binary logic is replaced with probabilistic states.

While quantum computers are an area of active research, it is probably safe to say that commodity
quantum hardware is not yet quite visible at the horizon. Until that time comes, the ever increase
in compute power will be achieved by means of parallel architectures, such as (clusters of) many
cores. And even if/when quantum hardware will emerge as a viable technology, it is also clear that
quantum software will be massively parallel by nature, so that at least the principles of parallel
programming will remain of interest.

3Complementary metal-oxide semiconductor, abbreviated as CMOS, is the (current) technology used for constructing
integrating circuits.
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2 LIST HOMOMORPHISM (LH)
The goal of the software track of PMPH is to teach students how to “think parallel”. To achieve
this goal we start by introducing in this section a very simple programming model, which uti-
lizes only flat map-reduce operators, and which is rooted in the mathematical structure of list
homomorphisms.

2.1 Math Preliminaries: Monoid and Homomorphism
This subsection briefly recalls the mathematical structures of monoid and homomorphism.

A monoid is a set tupled with an associative binary operator, which accepts an identity element
within the set, and a group is a monoid in which any element is invertible. In formal notation:

Definition 1 (Monoid).
Assume a set 𝑆 and a binary operator ⊙ : 𝑆 × 𝑆 → 𝑆 .
(𝑆, ⊙) is called a monoid if it satisfies the following two axioms:
(1) Associativity: ∀𝑥,𝑦, 𝑧 ∈ 𝑆 we have (𝑥 ⊙ 𝑦) ⊙ 𝑧 ≡ 𝑥 ⊙ (𝑦 ⊙ 𝑧) and
(2) Identity Element: ∃𝑒 ∈ 𝑆 such that ∀𝑎 ∈ 𝑆 , 𝑒 ⊙ 𝑎 ≡ 𝑎 ⊙ 𝑒 ≡ 𝑎.

Definition 2 (Group).
(𝑆, ⊙) is called a group if it is a monoid satisfying the additional property that any element is invertible:
∀𝑎, ∃𝑎−1 such that 𝑎 ⊙ 𝑎−1 ≡ 𝑎−1 ⊙ 𝑎 ≡ 𝑒 .

For example,
• (Z, +) denotes the monoid formed by the set of (signed) integers with the addition operation,
which has 0 as neutral element. (Z, +) is also a group because any integer 𝑖 has an inverse −𝑖 ,
which also belongs to Z.
• (N, +) denotes the monoid of natural numbers with addition, which has 0 as neutral element.
(N, +) is not a group because for example 1 does not have an inverse in N.
• (Z,×) is the monoid of integers with multiplication, which has 1 as neutral element. (Z,×) is
not a group because for example 2 is not invertible in Z. ( 12 ∉ Z)
• (L𝑇 , ++), is the monoid formed by the set of lists of elements of some type 𝑇 (L𝑇 ), together
with the list concatenation operator (++), which has the empty list ([]) as neutral element.
(L𝑇 , ++) is obviously not a group.

A monoid homomorphism is a function between two monoids, such that operations on one
monoid can be directly mapped into operations on the second monoid. In formal notation:

Definition 3 (Monoid Homomorphism).
A monoid homomorphism from monoid (𝑆, ⊕) to monoid (𝑇, ⊙) is a function ℎ : 𝑆 → 𝑇 such that
∀𝑢, 𝑣 ∈ 𝑆 , ℎ(𝑢 ⊕ 𝑣) ≡ ℎ(𝑢) ⊙ ℎ(𝑣).

2.2 The Shape of a List-Homomorphic Function/Implementation
Throughout this chapter, we will work with finite lists, albeit the gained insight will carry over to
arrays, which is the main datatype promoting efficient execution on modern hardware. We recall
that (L𝑇 , ++) is a monoid:
• ++ denotes list concatenation, for example
[1, 2, 3] ++ [4, 5, 6, 7] ≡ [1, 2, 3, 4, 5, 6, 7]
• [] denotes the empty list, which is the neutral element for concatenation:
∀ list x, we have that [] ++ x ≡ x ++ [] ≡ x
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We will use the term list-homomorphic function (LHF) to denote a function, which accepts an
implementation (LHI) that uses a certain form of divide and conquer programming, as defined
below.

Definition 4 (List-Homomorphic Function/Implementation LHF/LHI).
A LHF function ℎ is a (mathematical) function that can be implemented as:
h( [ ] ) = e

h( [x] ) = f(x)

h( x ++ y) = h(x) ⊙ h(y)

In simple words a LH implementation consists of:
(1) A divide-and-conquer case h( x ++ y) = h(x) ⊙ h(y), which allows to partition the input

list z into any two sublists x and y such that z = x ++ y and the implementation applies
recursively h to the sublists and combines the results with the operator ⊙. We draw attention
to the following important observations:

(a) in order for ℎ to be well defined as a mathematical function (i.e., for the implementation to
be useful in practice), ℎ needs to compute the same result no matter of how the input list is
partitioned into x and y. This is an implicit assumption.

(b) h( x ++ y) = h(x) ⊙ h(y) essentially defines a homomorphism between the monoid
(L𝑇 , ++) and another monoid (𝐼𝑚𝑔(ℎ), ⊙) whose set is the image4 of h and its binary
operator is ⊙. One remaining question is: “who is the neutral element of (𝐼𝑚𝑔(ℎ), ⊙)?”

(2) Two base cases corresponding to h being applied to the empty list and to a list formed by
exactly one element:

(a) e is the implementation of the empty-list case, i.e., h( [ ] ) = e. It can be proven that e
is actually the neutral element of (𝐼𝑚𝑔(ℎ), ⊙).

(b) the other base case is implemented as the application of a function f to the (single) element
of the list.

The LH implementation is unsuitable to being mapped efficiently to modern highly-parallel
hardware, for example because GPUs5 do not support recursion. However, we remark that the
function f, the binary operator ⊙ and the neutral element e are explicitly provided by the LHI and the
First Theorem of List Homomorphisms (explained later in section 2.4.1) allows to straightforwardly
translate this LHI to a (map-reduce) implementation that is amenable to efficient GPU execution.
The following theorem summarizes our previous observations:

Theorem 1 (LHF is a Mathematical Homomorphism).
A list-homomorphic function (which computes the same result regardless of how the list is partitioned):
h( [ ] ) = e

h( [x] ) = f(x)

h( x ++ y) = h(x) ⊙ h(y)

is a mathematical homomorphism from (L𝑇 , ++) to (𝐼𝑚𝑔(ℎ), ⊙).
In particular (𝐼𝑚𝑔(ℎ), ⊙) must be a monoid with neutral element e, which also means that ⊙ must be
associative.

The reverse also (trivially) holds: if h is a homomorphism between (L𝑇 , ++) and some monoid (𝑀, ⊙)
then it accepts a LHI (as above).
The proof is left as an exercise.

4The image of a function 𝑓 : 𝐴→ 𝐵 is the subset of 𝐵 covered by the application of 𝑓 to all elements of 𝐴.
5We use GPU as the abbreviation for general-purpose graphical processing units.
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2.3 Examples of List-Homomorphic Implementations
We have discussed so far list homomorphism at a rather abstract level. This section aims at
demonstrating that list-homomorphism programming is actually quite natural (when it fits) by
examining several simple code examples. The examples use a notation that somewhat resembles
Haskell, for example
• greeks such as 𝛼 denote arbitrary types (type variable), and [𝛼] denotes the type of a list
whose elements are of type 𝛼 ,
• f a b applies the function f to two arguments a and b,
• &&, || correspond to logical and, or operators.

We discuss the following examples:
len: The first example corresponds to computing the length of a list, i.e., len : [𝛼] → Int.

len [ ] = 0

len [x] = one x -- where one x = 1

len (x ++ y) = (len x) + (len y)

The first base case says that an empty list has size 0. The second base case says that a list
containing exactly one element has size 1; however the LHI form requires to call a function
on the list’s single element, so we have defined the function one to always return 1 no matter
the argument. Finally, the divide-and-conquer case says that if we partition the input list into
two sublists then the length of the initial list is the sum of the lengths of the two sublists.

all𝑝 : The second example corresponds to the function all𝑝 that checks whether some predicate
p : 𝛼 → Bool satisfies (holds on) all elements of the input list:
all𝑝 [ ] = true
all𝑝 [x] = p x

all𝑝 (x ++ y) = (all𝑝 x) && (all𝑝 y)

The base cases say that an empty list satisfies the predicate (why?) and that a list containing
exactly one element satisfies the predicate if and only if the element satisfies the predicate
(obviously). The recursive, divide and conquer case says that a predicate satisfies a list
(z = x ++ y) if and only if it it satisfies both (sub)partitions x and y. The implementation of
the empty-list case must be true because this is the neutral element of the monoid formed
by the two-element set {true, false} and the logical-and operator (&&). Further intuitive
confirmation is given by the fact that if all𝑝 [] is chosen false then the function all𝑝
is ill-defined, in that it can generate two different results for the same input. For example,
assume p x = x > 3. Then all𝑝 [5, 6] should result in true because all its elements are
greater than three. However, the following legal derivation produces false:
all𝑝 [5, 6] ≡ all𝑝 ([] ++ [5, 6]) ≡ (all𝑝 []) && (all𝑝 [5, 6]) ≡
false && (all𝑝 [5, 6]) ≡ false.

sum: The third example corresponds to summing up the (numerical) elements of a list. Without
further explanation, this can be accomplished with the following LHI:
sum [ ] = 0

sum [x] = id x -- where id x = x

sum (x ++ y) = (sum x) + (sum y)

fld: The fourth example corresponds to the function that adds two to every (numeric) element of
a list and then multiplies the results. In F# this can be expressed by a fold operation:
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fold (\acc x -> acc * (x+2)) 1 mylist

Without further ado, this can be accomplished with the following LHI:
fld [ ] = 1

fld [x] = plus2 x -- where plus2 x = x + 2

fld (x ++ y) = (fld x) * (fld y)

2.4 Map, Reduce and List Homomorphism Theorems
This section (i) starts by introducing two of the (three) important basic blocks that lay the foun-
dation of data-parallel programming (map and reduce), then (ii) presents the first theorem of
list homomorphism, which basically gives a straightforward way of translating a LHI into a
semantically-equivalent map-reduce implementation, and (iii) it concludes by presenting several
other theorems that can be seen as simple re-write rules that enable various program optimizations.

It is perhaps important to notice that while the discussion refers to lists, this is only to preserve
consistency with the list-homomorphism presentation. List is an implicitly sequential datatype;
whenever we mention lists from now on, the reader should think arrays, at least in what parallel
execution is concerned.

The first basic-block of data parallel programming is the map second-order operator, which takes
as argument an unary function and a list of elements, and produces a list of the same length as the
original one by applying the function argument to each element of the input list. The type and
semantics of map are presented below:

map : (𝛼 → 𝛽) → [𝛼] → [𝛽]
map f [x1, . . .x𝑛] = [f x1,. . ., f x𝑛]

Please note that, assuming a pure-functional language and replacing lists with arrays, map has
implicit parallel semantics, because the computation corresponding to some element x𝑖 of the array
is completely independent of the computations of all other elements of the array.
The second basic-block of data parallel programming is the reduce second-order operator,

which takes as arguments an associative binary operator, the neutral element corresponding to the
monoid induced by the binary operator, and a list of elements. The result of reduce is obtained
by successively applying the operator to all the elements of the array. The type and semantics of
reduce are presented below:

reduce : (𝛼 → 𝛼 → 𝛼) → 𝛼 → [𝛼] → 𝛼

reduce ⊙ e [x1, . . .x𝑛] = e ⊙ x1 ⊙ . . . ⊙ x𝑛

Unlike map, the parallel semantics of reduce is not straightforward to see. We demonstrate it in
fig. 4: assuming an infinite number of processors, the parallel computation of reduce is performed
by means of a reduction tree, which performs sequentially a number of log(n) parallel operations,
where n stands for the length of the input array – i.e., the computations on each breadth level in the
tree are performed in parallel. It is perhaps important to stress (again) that ⊙must be associative:

• In parenthesis, that is why we did not bother to place the parenthesis that would specify the
execution order, but the commonly-used sequential implementation of reduce accumulates
to the left, i.e., ((e ⊙ x1) ⊙ . . . ⊙ x𝑛).
• More importantly, if ⊙ is not associative then the sequential and parallel execution of reduce
will likely give different results. For example, assume the list [1,2,3,4] which is reduced
with the non-associative operator acc ⊙ x = acc + 2*x. Even ignoring the neutral element,
sequential execution will result in (((1 ⊙ 2) ⊙ 3) ⊙ 4) = 19 and parallel execution will
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Fig. 4. Parallel execution of reduce requires a sequence of log(n) parallel operations (n is the array length).

result in (1 ⊙ 2) ⊙ (3 ⊙ 4) = 5 ⊙ 11 = 27, according to the execution patterns of the
reduction tree shown in fig. 4.
• It should be clear now that reduce is different that fold (from F#). This can be seen from the
type of fold : (𝛽 → 𝛼 → 𝛽) → 𝛽 → [𝛼] → 𝛽 ; in particular it does not make sense
to talk about the associativity of fold’s operator because of the wrong type—associativity
makes sense on binary operators whose arguments and result have the same type. Moreover,
even when the type happens to be correct, as in the previously-discussed case, we have still
seen that fold is not a parallel operator because it does not require associativity. In particular
fold (\acc x -> acc + 2*x) 0 lst can be parallelized by re-writing it as a map-reduce
composition: reduce (+) 0 (map (+2) lst)!
• In practice forgetting that the reduce operator must be associative—i.e., using reduce with
non-associative operators—is one of the main generators of difficult-to-find bugs.

Similarly, remember that e must be the neutral element of the monoid defined by ⊙—hence
reducing an empty list results in e, and e can be safely omitted from the computation if the list is
not empty (because by the definition of the neutral element, we have that e ⊙ x ≡ x, ∀ x).

2.4.1 First List-Homomorphism Theorem.

The first LH theorem [22] basically gives a straightforwardway of rewriting a LHI as a map-reduce
composition, as stated in the theorem below, which uses ◦ to denote the function-composition
operator.

Theorem 2 (1𝑠𝑡 LH Theorem).
A list-homomorphic implementation defined as:
h( [ ] ) = e

h( [x] ) = f(x)

h( x ++ y) = h(x) ⊙ h(y)

is semantically equivalent with (reduce ⊙ e) ◦ (map f), or in complete code:
h z ≡ reduce ⊙ e (map f z)

Proof: exercise.
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Theorem 2 also provides the theoretical argumentation of why the reduce operator must be
associative: if ℎ is a list homomorphism, then (𝐼𝑚𝑔(ℎ), ⊙) must be a monoid, and by definition, a
monoid requires its operator ⊙ to be associative.
Applying theorem 2 to the LHI discussed in section 2.3 results in the following map-reduce

implementations:

• len z ≡ reduce (+) 0 (map one z)
• all𝑝 z ≡ reduce (&&) true (map p z)
• sum z ≡ reduce (+) 0 (map id z) ≡ reduce (+) 0 z
• fld z ≡ reduce (*) 1 (map plus2 z)

We have thus started from an arguably natural program specification rooted in the mathematical
theory of list homomorphisms, and we have translated that into an implementation in which
parallelism is made explicit by map-reduce operators and which can be straightforwardly mapped
to modern parallel architectures. We discuss simple program optimizations next.

2.4.2 Other List-Homomorphism Lemmas.

Theorem 3 (LH Promotion Lemmas).
Given unary functions f and g, and an associative binary operator ⊙ with neutral element e⊙ then the
following three identities hold, where ◦ denotes function composition:

1. (map f) ◦ (map g) ≡ map (f ◦ g)

2. (map f) ◦ (reduce (++) []) ≡ (reduce (++) []) ◦ (map (map f))

3. (reduce (⊙) e⊙) ◦ (reduce (++) []) ≡
(reduce (⊙) e⊙) ◦ (map (reduce (⊙) e⊙))

If you are unfamiliar with the functional notation for composition, the identities can be written in full as:

1. map f (map g zs) ≡ map (_ z → f (g z)) zs

2. map f (reduce (++) [] zs) ≡ reduce (++) [] (map (_z→map f z) zs)

3. reduce (⊙) e⊙ (reduce (++) [] zs) ≡
reduce ⊙ e⊙ (map (_ z → reduce ⊙ e⊙ z) zs)

The identities can be seen as re-write rules that can be used to optimize the program in various
ways, for example:

(1) The first identity is known as the map fusion/fission rule:
⇒ Fusion corresponds to applying the transformation in the forward (⇒) direction, and is

useful for reducing the number of accesses to global memory, which is much slower
than accessing the data stored in registers. For example, the left-hand side program:
let tmp = map g zs in map f tmp requires to read and write in the first map each el-
ement of arrays zs and tmp, respectively, followed by reading and writing in the second
map each element of tmp and result arrays, respectively. This counts up to 4 accesses to
global memory per element. The right-hand side program: map (_ z → f (g z)) zs
requires reading and writing the input and result arrays only once, thus halving the num-
ber of accesses to global memory (assuming that f and g operate on scalars and that the
intermediate computation (g z) is held in registers, not in memory).

⇐ Fission corresponds to applying the transformation in the backward (⇐) direction and is
useful for enhancing the degree of parallelism that is statically mapped to hardware, in
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the context of a nested-parallel program. (This will be discussed in detail later on, in the
context of the flattening transformation and vectorization.)

(2,3) Similar to fusion/fission, the second and third identities can be used in the forward direction
(⇒) to efficiently sequentialize the parallelism in excess of what the hardware can support,
and in the backward direction (⇐) to enhance load balancing and the program’s degree of
parallelism that can be statically mapped to hardware.
⇒ Assume split𝑝 denotes the operator that splits a list into 𝑝 sublists of roughly equal

lengths. Please observe that (reduce (++) []) ◦ split𝑝 ≡ id, meaning that splitting
a list into 𝑝 sublists, then flattening the resulted list results in the original list. (id x
= x stands for the identity function.) One may straightforwardly derive a new identity,
presented below by composing both sides of identity (2) with split𝑝 :

map f ≡ (reduce (++) []) ◦ (map (map f)) ◦ split𝑝 (2’)
The difference is that (2) necessarily operates on lists, while (2’) operates on list of lists. We
are interested in using this new identity in the forward (⇒) direction. Assume the hardware
has 𝑝 cores, and that the input list (array) contains 𝑛 elements, where 𝑛 is much larger than
𝑝 . The left-hand side map f suggests an execution model that spawns 𝑛 threads—this is
suboptimal on many architectures. The translation basically aims to spawn a number of
threads equal to the number of cores. This is achieved by splitting the list, then processing
sequentially each chunk on one core (by the inner map), while processing the 𝑝 chunks
in parallel (by the outer map), and finally by concatenating the per-core results. Similar
thoughts apply to the third identity.

⇐ Consider a program similar to the left-hand side of the original identity 2. Its input is
necessarily a list of lists. Assume the input list has 𝑝 unbalanced sublists, for example all
sublist have 2 elements, except for the last one which has 𝑛 − 2 · 𝑝 − 2 elements, where 𝑛
is big. If executed as suggested by the right-hand side—each core processes a sublist—the
parallel execution will be utterly unbalanced because the last core will process many more
items than the rest of the cores. If processing an item uniformly takes one unit, then the
speedup achieved by the right-hand side program will be 𝑛

𝑛−2·𝑝−2 which converges to 1
when 𝑛 goes to infinity. Instead, one can apply the second identity in the ⇐ direction
to flatten parallelism, then one can apply again the forward direction as in the⇒ bullet
above by splitting the concatenated list again into 𝑝 sublists of roughly-equal lengths. The
execution of the resulting program is now load-balanced, each core processing a similar
number of elements, resulting in a speedup close(er) to the optimal 𝑝×. Similar thoughts
apply to the third identity.

The final theorem is often used to optimizing the scheduling of map-reduce computations,
for example in frameworks such as OpenMP. The idea is that a map-reduce composition can be
re-written into a semantically equivalent program that:
• splits the input list into 𝑝 sublists of roughly equal length,
• applies the original computation to each sublist, such the computation of a sublist is performed
sequentially on a core, but different sublists are processed in parallel on different cores,
• applies the original reduction to the per-core results.

The benefit of such an execution is not only given by spawning a number of threads equal to the
numbers of cores, thus reducing scheduling and switching-contexts overheads, but also optimizing
the reduction depth. Originally, the reduction was applied to a list of 𝑛 elements, and would require
𝑙𝑜𝑔(𝑛) sequential steps (see reduction tree in fig. 4). In the transformed program the final (parallel)
reduction is performed on a list of 𝑝 elements, requiring only 𝑙𝑜𝑔(𝑝) sequential steps.
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Theorem 4 (Optimized Map-Reduce Lemma). Assume split𝑝 :: [𝛼] → [[𝛼]] distributes a list
into 𝑝 sublists, each containing about the same number of elements. Also assume ⊙ a binary associative
operator with neutral element e⊙ and f a unary function. The following identity always holds:
redomap (⊙) f e⊙ ≡
(reduce (⊙) e⊙) ◦ (map (redomap (⊙) f e⊙)) ◦ split𝑝

where redomap is defined as redomap ⊙ f e⊙ ≡ (reduce ⊙ e⊙) ◦ (map f).
The Proof is left as an exercise.

In what the proof of theorem 4 is concerned, the big hint is to first observe that
(reduce (++) []) ◦ distr𝑝 results in the identity function, which is the neutral element for
function composition—concatenating the result obtained by splitting an input list results in the
input list. As such we can start by composing the left-hand side with the identity written as before:
redomap (⊙) f e⊙ ≡ (reduce (⊙) e⊙) ◦ (map f) ◦ (reduce (++) []) ◦ split𝑝 ≡ . . .

and then it takes about three applications of the promotion lemmas of theorem 3 to derive the
right-hand side of the identity stated by theorem 4.

2.5 Almost/Near Homomorphisms [Gorlatch/Cole]
The notion of near homomorphism [16] or synonymously almost homomorphism [24] has been
introduced (independently) by Murray Cole and Sergei Gorlatch, respectively.
The simple intuition is that a non-homomorphic function 𝑔 can be sometimes “lifted” into a

homomorphic one, by computing a baggage of extra information. If this is possible, then the result
of the original problem can be obtained by projecting the homomorphic result (e.g., by selecting an
element from a tuple).

We will demonstrate the near-homomorphism construction on two interesting problems, which
are going to be examined and solved in the rest of this chapter.

2.5.1 Maximum-Segment Sum (MSS) Problem. :

The formulation of MSS problem is:

“Given a list of signed integers, find the contiguous segment of the list whose members have the
largest sum among all such segments; the result is only the maximal sum, not the segment’s members.”

For example, the MSS of [1, -2, 3, 4, -1, 5, -6, 1] is 11, and the corresponding maximal
segment is [3, 4, -1, 5].
One can observe that it is impossible to express this problem directly in a list-homomorphism

way—such that the operator of the reduction receives two integers as arguments and produces an in-
teger, i.e., ⊙ : int→ int→ int. For example, assume the list has been split as 𝑙1 =[1, -2, 3, 4]
and 𝑙2 =[-1, 5, -6, 1]. According to the definition of MSS, the human can observe that the MSS
of sublist 𝑙1 is 7 (corresponds to segment [3,4]), and the MSS of sublist 𝑙2 is 5 (corresponds to
segment [5]).
Having the result of MSS for each sublist summarized only as an integer prevents us from

meaningfully combining the sublists results into a result that is correct for the whole list. For
example, with what operator should we combine 7 and 5? Should it be addition, which would result
in MSS being 12, or should it be the maximal value, which will result in 7, or what?
Neither give the correct result, which we recall is 11 for the given input. The reason is that

the maximal segment can very well lie across 𝑙1 and 𝑙2, i.e., partly in 𝑙1 and partly in 𝑙2, but this
case cannot be covered by a reduce operator working on integers—we need to provide the reduce
operator with additional information.
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For example, one can reason that it would be useful to maintain for each (sub)list:
(mis) an integer corresponding to the maximal sum across all contiguous segments that starts the

list (i.e., those containing the first element); we will name this the maximal-initial sum mis,
(mcs) and similar for the contiguous segments that ends a list (i.e., those containing the last element);

we will name this the maximal-concluding sum mcs. With this extra information one could
reason that the operator that combines the results of two sublists 𝑙1 and 𝑙2 should chose the
maximal value between the MSS of 𝑙1, the MSS of 𝑙2, and the maximal segment that crosses 𝑙1
and 𝑙2 (i.e., lies partly in 𝑙1 and partly in 𝑙2), which is obtained by adding the mcs1 of 𝑙1 with the
mis2 of 𝑙2. (Since we consider only contiguous segments, a crossing segment will necessarily
be a composition of an mcs of 𝑙1 with an mis of 𝑙2.) It would seem that we have successfully
figured out how to compute the MSS of two sublists, but this computation requires the mis
and mcs of the two sublists; how do we compute those?

(ts) To compute mis and mcs we need only one extra piece of information: the total sum of a
sublist, denoted as ts. Assume we have the results for 𝑙1 and 𝑙2 and we want to compute the
mis for 𝑙 = 𝑙1++𝑙2. We can reason that the mis of 𝑙 is the maximal value between:
– the mis1 of 𝑙1, because the initial segments of 𝑙1 are also initial segments of 𝑙 , and
– ts1 + mis2, because the maximal initial segment of 𝑙 may span across its two sublists—in
this case, by definition of initial segment, it necessarily needs to include the whole sublist
𝑙1 and the maximal initial segment of 𝑙2.

Similar considerations apply to computing the mcs of of 𝑙 .
We have applied above a list-homomorphic (divide-and-conquer) type of reasoning, in that

we have derived what the reduce operator should be in terms of thinking how to combine the
results of two sublists into the result of a list. We are now ready to write directly the map-reduce
(obtained by applying theorem 2). The Futhark implementation is given below; i32 denotes
the 32-bit signed-integer type, (i32,i32,i32,i32) is the type of a quad-tuple of i32s, and
(1i32, 2i32, 3i32, 4i32) is a quad-tuple value of that type:

let mssOp (mss1: i32 , mis1: i32 , mcs1: i32 , ts1: i32)
(mss2: i32 , mis2: i32 , mcs2: i32 , ts2: i32)

: (i32 ,i32 ,i32 ,i32) =

let mss = i32.max (i32.max mss1 mss2) (mcs1+mis2)

let mis = i32.max mis1 (ts1 + mis2)

let mcs = i32.max mcs2 (ts2 + mcs1)

let ts = ts1 + ts2
in (mss , mis , mcs , ts)

let f (x: i32) : (i32 , i32 , i32 , i32) =

(i32.max x 0, i32.max x 0, i32.max x 0, x)

let projectFst (x, _, _, _) = x

let maxSgmSum (xs: []i32) : i32 =

let exp_xs = map f xs

let exp_res = reduce mssOp (0,0,0,0) exp_xs

in projectFst exp_res
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In essence, the implementation of MSS, denoted maxSgmSum has three main steps:
map: first each element of the input array xs is lifted to a quad-tuple, by applying f—this allows to

compute a larger baggage of information, i.e., mis, mcs, ts;
reduce: then the result is reduced with the operator ⊙ as explained above;
project: finally, we select (project) the first element of the result tuple that contains the information

of interest (the MSS) and discard the rest.
The implementation above diverges a bit from the definition of MSS, in that the result is al-

ways positive—we kept this form in order to be consistent with the original paper [16]. If we
would like also to compute negative MSS values, we can change the implementation of f to
let f x = (x,x,x,x) and the neutral element of ⊙ to (− inf,− inf,− inf, 0).

2.5.2 Longest-Satisfying Segment (LSS) Problem. :

LSS denote a class of near-homomorphic problems which requires to find the length of the
longest (contiguous) segment of a list for which some property holds. For example, we might want
to compute:

zeros: the length of the longest segment of zeros, or
same: the length of the longest segment made from the same number, or
sorted: the length of the longest sorted sequence.

Please notice however, that it is not the case that all predicates result in a LSS problem that can
be expressed as a list (near) homomorphism. For example the length of the longest sequence whose
sum is 0 is not expressible as a list homomorphism.

It turns our that if we restrict the predicate to have a certain shape, then all such predicates allow
a list-homomorphic implementation. The shape of the restricted predicate is:
p [] = true
p [x] = ... -- some implementation

p [x, y] = ... -- some implementation

p (x:y:zs) = (p [x,y]) && (p (y:zs))

-- where && denotes the logical -and operator

-- and : denotes the cons operator , i.e., x : y : z : [] == [x,y,z]

Note that various predicates can be implemented by filling in the computation of the base cases
when the list contains one and two elements, respectively. For example, the predicates for the three
list-homomorphic problems listed above are derived by the following implementation of the base
cases:
zeros [x] = (x == 0)

zeros [x,y] = (zeros [x]) && (zeros [y])

same [x] = true
same [x,y] = (x == y)

sorted [x] = true
sorted [x,y] = (x <= y)

Now that we finally defined what a LSS problem is, it remains to reason about what should be the
baggage of extra information that would allow us to lift a LSS problem to accept a list-homomorphic
implementation. The rational is somewhat similar to the one for maximal segment sum, but with
several additions:
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• As before, we need to maintain the length of the longest initial and concluding satisfying
segments, which we denote by lis and lcs, respectively, together with the total length of
the (sub)list, denoted by tl.
• When considering the concatenation of the (lcs1, lis2) pair—i.e., for the case when the
segment of interest spans across the two sublists—it is not guaranteed that the spanning
segment satisfies the predicate; this must be explicitly checked! For example, if the elements
of some lists 𝑥 and𝑦 are in sorted order, this does not means the list obtained by concatenating
𝑥 with 𝑦 has elements in sorted order: (sorted l1) && (sorted 𝑙2) ⇏ sorted (𝑙1++𝑙2).
• To perform the check mentioned above, we need to record the last element of lcs and the
first element of lis. This would allow to compute whether lcs1 is connected to lis2, by
checking the condition p [lastx,firsty] == True.

2.5.3 Exercise: Longest-Satisfying Segment (LSS) Implementation. :

The implementation of the longest-satisfying segment is proposed as an exercise (first weekly
assignment). You will need to fill in the blanks in the skeleton code below. You should also imple-
ment it in Futhark, run it on the GPU-equipped machines and report the speedup between the
accelerated and CPU-based versions (obtained by compiling with futhark opencl and futhark
c, respectively):

let redOp (lss1:i32 , lis1:i32 , lcs1:i32 , tl1:i32 , frst1:i32 , last1:i32)
(lss2:i32 , lis2:i32 , lcs2:i32 , tl2:i32 , frst2:i32 , last2:i32)

: (i32 , i32 , i32 , i32 , i32 , i32) =

let connect = ... -- fill in the blanks

let lss = ... -- fill in the blanks

let lis = ... -- fill in the blanks

let lcs = ... -- fill in the blanks

let tl = ... -- fill in the blanks

let frst = if tl1 == 0 then frst2 else frst1
let last = if tl2 == 0 then last1 else last2
in (lss , lis , lcs , tl, frst , last)

let mapOp (x: i32) =

let xmatch = if (p [x]) then 1i32 else 0i32
in (xmatch , xmatch , xmatch , 1i32 , x, x)

let projectFst (a, _, _, _, _, _) = a

let lgstSatSgm (xs : []i32) : i32 =

let exp_xs = map f xs

let exp_res = reduce (⊙) (0,0,0,0,0,0) exp_xs

in projectFst exp_res
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2.6 Conclusion
This section has started by presenting a program specification rooted in the mathematical structure
of list homomorphism, and which corresponds to an (arguably) natural, divide-and-conquer way of
expressing a class of simple problems. We have then shown that such a program has an implicitly
parallel semantics because it can be straightforwardly translated into a semantically-equivalent
program written in terms of map-reduce compositions.
We have drawn attention that the reduce operator must be associative because the homomor-

phism theory requires it, and we have also drawn attention that a fold does not always have
parallel semantics, because not even that its semantics does not require its binary operator to be
associative, but we cannot even talk about it’s operator’s associativity (wrong type). However, we
have seen that frequently, a fold can be rewritten by means of a map-reduce composition.

Next, we have studied several (promotions) lemmas derived naturally from the list-homomorphism
theory, and we have explained that they can be seen as re-write rules, and can be used to optimize
a program in different ways.
Finally, we have examined two classes of problems (MSS and LSS), whose (efficient) parallel

nature is far from trivial even to understand, and we have shown that list-homomorphic (divide-
and-conquer) reasoning can straightforwardly derive efficient parallel implementations for these
problems.
The next section 3 will introduce several other parallel operators that are basic blocks of data-

parallel programming, such as scan, and will demonstrate how to reason about the efficiency of a
parallel program in terms of asymptotic properties such as work and depth. More importantly, it
will show that complex programs can be built as puzzles from a nested composition of operators
such as map, reduce, scan.
Furthermore, section 4 will give the intuition behind a transformation that can automatically

rewrite a nested-parallel program into a flat-parallel one that can be statically mapped to highly-
parallel hardware, in a way that preserves the asymptotic work-depth properties of the original
(nested-parallel) program.

PMPH Lecture Notes for the Software Track, Vol. 1, No. 1, Article 1. Publication date: September 2018.



Lecture Notes for the Software Track of the PMPH Course 1:23
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Fig. 5. Enhancement 𝐸 accelerates a fraction 𝐹 of a program by a factor 𝑆 .

3 WORK-DEPTH ASYMPTOTIC, NESTED PARALLELISM
This section is organized as follows:
• section 3.1 introduces and demonstrates how to characterize parallel programs in terms of
work and depth complexity.
• section 3.2 extends the set of parallel operators—with scan, filter, scatter—and demonstrates
how several parallel programs, such as sparse matrix-vector multiplication, prime number
computation, quicksort—can be elegantly expressed by nesting parallel constructs, and how
their efficiency can be reasoned in terms of their work-depth asymptotic.

3.1 Reasoning in Terms of Work-Depth Asymptotic
This section starts by presenting Amdahl’s law as a way to motivate why it is necessary to write
programs as if the hardware provides an infinite number of cores. We then briefly present a
simplified and idealized parallel hardware (PRAM) that is used to introduce the notion of work and
depth complexity of a (nested) parallel program.
We then argue, by means of Brent’s theorem, that the work-depth measure is a good approxi-

mation of the parallel behavior of the program, and we demonstrate how one can reason about
computing the program’s work and the depth for the simple case of summing up the elements of
an array.

3.1.1 Amdahl’s Law.

Figure 5 shows a scenario in which an “enhancement” accelerates the computation of a fraction 𝐹

of a program on a fixed dataset6 by a factor of 𝑆 , while the other part of the program 1− 𝐹 does not
benefit from it. (It is not important what the enhancement actually is, or whether it is of software
or hardware nature.)

In this scenario, the execution time of the enhanced program is:
𝑇𝑒𝑥𝑒 (𝑤𝑖𝑡ℎ𝐸) = 𝑇𝑒𝑥𝑒 (𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐸) × [(1 − 𝐹 ) + 𝐹

𝑆
]

Amdahl’s Law correspond to (the interpretation of) three formulas: one that computes the speedup
of the enhanced program:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝐸) = 𝑇𝑒𝑥𝑒 (𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝐸)
𝑇𝑒𝑥𝑒 (𝑤𝑖𝑡ℎ𝐸) = 1

(1−𝐹 )+ 𝐹
𝑆

and another two that compute an asymptotically-tight upper bound for the speedup when 𝑆 goes
to infinity:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝐸) ≤ 1
1−𝐹 and lim𝑆→∞ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝐸) = 1

1−𝐹

6In general, a program running time is sensitive to the dataset, so it does not makes sense to talk about speeding up a
fraction 𝐹 of a program in general—we need to fix the dataset.
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F=0.5

Fig. 6. Interpretation of Amdahl’s Law by Diminishing Returns. The 𝑥 and 𝑦 axis show the acceleration
factor 𝑆 and the speedup, respectively. The lines appearing in the figure from top to bottom are: the maximal
permitted speedup, the Amdahl’s speedup, the remaining speedup gain, the marginal speedup gain (between
two consecutive values of S).

In essence, Amdahl’s law shows that nomatter how big the improvement is, the overall application
speedup is limited by the 1 − 𝐹 fraction that does not benefit from the improvement.

Figure 6 shows a more detailed interpretation of Amdahl’s Law, specialized for the value 𝐹 = 0.5,
hence the maximal speedup is 2×. The figure demonstrates the law of diminishing returns. It is
reasonable to assume that every increment of 𝑆—shown on the 𝑥 axis—requires the same amount of
additional resources (for enhancement). However, every increment of 𝑆 is less and less rewarding
globally. For example the step from 𝑆 = 2 to 𝑆 = 3 generates an overall program speedup of 33%,
while moving from 𝑆 = 5 to 𝑆 = 6 generates a much smaller increase in speedup of only 6.67%. The
moral of the story is to realize that some games cannot be won—the program speedup will never
be higher than 2×—so one should know when to stop, i.e., at the point when the next speedup
gain will not justify the (extra) cost of the resources necessary for implementing the next unit of
enhancement. In what hardware design is concerned, this would mean to implement the “common
case7” in hardware (hence fast), and execute the rare case in software (e.g., exceptions).
Figure 7 depicts the interpretation for applying the Amdahl’s law to the particular case of

parallelism:
𝑆𝑝𝑒𝑒𝑑𝑢𝑝 (𝑃) = 𝑇1

𝑇𝑃
= 𝑃

𝐹+𝑃 (1−𝐹 ) <
1

1−𝐹
The specialization is straightforward: utilizing 𝑃 cores (rather than one) ideally results in a 𝑃×
speedup. Actually, that is not quite true, since the occasional super-linear speedup may be ob-
served due to cache effects—the 𝑃 cores together have 𝑃× more cache than the uniprocessor, and

7The common case is typically determined by benchmarking.

PMPH Lecture Notes for the Software Track, Vol. 1, No. 1, Article 1. Publication date: September 2018.



Lecture Notes for the Software Track of the PMPH Course 1:25

F=0.95

Fig. 7. Demonstrating Amdahl’s Law when the enhancement is parallel execution and 𝐹 = 0.95.
The mortar line shows a “typical” evolution of speedup in practice.

applications with regular access patterns may benefit for the cache increase. But typically, the
speedup is sublinear even if 𝐹 = 1, because for example threads might need to communicate and
communication is expensive. One can observe that the Amdahl’s law is unforgiving: the figure uses
𝐹 = 95, which corresponds to 95% of the runtime being run in parallel; still the speedup is limited
to 20×, no matter how many cores you throw at it.
The moral of the parallel case is different than the one for the general hardware improvement.

We do not advocate to bound/restrict the number of cores just because some applications are
inherently sequential and will not benefit for extra parallelism. Quite the contrary: after all, we
have seen that scaling hardware parallelism is the only conceivably way (nowadays) of keeping
the Moore’s Law alive.
What we advocate is to never leave sequential any part of the program that can possibly be

parallelized. In other words, when developing parallel code, we must reason as if the hardware has an
unlimited/infinity number of cores.
Let me stress this further with an example that may catch your attention: assume the student

has parallelized 99.9% percent of the runtime of the application subject to the group project/exam.
The student may feel entitled to receive the maximal grade, but the teacher might argue otherwise.
The reason is that the GPUs that you are using in the PMPH course currently have about 7000
cores each. Assume for the sake of the argument that each core run as fast as the CPU (they do
not!). Applying Amdahl’s law for 𝐹 = 99.9% results in a limiting 1000× speedup. This means that
the student is only utilizing about one seventh of the compute power provided by one GPU, and
14% is a failing grade :))
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3.1.2 Work-Depth Asymptotic Behavior of a Parallel Program.

While there is a trend towards simplifying hardware, current hardware remains way too complex
for developing cost models based on them. At least in what teaching is concerned, using a realistic
hardware model will put us in danger of “missing the forest for the trees”. We will discuss parallel-
program properties by reasoning about the program execution time on a very simple and idealized
hardware model, named the parallel random access machine (PRAM). PRAM focuses on (data)
parallelism and ignores issues related to synchronization and communication. It assumes that:
• there are 𝑃 processors that are connected to shared memory,
• each processor has an unique identifier/index 0 ≤ 𝑖 < 𝑃 ,
• the execution happens in single-instruction multiple data (SIMD) fashion, which means that
all cores execute in lock step—i.e., a core cannot start the next instructions until all cores have
completed executing the current instruction. Please note that in the case of an if-then-else,
the processors that did not take the then branch must wait until all the other processors has
finished executing the then branch, before starting to execute the else branch, and similar
for the else branch.
• each parallel instruction takes unit time (the same amount of time no matter whether it is a
simple or complex arithmetic operation or a memory access).
• each processor has a flag that controls whether it is active in the execution of an instruction
(for example in order to implement if-then-else). If the processor is not active, then its noop
does not count towards the work complexity (but it counts towards the depth complexity,
because it is part of a SIMD computational step).

We are ready to define the work-depth asymptotic behavior of a parallel program on a PRAM
machine. The work and depth computation assumes an infinity number of processors (𝑃 = ∞).
• The work complexity is the total number of operations performed to execute the program,
i.e., the sum across all processors. We denote work by𝑊 (𝑛), where 𝑛 is related to the size of
the dataset/workload.
• The depth or step complexity, denoted by 𝐷 (𝑛) is the number of sequential steps needed
to execute the program.
• A parallel implementation is work efficient if its work complexity is asymptotically
equal to that of the best sequential implementation of the same algorithm.

If we know (have computed) the work and depth of an implementation, then Brent’s theorem
specifies “good” complexity bounds for a PRAM that has a finite number of 𝑃 cores, where by good
we mean tight enough to be useful (for reasoning) in practice.

Theorem 5 (Brent’s Theorem).
A parallel implementation that has depth 𝐷 (𝑛) and work𝑊 (𝑛) can be simulated on a 𝑃-processor
PRAM in time complexity 𝑇 such that:

𝑊 (𝑛)
𝑃
≤ 𝑇 ≤ 𝑊 (𝑛)

𝑃
+ 𝐷 (𝑛)

3.1.3 Demonstrating Work-Depth Computation for Reduction.

The reduction tree for summing up (reduce (+) 0) the elements of an array of 8 elements is
shown (again) in fig. 8. It is intuitively easy to generalize the work and depth for an array of 𝑛
elements, which is summed up using 𝑛

2 processors:
• the work is𝑊 (𝑛) = 𝑛, hence parallel summation is work efficient because the best sequential
algorithm still performs 𝑂 (𝑛) steps;
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Fig. 8. Parallel execution of reduce requires a sequence of log(n) parallel operations (n is the array length).

Input: array A of n=2𝑘 elems of type T

⊕ : 𝑇 → 𝑇 → 𝑇 associative

Output: S = ⊕𝑛𝑗=1𝑎 𝑗

1. forall i = 0 to n-1 do
2. B[i] ← A[i]

3. endfor

4. for h = 1 to k do

5. forall i = 0 to n-1 by 2ℎ do

6. B[i] ← B[i] ⊕ B[i+2ℎ−1]

7. endfor
8. endfor
9. S ← B[0]

Fig. 9. Imperative, low-level pseudocode for parallel array summation.

• the depth is 𝐷 (𝑛) = 𝑙𝑜𝑔(𝑛), i.e., number of sequential steps;
• the optimized runtime on 𝑃 processors is actually𝑂 ((𝑛/𝑃) + 𝑙𝑜𝑔(𝑃)). This can be achieved by
transforming the program according to theorem 4. We recall that the “Optimized-Map-Reduce
Lemma” says that a map-reduce composition can be executed by:

(1) chunking the input array into 𝑃 subarrays of roughly-equal sizes,
(2) then processing each subarray sequentially on a different processor, but in parallel across

subarrays,
(3) then reducing the results of the 𝑃 subarrays in parallel by means of a reduction tree.
Step (1) and step (2) are fully parallel and take𝑂 (𝑛/𝑃) time, while step (3) requires a reduction
tree on 𝑃 elements, which takes 𝑂 (𝑙𝑔 𝑃) time (depth).
• one can now verify that Brent’s lemma:

𝑂 ( 𝑛
𝑃
) ≤ 𝑂 ( 𝑛

𝑃
+ 𝑙𝑜𝑔(𝑃)) ≤ 𝑂 ( 𝑛

𝑃
+ 𝑙𝑜𝑔(𝑛))

gives bounds which are good approximations (for the assumed 𝑃 ≤ 𝑛
2 ) and allows us to

reason on the essence rather than overthink the impact of optimizations.
We have so far derived the work-depth complexity of array summations in an intuitive way, by

abstracting out the information depicted in a picture. The question is: “Can we also do this in a
systematical way for an arbitrary code?” It turns out the answer is positive, as demonstrated by the
following analysis of the low-level (imperative) pseudocode presented in fig. 9. The pseudocode
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uses for and forall to denote a sequential and a parallel loop, respectively. The analysis proceeds
bottom-up, by which wemean that we go in-order across constructs at the same level and innermost-
to-outermost in nests:
• The parallel loop between lines 1 − 3 has 𝐷1−3 (𝑛) = Θ(1), and𝑊1−3 (𝑛) = Θ(𝑛),
• The parallel loop between lines 5 − 7 has 𝐷5−7 (𝑛) = Θ(1), and𝑊5−7 (𝑛,ℎ) = Θ(𝑛/2ℎ),
• The sequential loop between lines 4 − 8 executes 𝑘 iterations (𝑛 = 2𝑘 , hence 𝑘 = 𝑙𝑔 𝑛), each
consisting of the parallel loop 5 − 7, hence it has:
– depth 𝐷4−8 (𝑛) = 𝑘 × 𝐷5−7 (𝑛) = Θ(𝑙𝑔 𝑛), and
– work𝑊4−8 (𝑛) =

∑𝑘
ℎ=1𝑊5−7 (𝑛,ℎ) = Θ(∑𝑘

ℎ=1 (
𝑛

2ℎ )) = Θ(2𝑛(1− 1
2𝑘+1 )) = Θ(2𝑛(1− 1

2𝑛 )) = Θ(𝑛)
• The statement on line 9 trivially has 𝐷9 (𝑛) = Θ(1),𝑊9 (𝑛) = Θ(1),

• Thus the depth and work for the entire program are 𝐷 (𝑛) = Θ(𝑙𝑔 𝑛), and𝑊 (𝑛) = Θ(𝑛),
respectively!
• By Brent’s Theorem, it follows that the actual runtime is bounded by: 𝑛

𝑃
≤ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 ≤ 𝑛

𝑃
+𝑙𝑔 𝑛

3.1.4 Naive and Native Implementation of Reduction in Futhark.

The previous section has shown that a reduction can be easily implemented based on maps and
sequential loops. It is natural to ask then, why does reduction need to be a first-class citizen of a
data-parallel language, when it can be easily be provided as part of a library?
We first provide an intuitive demonstration by implementing reduction in the Futhark data-

parallel language and comparing the performance of our program with the natively supported
reduction. This also allows us to get acquainted with Futhark, which will be used in PMPH exercises
and so on.
The Futhark implementation of the reduction pseudocode discussed in the previous section is

presented in fig. 10. In the following, we will explain the code:
(1) In Futhark comments start with token – and expand until the end of the line. However, an

uninterrupted sequence of comment lines that start a source file (after the -- == comment)
define reference input-output datasets for automatic testing or benchmarking:
– The first dataset is directly specified: the input consists of an array of 16 single-precision
floats (f32), using the common array literal notation [a1, . . ., a𝑛], and the reference
result is a single precision float 7.0f32.

– The second dataset is held in a file (-- compiled input @ data/f32-arr-16K.in), that
stores an array of length 16777216, but the result is given explicitly, albeit it can similarly
be stored in a file (e.g., -- output @ data/f32-arr-16K.out).

– The third dataset is an array of length 33554432 containing randomly generated single-
precision floats. auto output means that the result is validated against the sequential-C
execution; hence if the results differ then this possibly signals that a compiler bug exists.

– Assuming the name of the file is red-by-hand.fut, compilation for the Opencl and Cuda
GPU backends can be carried outwith the commands $ futhark opencl red-by-hand.fut
and $ futhark cuda red-by-hand.fut and compilation for sequential C can be per-
formed with $ futhark c red-by-hand.fut; all will result in an executable named
red-by-hand, which can be run on a dataset with the command:
$ ./red-by-hand -e naiveRed -t /dev/stderr -r 10 < data/f32-arr-16K.in
The -t option records the program runtime (in microseconds) in the next-specified file; in
our case this is displayed in /dev/stderr. The reported runtime does not include:
∗ the CPU-to-GPU transfer of the program input and the GPU-to-CPU transfer of the
program result.
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-- This implementation should be in a file named: red -by-hand.fut

-- ==

-- compiled input {

-- [ 1.0f32 ,-2.0f32 ,-2.0f32 , 0.0f32 , 0.0f32 , 0.0f32 , 0.0f32 , 0.0f32

-- , 3.0f32 , 4.0f32 ,-6.0f32 , 1.0f32 , 2.0f32 ,-3.0f32 , 7.0f32 , 2.0f32

-- ]

-- }

-- output {

-- 7.0f32

-- }

--

-- compiled input @ data/f32 -arr -16K.in

-- output { -948.970459 f32 }

--

-- compiled random input { [33554432] f32 } auto output

-- For simplicity , assumes that n is 2^k

entry naiveRed [n] (a : [n]f32) : f32 =

let k = i64.f32 <| f32.log2 <| f32.i64 n

let b =

loop b = a for h < k do
let n' = n >> (h+1)

in map (\i -> #[ unsafe] (b[2*i]+b[2*i+1]) ) (iota n')

in b[0]

entry futharkRed [n] (a : [n]f32) : f32 =

reduce (+) 0.0 f32 a

Fig. 10. Futhark Implementation for Summing Up an Array of Single-Precision Floats

∗ the OpenCL/Cuda context creation and kernel compilation.
Option -r 10 specifies that the runtime should be averaged across 10 runs. If one wishes
to inspect various profiling information for the GPU backend, the program can be run with
options -L -P; this is especially useful when program compilation generates a number of
kernels.

– Testing and benchmarking across the datasets specified in the source file itself can be
carried out with the commands:
$ futhark test –backend=opencl red-by-hand.fut, or
$ futhark bench –backend=opencl red-by-hand.fut, or
$ futhark bench –backend=cuda red-by-hand.fut

– random (uniformly-distributed) datasets can be created with the futhark dataset com-
mand (see help with the –help option). A dataset consisting of an array of 16777216 f32
elements can be produced and saved in file data/f32-arr-16K.in by using the command:
futhark dataset -b –f32-bounds=-1.0:1.0 -g [16777216]f32 > data/f32-arr-16K.in

(2) Program entry points are specified with keyword entry and a command-line argument needs
to specify which entry point is chosen for execution, e.g., -e naiveRed. If no entry-point
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is specified, by default program execution will try to run the entry point called main (if
one exists). For simplicity, try to not use tuples as arguments for entry points. A function
declaration (which is not an entry point) starts with keyword let. The declaration of a
function or entry-point includes its name, which is optionally followed by declaring a set
of variables that will be used to denote array sizes, for example [n][m][p], followed by a
sequence of (optionally typed) formal arguments, and (optionally) by the return type of the
function.
– Our naiveRed has one formal parameter, denoted a which is an unidimensional array of
single-precision floats of length n, i.e., (a: [n]f32).

– A three-dimensional array in which the sizes of the first and last dimension are n and the
size of the second dimension is m would be written as [n][m][n]f32, and m would need to
be declared similar to n, i.e., [n][m].

– In our case the result is a scalar: f32. The programmer has to be a bit careful with the sizes
of an array result type: a size which is declared in the optional part can be used in the array-
result type if and only if it has been used in one of the formal array arguments. For example,
let main [n] (a : [n]f32) : [n]f32 = ... is legal and says that the input and result
array should have the same length, but let main [n] (m : f32) : [n]f32 = ... is
illegal because n cannot be deduced from the inputs. In the latter case, what the user intends
is probably let main (n : i32) (m : i32) : [n]f32 = ....

(3) For most cases of interest to us, the program input and result should be specified in tuple of
arrays form (or structure of arrays AoS). (Note that this restriction only refers to the entry
points; all other code may use array-of-tuple form.) For example, try not to pass to main
a formal argument b : [n](f32,f32) or c : (f32, f32); these should be split into two
arguments each: (b1: [n]f32) (b2: [n]f32) or (c1: f32) (c2: f32).

(4) The body of the naiveRed is a let expression.
1. k is bound to the value of log2 n:

let k = i64.f32 <| f32.log2 <| f32.i64 n
where n is assumed to be a power of two, and <| pipes the right-hand side result to the
left-hand side function (call). i64.f32 transforms a float argument into an 64-bit signed
integer, and f32.i64 performs the reverse operation.

2. b is defined to be the result of the loop expression: loop b = a for h < k do body,
which is always executed sequentially:
∗ b is a variable bounded in the loop context, whose value is variant across different
iterations of the loop: it is initialized upon loop entry with the value of a, and the result
of the loop body will give the value of b to be used by the next iteration of the loop.
∗ the loop runs k iterations (we recall that n = 2𝑘 ) and h takes values in 0, . . ., k-1 in
different iterations. Loops may also iterate across elements of an array using the more
direct notation for x in xs, such that x = xs[i] in some iteration i.

3. The body of the loop consists of a let expression:
∗ let n ' = n >> (h+1) which binds n’ to the value obtained by bit-shifting n in the
right direction with h+1 bits, i.e., 𝑛′ = 𝑛

2ℎ+1 .
∗ and results in the application of map second-order array combinator (SOAC):
map (\i -> (b[2*i]+b[2*i+1]) ) (iota n')
· the array input of the map is iota n' which corresponds to the array [0,1,. . .,n’-1].
· the mapped anonymous (lambda) function is (\i -> b[2*i] + b[2*i+1]).
Please note that the Futhark implementation differs from the imperative pseudocode
shown in fig. 9 in that each iteration of the Futhark loop computes an array result of half
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the size of the input b: iterations h=0, h=1 and h=k-1 result in arrays of length 𝑛′ = 𝑛
21 ,

𝑛′ = 𝑛
22 and 𝑛

′ = 𝑛

2𝑘 = 𝑛
𝑛
= 1, respectively. That is the reason why all iterations use map

with the same function (\i -> b[2*i]+b[2*i+1]).
4. Finally the loop execution results in an array b containing one element, and the main

function returns the (first) element of b (i.e., b[0]).

The second entry point, named futharkRed, simply calls Futhark’s native reduce construct.
Compiling and running the two programs on an A100 Nvidia GPU shows that the native re-

duce is about a factor 3× faster than our by-hand implementation (red-by-hand.fut) on dataset
data/f32-arr-16K.in.
The reason for the speedup is that the code-generation of the native construct benefits from

an optimized code generation that executes one kernel8 that performs about 𝑛 reads from global
memory and much fewer writes to global memory, while using internally scratchpad (fast) GPU
memory. In comparison, the discussed implementation (red-by-hand.fut) executes a 𝑙𝑜𝑔(𝑛)-
iteration loop, in which each loop iteration calls a kernel corresponding to the map of size 𝑛′ = 𝑛

2ℎ+1 .
The map reads 2 · 𝑛′ and writes 𝑛′ elements from/to global memory. In total this implementation
performs about 2 · 𝑛 reads and 𝑛 writes from/to global memory, which is about 3× more global-
memory accesses than the native implementation.
This is one of the reasons for which it makes sense to have second-order array combinators

(SOACs) such as reduce and scan as first-class citizens in the data-parallel language. The other
reason corresponds to the algebraic properties of such operators: for example the composition of a
reduce and a map can be fused in a more advanced construct [31, 40], by a rule similar to theorem 4
which, similarly requires to read the input array once from global memory. Such high-level fusion
rules would not be possible if we would implement the reduce in the library based on iterative
applications of map; it is even difficult to see how fusion could be applied in such a context.

3.2 Other Parallel Operators, Examples of Nested-Parallel Applications
This section is organized as follows:

• section 3.2.1 introduces the type and semantics of several parallel operators commonly used
in (functional) data-parallel languages.
• section 3.2.2 presents a possible, work-efficient implementation of the scan (a.k.a. parallel-
prefix sum) operator, which is a basic-block of parallel programming, and shows how a
segmented scan operator can be easily written in terms of scan.
• section 3.2.3 shows a possible implementation of filter based on map and scan and scatter
(parallel write) operators.
• The remaining (sub)sections demonstrate how several applications can be constructed as
puzzles from a nested composition of such operators:
– section 3.2.4 briefly discusses the multiplication of a sparse matrix with a dense vector, and
in particular introduces the notion of data flattening.

– section 3.2.5 presents three implementations for computing all prime numbers less then a
certain input: the first version provides the intuition, but does not have the optimal depth;
the second version fixes depth optimality, but this does not means it is necessarily best in
practice; the last version is work inefficient but has a structure that makes it efficient for
GPU hardware.

– Finally, section 3.2.6 looks at the implementation of quicksort.

8The code generation of reduce actually runs two kernels, but the second one takes negligible time.
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map : (𝛼 → 𝛽) → Πn. [n]𝛼 → [n]𝛽

map f [a1, . . ., a𝑛] = [f a1, . . ., f a𝑛]

map2 : (𝛼1→ 𝛼2 → 𝛽) → Πn. [n]𝛼1 → [n]𝛼2 → [n]𝛽

map2 f [a1, . . ., a𝑛] [b1, . . ., b𝑛] = [f a1 b1, . . ., f a𝑛 b2]

map3 : . . .

reduce : (𝛼 → 𝛼 → 𝛼) → 𝛼 → Πn. [n]𝛼 → 𝛼

reduce ⊕ 0⊕ [a1, . . ., a𝑛] = 0⊕ ⊕ a1 ⊕ . . . ⊕ a𝑛

scan : (𝛼 → 𝛼 → 𝛼) → 𝛼 → Πn. [n]𝛼 → [n]𝛼

scan ⊕ 0⊕ [a1, . . ., a𝑛] = [a1, a1⊕a2, . . ., a1 ⊕ . . . ⊕ a𝑛]

filter : (𝛼 → Bool) → Πn. [n]𝛼 → [m]𝛼 (where m ≤ n)

filter p [a1, . . ., a𝑛] = [a𝑘1 ,. . ., a𝑘𝑚 ]

such that k1 < k2 < . . . < k𝑚, and denoting by k = {k1,. . ., k𝑚},

we have (p a 𝑗 == true) ∀ j ∈ k, and (p a 𝑗 == false) ∀ j ∉ k

Fig. 11. Types and Semantics of maps, reduce, scan, filter.

3.2.1 Types and Semantics of Various Parallel Operators.

We start the discussion with zip and unzip operators: zip receives two arrays of the same
length n and produces an array of tuples of length n by pairing-up the elements at the same index
of the two arrays. unzip is the inverse of zip, i.e., unzip=zip−1:
zip : Πn. [n]𝛼1 → [n]𝛼2 → [n](𝛼1, 𝛼2)

zip [a1,. . ., a𝑛] [b1,. . ., b𝑛] = [(a1,b1), . . .,(a𝑛,b𝑛)]

unzip : Πn. [n](𝛼1, 𝛼2) → ([n]𝛼1, [n]𝛼2)

unzip [(a1,b1), . . .,(a𝑛,b𝑛)] = [a1,. . ., a𝑛] [b1,. . ., b𝑛]

Please note that our semantics differs from the one in Haskell, which would allow two list
of different length and would result in an array of tuples whose length is the minimum of the
input-array lengths. In Futhark zip/unzip are syntactic sugar: they are supported in the source
language, but are eliminated (compiled away) in an early compiler stage that systematically rewrites
the program to a tuple-of-arrays form.

We use the following array constructors:
iota : (n: i32) → [n]i32
iota n = [0, . . ., n-1]

replicate : (n: i32) → 𝛼 → [n]𝛼

replicate n a = [a, . . ., a]

iota n creates an arrays of integral elements starting from 0 to n-1, and replicate n a creates an
array of length n filled with the same element a. iota can be used to create the iteration space, for
example in the case when the parallel operator needs to access several elements of the input array
in each iteration; we have seen such an example in the case of the naive-reduce implementation:
map (\i -> b[2*i] + b[2*i+1] ) (iota n'). replicate is typically used for initializing an
array which will be subject to a scan or to in-place updates.
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Figure 11 shows the types and semantics of several second-order array combinators (SOACs). We
have already introduce map and reduce combinators. For ease of notation we will also introduce
map2 which receives as arguments a binary function f and two input arrays of the same length,
and produces an array by applying f to corresponding elements from the first and second arrays,
respectively. Similar definitions are possible for map3 and so on.

scan is commonly known as parallel-prefix sum, since it produces an array of the same length
as the input by starting with the first element, then applying the operator between the first two
elements, then applying the operator between the first three elements, and so on, until the last
element corresponds to the result of reducing the array. Please note that, similar to reduce, scan’s
binary operator ⊙ must be associative! Please also note that the provided version of scan is inclusive
and it does not actually require a neutral element; an exclusive scan requires a neutral element
because it produces an array that starts with the neutral element and ends with the reduction of
the first n-1 elements. The work and depth of scan is also similar to reduce: 𝑂 (𝑛) and 𝑂 (𝑙𝑔 𝑛),
respectively.
Finally, filter receives as argument a predicate p (i.e., a function of type 𝛼 →Bool) and an

input array, and it filters-out from the input array all the elements that do not succeed under the
predicate (i.e., indexes j such that p a𝑗 = false). Please note that (i) the result elements respect
the relative order in which they appear in the input array, and that (ii) the size of the result array is
necessarily less than or equal to that of the input array. The work and depth of filter is similar to
scan (𝑂 (𝑛) and 𝑂 (𝑙𝑔 𝑛)), because its implementation uses scan.

We conclude this subsection by introducing scatter, a very important operator used for updating
in parallel some of the indices of an arrays, where the updated indices do not necessarily follow
any regular pattern, i.e., think parallel random writes. Its type is:
scatter: Π n. *[n]𝛼 → Π m. [m]i64→ [m]𝛼 → *[n]𝛼
which means that it receives as arguments a base array of length n, and two arrays of length m
holding the to-be-updated indices and corresponding values, respectively, and produces an array of
size n by applying the updates. We make the following important observations:
(1) The star * in front of the type of the first input array denotes an “unique” type, i.e., it specifies

that the array is going to be consumed—since the update is performed in place, it means that
any following reference to that array is illegal!

(2) Furthermore, a unique argument cannot “alias” any of the non-unique arguments, and
similarly an unique result cannot alias any of the non-unique arguments (but can alias an
unique input). This would not be necessary on a PRAM machine with an infinity number
of cores that execute in SIMD fashion, but such hardware does not exist in practice. (For
example, the result of scatter “aliases” the first input, since the update is performed in place,
but not the other two input arrays.)

(3) The depth of scatter is 𝑂 (1), and its work is 𝑂 (𝑚)—meaning, it does not depend on n, the
size of the to-be-updated array.

For programming convenience (e.g., padding), we enrich the semantics of scatter by requiring
that the indices that are outside the bounds of the input array are simply ignored (are not updated).
As such n and m are in no relation with each other: it can be that n<m or n==m or n>m.

We conclude with an example that hopefully clarifies how scatter works:
X (input array) = [a0, a1, a2, a3, a4, a5]

I (index vector) = [2, 4, -1, 1]

D (data vector) = [b0, b1, b2, b3]

scatter X I D = [a0, b3, b0, a3, b1, a5]
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Fig. 12. Parallel execution of scan for a 4-element array.

3.2.2 Implementation of Scan and Segmented Scan.

We start by emphasizing again that, similar to reduce, scan requires an associative binary
operator, and the exclusive scan requires the neutral element of the monoid induced by that operator.
The intuition behind the implementation of exclusive scan is depicted in fig. 12 for an array of

four elements. Note that its semantics differs from that of Futhark’s (inclusive) scan: assuming
an n-element input array, an exclusive scan results in the neutral element in the first position of
the result array, and the “sum” of the first n-1 elements in position n-1. The implementation is
organized in two parallel steps:
(1) The first step is called “Up-Sweep” and is similar with a reduction, except that the accumula-

tion of all elements is computed in the last element of the array, rather than the first.
• After the up-sweep pass, value 0 is placed in the position of the last element.

(2) The second step is called “Down-Sweep”, and it propagates updates to the array’s elements
in the reverse order of the up-sweep pass (i.e., reverse the arrows and the traversal of the up
sweep). Each propagation requires two substeps:

2.1. the left child sends its value to its parent and updates its value to that of the parent.
2.2. the right-child value is obtained by applying the binary operator of the scan to the left-

child value and to the (old) value of parent. Please notice that the right child is in fact the
parent—an in-place algorithm.

The imperative pseudocode that implements the exclusive scan operator is shown in fig. 13.
A reasoning similar to the one we applied to reduce can compute that the depth and work of
the presented implementation is 𝐷 (𝑛) = Θ(𝑙𝑔 𝑛) and𝑊 (𝑛) = Θ(𝑛), respectively. In fact the only
difference in comparison to the imperative pseudocode of reduce is that scan requires an extra
(down-sweep pass), but this does not matter complexity-wise because it has the same work and
depth as the up-sweep pass (similar to the one used for reduction), and a 2× factor leaves unchanged
the asymptotic behavior.
The pattern of a work-inefficient algorithm for inclusive scan is shown in fig. 14, and the

pseudocode is presented in fig. 15. This is the typical CUDA implementation for a warp of threads—
a warp is the unit of parallel execution in CUDA and consists of 32 consecutive threads. Note that
the depth of the implementation is optimal: 𝐷 (𝑛) = Θ(𝑙𝑔 𝑛), but the work is not:𝑊 (𝑛) = Θ(𝑛 𝑙𝑔 𝑛).
However, on CUDA platforms, any warp of threads executes in lock-step (in SIMD fashion), and de-
selecting threads from execution (within one warp) brings no benefits. In fact this implementation
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Input: array A of n=2𝑘 elements of type 𝛼

⊕ : 𝛼 → 𝛼 → 𝛼 associative

Output: B = [0, a1, a1⊕a2,. . .,⊕𝑛−1𝑗=1 a 𝑗 ]

1. forall i = 0 : n-1 do
2. B[i] ← A[i]

3. endfor

4. for d = 0 to k-1 do -- up-sweep pass

5. forall i = 0 to n-1 by 2𝑑+1 do

6. B[i+2𝑑+1 -1] ← B[i+2𝑑 -1] ⊕ B[i+2𝑑+1 -1]

7. endfor
8. endfor
9. B[n-1] = 0

10. for d = k-1 downto 0 do -- down -sweep pass

11. forall i = 0 to n-1 by 2𝑑+1 do

12. tmp ← B[i+2𝑑 -1]

13. B[i+2𝑑 -1] ← B[i+2𝑑+1 -1]

14. B[i+2𝑑+1 -1] ← tmp ⊕ B[i+2𝑑+1 -1]

15. endfor
16. endfor

Fig. 13. Imperative Pseudcode for implementing exclusive scan

2 4 7 9 3 1 5 8

2 6 4 611 16 12 13

2 6 20 1813 22 23 17

2 6 26 3113 22 25 39

+ + + + + + +

+ + + + + +

+ + + +

Fig. 14. Inclusive scan used inside a warp for CUDA implementation.

is a factor of 2× faster than the one based on the up- and down-sweep, because it performs only
one sweep—its depth is 𝑙𝑔 𝑛 instead of 2 𝑙𝑔 𝑛.
The remaining of this (sub)section discusses the segmented scan operator. A segmented scan

semantically operates on an array of arrays—think a matrix in which the rows do not necessarily
have the same length—and it results in an array of arrays of similar shape as the input, in which
each of the resulted subarrays are obtained by scanning the corresponding input subarray with the
given associative binary operator (and neutral element). Thus the semantics of a segmented scan is
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Input: array A of n=2𝑘 elements of type 𝛼

⊕ : 𝛼 → 𝛼 → 𝛼 associative

Output: B = [a1, a1⊕a2,. . .,⊕𝑛−1𝑗=0 a 𝑗 ]

1. forall i = 0 : n-1 do
2. B[i] ← A[i]

3. endfor
4. for d = 0 to k-1 do

5. h = 2𝑑

6. forall i = h to n-1 do
7. B[i] ← B[i-h] ⊕ B[i]

8. endfor
9. endfor

Fig. 15. Imperative Pseudcode for warp-level inclusive scan in CUDA; 𝑛 = 32

a map over the input array, in which the mapped function performs a scan on each subarray. The
example below demonstrates the semantics of an inclusive segmented scan:
sgmScan (+) 0 [[1,3,5], [7,8], [9 ,11 ,14 ,15]] ≡
[scan (+) 0 [1,3,5], scan (+) 0 [7,8], scan (+) 0 [9 ,11 ,14 ,15]] ≡
[[1,4,9], [7,15], [9 ,20 ,34 ,49]]

The example above specifies the semantics but does not give insight into what a data-parallel
implementation should be. The major obstacle is that the array of arrays is typically represented as
an array of pointers, each pointing to the corresponding subarray. However this representation
is not suitable for parallel execution: we need a flat data-structure! As such, we represent the
array of arrays by a flat array of values—whose length n is the total number of elements, i.e., the
sum of the lengths of the subarrays—together with a flag array, which has 1 (or true) in the first
position that starts a subarray, and 0 (or false) in the remaining positions. One may also add to the
representation a shape array, which has number-of-subarrays integral elements, each containing
the lengths of its corresponding subarray. We present an example below that demonstrates the
data-parallel representation (shape + flag + value flat arrays):

nestedArray = [[1, 3, 5], [7, 8], [9, 11, 14, 15]]

↓ ↓ ↓ ↓
shapeArray = [ 3, 2, 4 ]

flagArray = [ 1, 0, 0, 1, 0, 1, 0, 0, 0 ]

valueArray = [ 1, 3, 5, 7, 8, 9, 11, 14, 15 ]

It follows that the segmented scan has almost the same type as scan, the only difference being
that it receives one extra argument: the flag array, which is represented as an array of booleans (or
integers):
sgmScan : (𝛼 → 𝛼 → 𝛼) → 𝛼 → Π n. [n]bool → [n]𝛼 → [n]𝛼

For completeness, fig. 16 shows a graphical representation of the execution pattern of exclusive
segmented scan, and fig. 17 shows the imperative pseudocode for exclusive segmented scan. While
there are more branches, it is relatively straightforward to see that the depth and work asymptotics
of segmented scan remains the same as the one of scan: 𝐷 (𝑛) = Θ(𝑙𝑔 𝑛) and𝑊 (𝑛) = Θ(𝑛).
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 (CMU 15-418, Spring 2012)

Segmented scan
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

a0 a0-‐1 a2 a2-‐3 a4 a5 a6 a6-‐7 a8 a8-‐9 a10 a10-‐11 a12 a12-‐13 a14 a14-‐15

a0 a0-‐1 a2 a0-‐3 a4 a5 a6 a5-‐7 a8 a8-‐9 a10 a10-‐11 a12 a12-‐13 a14 a12-‐15

a0 a0-‐1 a2 a0-‐3 a4 a5 a6 a5-‐7 a8 a8-‐9 a10 a10-‐11 a12 a12-‐13 a14 a10-‐15

a0 a0-‐1 a2 a0-‐3 a4 a5 a6 a5-‐7 a8 a8-‐9 a10 a10-‐11 a12 a12-‐13 a14 0

a0 a0-‐1 a2 a0-‐3 a4 a5 a6 0 a8 a8-‐9 a10 a10-‐11 a12 a12-‐13 a14 0

a0 a0-‐1 a2 0 a4 a5 a6 a0-‐3 a8 a8-‐9 a10 0 a12 a12-‐13 a14 a10-‐11

a0 0 a2 a0-‐1 a4 a0-‐3 a6 a5 a8 0 a10 0 a12 a10-‐11 a14 a10-‐13

a00 a0-‐1 a0-‐2 a0-‐3 0 a5 a5-‐6 0 a8 0 a10 a10-‐11a10-‐12 a10-‐13 a10-‐14
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Fig. 16. Parallel execution of exclusive segmented scan. Figure courtesy of CMU 15-418, Spring 2012

Understanding the execution pattern and pseudocode is difficult: the teacher advices to not attempt
it because it does not really provide essential new insight.
Instead, we make the essential observation that a segmented scan can be straightforwardly

implemented in terms of a scan, which basically means that if an efficient implementation of scan
is given, then we can directly derive an efficient implementation of segmented scan, and moreover,
that segmented scan has the same work and depth complexity as scan.

The code below shows the Futhark implementation of the inclusive segmented scan:
let segmented_scan [n] 't (op: t -> t -> t) (ne: t)

(flags: [n]bool) (arr: [n]t) : [n]t =

let (_, res) = unzip <|

scan (\(x_flag ,x) (y_flag ,y) -> -- extended binop is denoted ⊙
let fl = x_flag || y_flag

let vl = if y_flag then y else op x y

in (fl, vl)

) (false , ne) (zip flags arr)

in res

The implementation consists of a scan whose input array is obtained by zipping the flag and value
arrays, and whose binary associative operator combines two flag-value tuples:

• (x_flag,x) is the accumulator and (y_flag,y) corresponds to the flag and value of the
current element of the input array;
• the segmented-scan operator computes the resulting value by checking whether the current
element corresponds to the start of a segment (i.e., tests whether y_flag is true).
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Input: flag array F of n=2𝑘 of ints/bools

data array A of n=2𝑘 elements of type 𝛼

⊕ : 𝛼 → 𝛼 → 𝛼 associative

Output: B = segmented scan of 2-dimensional (irregular) array A

1. forall i = 0 to n-1 do B[i] ← A[i] endfor
2. for d = 0 to k-1 do -- up-sweep pass

3. forall i = 0 to n-1 by 2𝑑+1 do

4. if F[i+2𝑑+1 -1] == 0 then

5. B[i+2𝑑+1 -1] ← B[i+2𝑑 -1] ⊕ B[i+2𝑑+1 -1]

6. endif

7. F[i+2𝑑+1 -1] ← F[i+2𝑑 -1] .|. F[i+2𝑑+1 -1] -- .|. is bitwise -or

8. endfor endfor
9. B[n-1] ← 0

10. for d = k-1 downto 0 do -- down -sweep pass

11. forall i = 0 to n-1 by 2𝑑+1 do

12. tmp ← B[i+2𝑑 -1]

13. if F_original[i+2𝑑 ] ≠ 0 then

14. B[i+2𝑑+1 -1] ← 0

15. else if F[i+2𝑑 -1] ≠ 0 then

16. B[i+2𝑑+1 -1] ← tmp

17. else B[i+2𝑑+1 -1] ← tmp ⊕ B[i+2𝑑+1 -1]

18. endif

19. F[i+2𝑑+1 -1] ← 0

20. endfor endfor

Fig. 17. Imperative Pseudcode for implementing exclusive segmented scan

– if this is the start of a segment, then the resulting value is the current element value (y), as
dictated by the semantics of inclusive segmented scan;

– otherwise we need to accumulate the current value: op x y
• the segmented-scan operator computes the resulting flag by taking the logical or of the two
argument flags. This is necessary in order to propagate the start-of-a-segment flag, because
parallel execution may proceed in a different order than the sequential execution.
• We leave as an exercise to verify that the scan’s (lifted) operator, named ⊙, is associative, i.e.,
((x_flag,x) ⊙ (y_flag,y)) ⊙ (z_flag,z) equals
(x_flag,x) ⊙ ((y_flag,y) ⊙ (z_flag,z)), and to check that the neutral element of the
monoid induced by ⊙ is indeed (false, ne).

An important observation is that segmented scan can be easily adapted to work with an
integral array of flags, in which a flag different than 0 denotes the start of a new segment. The
necessary modifications are:
• fl = x_flag || y_flag is rewritten as fl = x_flag | y_flag, where | denotes the
bitwise-or operator, and
• the branch condition if y_flag is rewritten as if y_flag != 0.

Maintaining the flags as an array of boolean reduces memory footprint and saves bandwidth, but
some of the flattening rules can be optimized if we use the integral representation.
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let partition2 [n] 't -- Assume t = i32 , n = 6,

(p : (t -> bool)) -- p (x:i32)= 0 == (x%2),

(arr : [n]t) : ([n]t, i64) = -- arr = [5,4,2,3,7,8]

let cs = map p arr -- cs = [F,T,T,F,F,T]

let tfs = map (\f -> if f then 1 -- tfs = [0,1,1,0,0,1]

else 0) cs

let isT = scan (+) 0 tfs -- isT = [0,1,2,2,2,3]

let i = isT[n-1] -- i = 3

let ffs = map (\f->if f then 0

else 1) cs -- ffs = [1,0,0,1,1,0]

let isF = map (+i) <| scan (+) 0 ffs -- isF = [4,4,4,5,6,6]

let inds= map3 (\c iT iF -> -- inds= [3,0,1,4,5,2]

if c then iT -1

else iF -1

) cs isT isF

let r = scatter (copy arr) inds arr -- r = [4,2,8,5,3,7]

in (r, i)

Fig. 18. Implementation of a two-way partition in Futhark.

3.2.3 Implementation of Partition (Filter).

We have already presented the type and semantics of filter. The question is: “can filter be
implemented in terms of map, scan, and scatter?” The answer is positive!
In the following we will derive the implementation of a slightly more complicated construct

than filter, named partition, which has type:
partition2 : (𝛼 → bool) → Π n. [n]𝛼 → ([n]𝛼 ,i32)

Partition is similar to filter, in that it receives as arguments a predicate and an input array, but
it returns an array of the same length as the input array and an integer. The array result contains
the same elements as the input array, but in a different order:

• the elements that succeed under the predicate come before the ones that fail the predicate,
• the relative order of the elements in the two subarrays is the same as in the original array.

The scalar (integral) result is the number of elements that succeed under the predicate.
The Futhark implementation is shown in fig. 18 and the right hand side of fig. 18 demonstrates

the code on an example. The implementation proceeds as follows:

• First, the predicate is mapped on the input array, and the result is turned into ones (for true)
or zeros (for false), which are stored in array tfs.
• An inclusive scan with addition is performed on tfs resulting in array isT. Please observe
that array isT now holds the value of the indices at which the elements that succeed under
the predicate should appear in the result array (plus one). Also the last element of isT, saved
under variable i is the number of elements that succeed under the predicate.
• Array isF is computed in a similar fashion and holds the value of the indices at which the
elements that fail under the predicate should appear in the result array (plus one).
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• The two pieces of information are combined together in array inds from arrays isT and isF
(and cs) by means of a map3 operator.
• Finally, the scatter operator is used to permute the array by inds, and the result is written
in the new, uninitialized array created by scratch.
• The result is the permuted array, tupled with integer i, which denotes the number of elements
that have succeed under the predicate.

We observe that the implementation is a bit inefficient in that the last let instruction scatters the
elements in a copy of the array. The copying requires 2 · 𝑛 memory accesses and is not necessary
in an imperative implementation since all 𝑛 elements are going to be over-written, i.e., the scatter
can be safely performed on a freshly allocated array with uninitialized elements. Such a construct,
named scratch is available in the compiler IR, but is not exposed to the user because Futhark has
a deterministic semantics. One can alleviate the overhead by replicating a dummy element of type t
— which would require only 𝑛 accesses to memory instead of 2 · 𝑛 — but would also require dummy
to be passed as argument to partition2 thus polluting a bit its type signature.

3.2.4 Sparse-Matrix Vector Multiplication.

Assuming a dense𝑚 × 𝑛 matrix𝑀 and a dense vector 𝑣 of size 𝑛, matrix-vector multiplication
can be described by the formula: 𝑟 [𝑖] = Σ𝑛𝑗=1𝑀 [𝑖, 𝑗] × 𝑣 [ 𝑗], where 𝑖 = 0, . . .𝑚 − 1, and 𝑟 denotes the
resulting vector of length𝑚. Dense-matrix vector multiplication can be written in Futhark as:
let dnsMatVctMul [m][n] (mat: [m][n]f32) (vct: [n]f32) : [m]f32 =

map (\row -> let ps = map2 (*) row vct

in reduce (+) 0.0 f32 ps ) mat

However, our example refers to sparse matrices, whose non-zero values are significantly smaller
than the size of the dense matrix; fig. 19 shows several matrix representations of a m×n matrix
(where m=5 and n=4):

(a) the dense representation is a two-dimensional array of type [m][n]f32. Since the 2-D array
is regular—all rows have the same length—the array is assumed to be stored contiguously in
a memory space of size n×m×sizeof(f32).

(b) the array-of-pointers sparse representation maintains pointers to the subarrays that represent
the rows of the array, except that a row is represented only by the non-zero elements tupled
with their corresponding column number. Please note that now the array is irregular, since
the number of non-zero element is not the same across all rows.

(c) the flat sparse representation corresponds to a triplet of shape, flag and value arrays. The
shape array has size m and holds the number of non-zero elements on each row. The flag
and value arrays are unidimensional (flat) and their length is equal to the total number of
non-zero elements of the matrix. The latter are stored in the value array, while the flag array
records a zero at the index of each element that starts a row. This is known as the CSR format.

Futhark supports only regular arrays—i.e., all rows of a matrix have the same length—hence it
does not support arrays of pointers. However, assuming a language that supports arrays of pointers
(such as Haskell), sparse matrix vector multiplication can be elegantly written using format (b) in
the following Futhark-like pseudocode:
let spMatVctMul [m][n] (mat:[m][](i32 ,f32)) (vct:[n]) : [m]f32 =

map (\row -> let ps = map (\(i,v) -> v * vct[i]) row

in reduce (+) 0.0 f32 ps

) mat
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-- (a) Dense -Matrix Representation

[ [ 2.0, -1.0, 0.0, 0.0]

, [-1.0, 2.0, -1.0, 0.0]

, [ 0.0, -1.0, 2.0,-1.0]

, [ 0.0, 0.0, -1.0, 2.0]

, [ 0.0, 0.0, 0.0, 3.0]

]

-- (b) Sparse Matrix represented as

-- an array of pointers; each non -zero element

-- records its value and column number:

[ [(0,2.0), (1,-1.0)],

, [(0,-1.0), (1, 2.0), (2,-1.0)]

, [(1,-1.0), (2, 2.0), (3,-1.0)]

, [(2,-1.0), (3, 2.0)]

, [(3 ,3.0)]

]

-- (c) Flat Representation of Sparse Matrix:

shape = [2, 3, 3, 2, 1] -- number of non -0 elements of each row

flag = [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1]

value = [ (0,2.0), (1,-1.0), (0,-1.0), (1, 2.0), (2,-1.0),

(1,-1.0), (2,2.0), (3,-1.0), (2,-1.0), (3,2.0), (3 ,3.0)]

Fig. 19. Matrix representations: (a) dense, (b) sparse array of pointers, (c) sparse flat.

Please note that the implementation exhibits irregular parallelism: the size of the inner map-reduce
operations differs across iterations of the outer map. In comparison to the code corresponding to
dense matrices, the inner map is applied to each row of non-zero elements, whose values are mul-
tiplied with their corresponding element i in the vector. We will see later, in section 4 how to
re-write this irregular nested parallelism by means of (1) a flat-sparse-data representation in format
(c), and (2) flat-parallel constructs (that do not exhibit inner parallelism).

3.2.5 Prime Number Computation (Sieve).

This section discusses several implementations that, given an integer n, compute all the prime
natural numbers less than or equal to n. This example was introduced in the well-known article
“Scan as Primitive Parallel Operation” [7].

The first implementation, shown in fig. 20, starts with an array res of size n+1, in which elements
at indices 0 and 1 are zero, and the rest of the elements are ones. The meaning is that initially, all
natural number greater than 1 are considered prime numbers. Then the implementation iteratively
zeros out the array indices corresponding to all multiples of numbers less than or equal to

√
𝑛.

This step is accomplished in parallel by means of the forall construct. After the sequential loop
terminates, the prime numbers are the indices of res that hold non-zero (one) values.
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int res[n+1] = [0, 0, 1, 1, 1, ..., 1]

for(i = 2; i <= sqrt(n); i++)

if ( res[i] != 0 )

forall m ∈ multiples of i ≤ n} do
res[m] = 0;

endfor
endif

endfor

Fig. 20. Imperative code for the naive computation of prime numbers: Work 𝑂 (𝑛 𝑙𝑔 𝑙𝑔 𝑛), Suboptimal Depth
𝑂 (
√
𝑛).

-- Primes: Naive Version (primes -naive.fut)

-- ==

-- compiled input { 30i64 }

-- output {[2i64 ,3i64 ,5i64 ,7i64 ,11i64 ,13i64 ,17i64 ,19i64 ,23i64 ,29 i64]}

let main (n : i64) : []i64 = -- Assume n = 9, sq = 3

let a = map (\i -> if i==0 || i==1 -- a = [0,0,1,1,1,1,1,1,1,1]

then 0 else 1

) (iota (n+1)) -- iteration j=0, i=2, m=3

let sq = i64.f32 (f32.sqrt (f32.i64 n)) -- inds = [4, 6, 8]

let fl = -- vals = [0, 0, 0]

loop(a) for j < (sq -1) do -- a'= [0,0,1,1,0,1,0,1,0,1]

let i = j + 2

let m = (n / i) - 1 -- iteration j=1, i=3, m=2

let inds = map (\k -> (k+2)*i) -- inds = [6,9], vals = [0,0]

(iota m) -- a'= [0,0,1,1,0,1,0,1,0,0]

let vals = replicate m 0

let a' = scatter a inds vals -- iteration j=2, i=4, m=1

in a' -- a' unchanged

in filter (\i -> fl[i] != 0)

(iota (n+1)) -- Result: [2,3,5,7]

Fig. 21. Futhark code for the naive version of primes: Optimal Work 𝑂 (𝑛 𝑙𝑔 𝑙𝑔 𝑛), Suboptimal Depth: 𝑂 (
√
𝑛).

This (first) implementation has optimal work 𝑂 (𝑛 𝑙𝑔 𝑙𝑔 𝑛) but sub-optimal depth: 𝑂 (
√
𝑛). The

latter can be easily observed: the outer loop iterates sequentially to
√
𝑛 − 1 times. We will call this

the naive implementation (due to its sub-optimal depth).

The complete Futhark code for the naive version is shown in fig. 21; it faithfully implements
the imperative pseudocode. Furthermore, the right-hand side of the figure demonstrates the case
for n=9. Please note that the parallel forall loop has be implemented as a composition between
scatter and map. This is fused by the Futhark compiler, so the generated code is as efficient as the
imperative one.

The naive version of primes is a good starting point, but we are unhappy with the fact that the
depth is simply too high 𝑂 (

√
𝑛). Luckily, the solution is not terribly complicated: One can reason
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let main (n : i32) : []i32 =

let sqrn_primes = [2]

let len = 2

let (sqrn_primes ,_) =

loop (sqrn_primes , len) while len < n do
-- this is "len = min n (len*len)"

let len = if n / len < len then n else len*len

let composite = -- uses nested parallelism

map (\p -> let m = len / p

let arr = map (+2) (iota (m-1))

in map (*p) arr

) sqrn_primes

let not_primes = reduce (++) [] composite -- flattens data

let flat_size = length not_primes

let zero_array = replicate flat_size false
let mostly_ones= map (> 1) (iota (len +1))

let prime_flags= scatter mostly_ones not_primes zero_array

let sqrn_primes= filter (\i-> i>1 && i<=n && prime_flags[i])

(iota (len +1))

in (sqrn_primes , len)

in sqrn_primes

Fig. 22. Futhark-like (illegal) nested-parallel code for primes: OptimalWork𝑂 (𝑛 𝑙𝑔 𝑙𝑔 𝑛) and Depth:𝑂 (𝑙𝑔 𝑙𝑔 𝑛).

that if the primes 𝑝 between 2 and
√
𝑛 are known (and stored in array sqrn_primes), then we

could generate all multiples of those primes at once. In the data parallel language NESL, which
supports irregular nested parallelism, this computation could be expressed by means of the array
comprehension {[2*p : n : p] : p in sqrn_primes} which semantically results in an array
of arrays, in which each subarray corresponds to one of the known prime numbers between 2 and√
𝑛. For a given p, its subarray consists of the elements [2*p, 3*p, 4*p, . . .] which are less than

or equal to n, i.e., the slice that starts from 2*p and goes with a stride equal to p.
A Futhark-like pseudocode is shown in fig. 22—please remember that Futhark does not support

irregular arrays/parallelism, so this implementation would not even compile with Futhark; we just
use it for consistency. The implementation starts with a known set of primes [2] less than or equal
to len=2. Each iteration of the loop computes a new set of primes less than or equal to len2:
• The composite array is computed by means of nested-parallelism and it contains all the
multiples of the currently known set of primes. The code is semantically equivalent to the
previously-discussed NESL array comprehension: {[2*p : n : p] : p in sqrn_primes}.
• The not_primes array is the flattened version of composite, which is an array of arrays.
• The prime_flags array is computed by a scatter operator that
– writes into an array consisting of mostly one (true) values
– at the indices corresponding to the computed multiples of prime numbers
– zero (false) values that indicate that those positions do not correspond to prime numbers.
• the filter operator extracts the indices that correspond to prime numbers (true/one values).
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let isSorted [n] (arr: [n]i32) : bool =

reduce (&&) true <|

map (\i -> i == 0 || arr[i-1] <= arr[i]) (iota n)

let nestedQuicksort [n] (arr: [n]i32) : [n]i32 =

if n <= 1 || isSorted arr

then arr

else let i = getRand (0, (length arr) - 1)

-- ^ pseudocode for getting a random integer

-- (not valid in Futhark)

let a = arr[i]

let s1 = filter (\x -> (x < a)) arr

let s2 = filter (\x -> (x >= a)) arr

let rs = map nestedQuicksort [s1, s2]

-- ^ recursion not supported in Futhark

in (rs[0]) ++ (rs[1])

Fig. 23. Futhark-like nested-parallel code for quicksort. (Please be aware that this code is illegal in Futhark!)

We will not demonstrate how the nested parallel implementation works on a simple example in
which n is 9. Initially, len=2 and sqrn_primes = [2]. In the first iteration of the loop: len is set to
22 = 4, and composite = [[2*2]] = [[4]] because there is only one prime p=2 for which m=4/2=2
and arr = [2]. As such prime_flags = scatter [0,0,1,1,1] [4] [0] = [0,0,1,1,0] and
the result of the filter is thus [2,3]—the set of primes to be used for the next iteration.

The second iteration initially has len=4 and sqrn_primes = [2,3]. Then len is set to 9. Since
there are two primes 2 and 3, the composite array is computed as [[4,6,8],[6,9]], where the
first subarray corresponds to p=2 and m=9/2=4 and the second subarray corresponds to p=3 and
m=9/3=3. It follows that not_primes = [4,6,8,6,9] and prime_flags is computed as
scatter [0,0,1,1,1,1,1,1,1] [4,6,8,6,9] [0,0,0,0,0]
which results in [0,0,1,1,0,1,0,1,0,0], hence the primes less than or equal to 9 are extracted
by the filter operation as: [2,3,5,7].

It remains now to verify that this implementation has improved the depth and by how much. The
depth corresponds to the count of the sequential loop—meaning we need to answer the question:
“how many iterations does the sequential loop has?” One can observe that len starts at 2 = 220

and each iteration squares up the value of len: in the first iteration len is 221 , in the second is
(22)2 = 222 , in the third is (24)2 = 28 = 223 , hence one can easily prove by induction that in some
iteration 𝑘 the value of len is 22𝑘 . It follows that the total number of iterations of the loop is the
first 𝑘 such that 22𝑘 ≥ 𝑛; it follows that the depth of the new nested-parallel version is 𝑂 (𝑙𝑔 𝑙𝑔 𝑛).

3.2.6 Quicksort.

A Futhark-like nested-parallel pseudocode for quicksort is shown in Figure 23:

• Please note that this is illegal Futhark code, that will fail compilation because of two reasons:
(1) Futhark does not support recursion and (2) the array [s1,s2] passed to the recursive call
is irregular—the two subarrays do not necessarily have the same length.
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• The implementation picks a random pivot a and uses the filter operator to split the array
into two subarrays: one containing the elements less than the pivot and one containing the
other elements.
• The two subarrays are recursively processed (sorted) by the recursive call
map nestedQuicksort [s1, s2] and the sorted results are concatenated together to form
the sorted array. (The partitioning has already ensured that all the elements of the first
subarray are necessarily smaller than the ones of the second.) Please note that the call
map nestedQuicksort [s1, s2] gives raise to nested parallelism: the divide-and-conquer
nature gives raise to a tree in which, in principle, filter operations can be applied in parallel
on all the nodes at the same breadth level in the tree.
• The recursion terminates when the length of the list is less than or equal to 1—a one-element
list is always sorted—or when the array is already sorted. The latter is checked with the
isSorted function, which is implemented by means of a map-reduce composition.
• Please note that the use of isSorted is not an optimization; it is actually necessary to ensure
termination. A typical quicksort implementation would perform a three-way partitioning
of the array: the elements less than, equal to and greater than the pivot. For simplicity, the
presented implementation uses a two-way partition, but this may end up with an array of
length > 1 containing the same element, which makes the sorted condition necessary.
• Finally, the three-way splitting version has average work complexity 𝑛 𝑙𝑔 𝑛 and average depth
𝑙𝑔 𝑛. The later assumes that filter has depth𝑂 (1); in practice the average depth complexity
is 𝑙𝑔2 𝑛.

We conclude by demonstrating quicksort’s execution on the simple example when the input
array is arr = [3,2,4,1]. Assume random i = 0, hence a = 3. It follows that the array is
partitioned into two subarrays, one s1 = [2,1] which has elements less than 3, and the other s2
= [3,4] which has its elements greater or equal to three. Next quicksort is (mapped) performed
on the two subarrays.

In the case of nestedQuicksort [2,1], assume we pick i=0, leading to a = 2 and we partition
[2,1] into subarrays [1] and [2]. These are recursively processed but they hit the base-case since
they have length equal to 1, hence they are returned without modification and concatenated into
sorted array [1,2].
The case of nestedQuicksort [3,4] hits the base case, since it succeeds under the isSorted

predicate.
The final step is to concatenate the results of the two calls to nestedQuicksort, resulting in

sorted array [1,2] ++ [3,4] = [1,2,3,4]!

3.3 Brief Overview of the Futhark Language and Compiler
Futhark [26, 34] is a purely-functional array language that explicitly expresses parallel computations
by means of a nested composition of second-order array combinators (SOAcs), such as map, reduce,
reduce-by-index [30], scan, parallel write (scatter) [29] — most of them were covered in this section.

Futhark supports sized-types, higher-order functions, polymorphism, modules, and similar high-
level features, which are compiled away early (in the compiler’s front end) using a variety of
techniques [20, 28, 36]. The only remaining second-order functions are the SOACs.

Then a battery of optimizations are applied, including common-subexpression elimination, copy
and constant propagation, specialization of array-literal indexing, static/dynamic elimination of
array bound checking [33]9 and fusion [32].

9This is currently not as aggressive as it should be but we aim to significantly improve it soon.
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Futhark supports both forward- and reverse-mode automatic differentiation (AD) [11, 12, 72]
that (i) is implemented by code transformations applied to the simplified program resulted from the
previous step, and (ii) is interfaced in the source language by means of two second order functions:
jvp: stands for Jacobian-vector product and refers to forward-mode AD, and
vjp: stands for vector-Jacobian product and refers to reverse-mode AD.
The nested parallelism is then flattened and mapped to the hardware by a transformation called

incremental flattening [35], which essentially generates multiple semantically-equivalent versions
of the same code by incrementally utilizing more and more levels of application’s parallelism. It is
important to note that Futhark flattens only the so called regular parallelism: For example, an outer
map that contains inner-parallel operations whose size are provably the same for all “iterations” of
the outer map is considered regular parallelism. In contrast to that, examples of irregular(ly-nested)
parallelism — whose flattening is not (yet) supported in Futhark and will be studied in (the next)
section 4 — include, among others, the following cases:
• an outer map that contains inner parallel operations whose sizes vary through the outer map,
• an outer map that contains a loop whose count varies throug the outer map and the the loop
contains other parallel operations,
• the outer map contains if statements, whose conditions is variant throughout the outer map
and the corresponding then and else body of statements contain inner parallelism.

Each code version is then individually optimized, for example by optimizing (i) spatial locality,
e.g., by transposing the arrays whose accesses are uncoalesced, and (ii) temporal locality, e.g.,
by register and block tiling [74]. Selecting the optimal combinations of code versions that fits in
memory and offers best performance for a certain hardware is a challenging task. In principle, the
expert programmer can select it manually by passing a set of threshold values as (additional) input
to the executable program. However, this requires that the programmer has intimate knowledge of
the incremental-flattening transformation and even then, it can prove too tedious to be a feasible
avenue of approach in practice. To solve this, Futhark was equipped with an autotunner [48]10 that
• automatically generates good configurations for many programs of practical interest, and
• is guaranteed to produce optimal configurations when (i) the training datasets are represen-
tative and (ii) the program complies to a certain monotonic property (but the latter is not
guaranteed to hold in general).

Finally, after parallelism was mapped to hardware, various optimizations are applied, including:
• specialized code-generators for reduce-by-index [30], (segmented) reductions [31, 40], and
scan (prefix-sum) [14, 51],
• the introduction of a notion of memory [47, 50] that facilitates for example
– to short-circuit [49] a (segmented-)map kernel whose result is subsequently written/copied
into a target array slice—i.e., the map kernel writes directly into the memory space of the
target array, thus eliminating the overhead of the copy operation,

– to reuse the global and shared memory buffers [47] much in the same way in which register
allocation permits reuse of registers.

10See the futhark autotune command.

PMPH Lecture Notes for the Software Track, Vol. 1, No. 1, Article 1. Publication date: September 2018.



Lecture Notes for the Software Track of the PMPH Course 1:47

4 THE FLATTENING TRANSFORMATION
We have seen in the previous section how non-trivial applications can be naturally constructed
by combining parallel operators at the same level or at different levels in a parallel nest. We have
also seen that nested parallelism allows to reason asymptotically about the parallel behavior of the
implementation, such as its work and depth.

However exploiting nested parallelism is notoriously difficult. Direct utilization of nested paral-
lelism may be possible on some hardware, such as CPU. For example the parallelism of quicksort
can be exploited by dynamically spawning threads at each divide and conquer step. This technique
however is not guaranteed to result in good performance, for example because the distribution of
work across threads may be very unbalanced.

More important, a big class of highly-parallel hardware, such as GPUs support only very limited
forms of recursion and dynamic parallelism, if at all! Morally, the hardware execution is organized
on one (or maybe two) flat-parallel levels—for example, on GPUs one typically exploits grid-level
parallelism, and occasionally block-level parallelism, which allows threads within a block-group
to communicate by means of shared (scratchpad) memory. This means that direct mapping of
application parallelism will require a choice of which level to parallelize and which to sequentialize,
because it is not directly-possible to parallelize both levels.

It follows that there is a big disconnect between the nested-parallel form of the program—which
has the advantage that it resembles well the algorithmic specification—and a semantically equivalent
form of the program that can be efficiently and statically mapped (executed) on highly-parallel
hardware. The latter form might be efficient to execute, but likely it resembles little the original
algorithm and causes modularity and maintainability issues. Ideally, the re-writing should be done
automatically by the compiler, thus getting the best of the two worlds.
This section presents the intuition behind the seminal work on the NESL data-parallel lan-

guage [8] related to the flattening transformation [9] that
• statically transforms an arbitrarily-nested data-parallel program into a semantically equiva-
lent one that uses only flat-parallel construct (no nesting of parallelism),
• in a way that preserves the work and depth asymptotic of the original nested-parallel program.

The flattening transformation does not (completely) solve the problem, for example because
it requires high memory usage and does not account for communication costs; in fact it often
prevents opportunities for locality optimizations, because of excessive utilization of parallelism in
excess of what the hardware can support.11

However, what flattening primarily offers is a systematic way of reasoning about and
transforming nested parallelism. The goal of this chapter is not necessarily to formally intro-
duce the flattening transformation, but instead to acquire the touch-and-feel of how it works.
The intent is to train you by means of practical examples, so that you will acquire a sufficient
understanding that would allow you to apply its principles in future practical work related to GPU
parallelization (or other highly-parallel hardware).

This section is organized as follows:
• section 4.1 presents an incomplete set of rules related to the flattening of specific code
patterns.

11Various efforts have focused on addressing these issues by restricting flattening in various ways, for example by flattening
only the data and leaving the nested-parallel structure intact [5], by applying flattening at the granularity of the largest
sequential subexpression [37], by aggressive fusion of segmented operations enabled by shape analysis [69], or by mecha-
nisms for streaming irregular arrays [15, 42] that optimize memory footprint. NESL has also been implemented on GPU
hardware [6].
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let mkFlagArray 't [m]

(aoa_shp: [m]i64) (zero: t) --aoa_shp =[0,3,1,0,4,2,0]

(aoa_val: [m]t ) : []t = --aoa_val =[1,1,1,1,1,1,1]

let shp_rot = map (\i->if i==0 then 0 --shp_rot =[0,0,3,1,0,4,2]

else aoa_shp[i-1]

) (iota m)

let shp_scn = scan (+) 0 shp_rot --shp_scn =[0,0,3,4,4,8,10]

let aoa_len = shp_scn[m-1]+ aoa_shp[m-1] --aoa_len= 10

let shp_ind = map2 (\shp ind -> --shp_ind=

if shp==0 then -1 -- [-1,0,3,-1,4,8,-1]

else ind --scatter

) aoa_shp shp_scn -- [0,0,0,0,0,0,0,0,0,0]

in scatter (replicate aoa_len zero) -- [-1,0,3,-1,4,8,-1]

shp_ind aoa_val -- [1,1,1,1,1,1,1]

-- res = [1,0,0,1,1,0,0,0,1,0]

Fig. 24. Constructing the flag array from the shape array

• section 4.2 demonstrates how the previously-discussed rules can be combined to flatten a
trivial program.
• section 4.3 advises on how to start reasoning about flattening the nested-parallel versions
of sparse-matrix vector multiplication, prime-number computation, and quicksort. These
applications were introduced in sections 3.2.4, 3.2.5 and 3.2.6, respectively. The first two are
weekly-assignment tasks, and the latter may be a group project.

4.1 Rules For Flattening
We present first the intuition behind the flat-data representation (section 4.1.1), then we present the
rules for flattening several constructs which are directly nested inside a map: scan, map, replicate,
iota, if-then-else expressions, and reduce.

4.1.1 Data Flattening (Flat Array Representation).

A two-dimensional irregular array—think array of pointers or list of lists—can be represented in
a flat way by means of a shape array and a data array, which are both unidimensional arrays that
have contiguous support in memory and hence are suitable for data-parallel programming.

For example, the list of lists: aoa = [[a11,. . ., a1𝑚1],. . ., [a𝑟1,. . ., a𝑟𝑚𝑟
]] can be represented

(1) by the shape array aoa_shp = [m1,. . ., m𝑟], which specifies the length of each sublist, and
(2) by the flat-data array aoa_val = [a11,. . ., a1𝑚1, . . ., a𝑟1,. . ., a𝑟𝑚𝑟

].
However, we have seen that a segmented scan operator requires a flag array: semantically an

array of ones and zeros (booleans), which has the same size as the data array, and which records
with a one (true) the element that starts a (new) subarray and zero (false) otherwise. The question
is “how do we construct the flag array from the shape array”? fig. 24 provides the implementation
together with a side example:

(a) an exclusive scan is performed on the shape array, which is implemented by rotating the
array, then by performing an inclusive scan—the result is recorded in shp_scn;

(b) the length of the flag array is computed (we assume non-empty shape arrays);
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(c) a map is performed on shp_scn to compute the indices in the flag array where the one (true)
values are to be written—note that if the shape element is 0, the element is ignored (scatter
ignores -1 indices);

(d) a scatterwrites into an array of zeroes, at the positions recorded in shp_ind the values hold
by the third function argument (aoa_val); this creates the flag array, denoted by aoa_flg.

(e) Instead of simply using an array of ones, the function argument aoa_val holds the to-be-
written start-of-the-segment values because:
– any value different than zero may legally denote the start of the segment;
– sometimes it is useful to have the start of the segment denoted by some value other than 1,
for example by the actual length of the corresponding segment. For example if aoa_val is
the same as aoa_shp, this would result in flag array: [3,0,0,1,4,0,0,0,2,0].

Next, we will play with distributing various information to each member of the data array:
(f) “How can we record for each data member the size of its corresponding subarray?”

With our example, the result we seek would be [3,3,3,1,4,4,4,4,2,2]. This can be simply
accomplished by a segmented inclusive scan with addition on the format (e) of the flag array:

let aoa_flag = mkFlagArray aoa_shp 0 aoa_shp

in sgmScan (+) 0 aoa_flg aoa_flg

(g) “How can we record for each data member the index of its corresponding subarray?”
With our example the result we seek would be [1,1,1,2,4,4,4,4,5,5]. This can be ac-
complished by using the values of iota plus one for the aoa_val parameter, and then by a
segmented scan:

let iotap1 = map (+1) (iota m)

let aoa_flag = mkFlagArray aoa_shp 0 iotap1

let aoa_iot = map (-1) aoa_flag

in sgmScan (+) 0 aoa_flg aoa_iot

In the code above, iotap1 = [1,2,3,4,5,6,7,8]—it is necessary to add one, otherwise the
first start arraywould be potentiallymarked by a zero—aoa_floag = [2,0,0,3,5,0,0,0,6,0],
hence aoa_iot = [1,0,0,2,4,0,0,0,5,0] and finally the segmented scan spreads out
the start-of-segment value to the rest of elements in the segment, resulting in the desired
[1,1,1,2,4,4,4,4,5,5].

While we will mostly work with two-dimensional irregular arrays, we conclude this section by
reasoning about how to generalize the flat representation for a 𝑘-dimensional array. This can be
simply achieved by recording 𝑘 − 1 shape arrays, i.e., one for each outer dimension. For example,
the three-dimensional array:

[ [[1,2,3], [4,5], [6,7]], [[9], [8,7], [6], [5,4,3,2]] ]

is represented by the shape arrays aoa_shp0 and aoa_shp1 and by the flat-data array aoa_val:
aoa_shp0 = [3, 4]

aoa_shp1 = [3,2,2,1,2,1,4]

aoa_val = [1,2,3,4,5,6,7,9,8,7,6,5,4,3,2]

If required, we can create flag arrays for each dimension, for example from aoa_shp0 one
can compute aoa_flg0 = [1,0,0,1,0,0,0] and from aoa_shp1 one can compute aoa_flg1
= [1,0,0,1,0,1,0,1,1,0,1,1,0,0,0], by using the mkFlagArray function shown in fig. 24.
Furthermore, one can distribute various information across the data elements of the arrays in a
similar fashion with the one used for the two-dimensional arrays.
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Exercise 1 (Flattening the inner dimensions of a 3-D array).
Assume a three-dimensional array. Write a function that flattens out the two-inner dimensions of the
array. Note that the data array remains the same; what needs to be done is to compute the shape of the
resulting array. Assume that the shape and flags for every dimension are available (as arguments).
let flatten3to2d [n][m] (aoa_shp0: [m]i32)

(aoa_flg0: [n]i32)
(aoa_shp1: [n]i32) : [m]i32 = . . .

In the example just above, the result array should correspond to the list of lists
[ [1,2,3,4,5,6,7], [9,8,7,6,5,4,3,2] ], whose shape should be [7,8].

In the following subsections related to flattening we will use the following notation: for some
two-dimensional irregular array array_name, then the shape, flag, and data arrays of its flat rep-
resentation will be named array_name_shp, array_name_flg and array_name_val, respectively.
We will assume that the latter arrays are already available, since this section has shown how they
can be computed. We also assume for simplicity that the shape arrays do not contain zero elements.
The flattening transformation will be denoted by symbol F .
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4.1.2 Flattening a Scan Directly Nested in a Map.

rule 1 (F (Map(Scan))).
Flattening a scan that is directly nested inside a map is translated to a segmented scan. This corresponds
to computing the data array of the result; the shape and the flag arrays are the same as those of the
input array.
F ( map (\row -> scan (⊙) e⊙ row) A ) ⇒

( A_shp , sgmScan (⊙) e⊙ A_flg A_val )

We demonstrate this rule for the case when ⊙ = +, and A = [[1,3], [2,4,6]]. The computation
of the nested parallel program is:
map (\row -> scan (+) 0 row) [[1,3], [2,4,6]] ≡
[ scan (+) 0 [1,3], scan (+) 0 [2,4,6] ] ≡
[ [1, 4], [2, 6, 12] ]

The flat representation of A is A_shp = [2,3], A_flg=[1,0,1,0,0], A_val = [1,3,2,4,6].
The computation of the translated, flat parallel program is:
sgmScan (⊙) e⊙ [1, 0, 1, 0, 0]

[1, 3, 2, 4, 6] ≡
[1, 4, 2, 6, 12]

It is trivial to see that a segmented scan preserves the shape: the result array should have the
same shape as the input, and hence the same flags.
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4.1.3 Flattening a Map Directly Nested in a Map.

rule 2 (F (Map(Map))).
Flattening a map that is directly nested inside a map is translated to a map on the flattened data. This
corresponds to the data array of the result; the shape and the flag arrays are the same as those of the
input array.
F (map (\row -> map f row) A) ⇒ (A_shp , map f A_val)

We demonstrate this rule for the case when A = [[1,3], [2,4,6]]. The computation of the
nested parallel program is:
map (\row -> map f row) [[1,3], [2,4,6]] ≡
[ map f [1,3], map f [2,4,6] ] ≡
[ [f 1, f 3], [f 2, f 4, f 6] ]

The flat representation of A is A_shp = [2,3], A_flg=[1,0,1,0,0], A_val = [1,3,2,4,6].
The computation of the translated, flat parallel program is:
map f [1,3,2,4,6] ≡ [f 1, f 3, f 2, f 4, f 6]

It is trivial to see that the result array should have the same shape, and hence the same flags, as
the input array.
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4.1.4 Flattening a Replicate Directly Nested in a Map.

rule 3 (F (Map(Replicate))).
Assuming that the values to be replicated are numeric, a replicate that is directly nested inside a map
is translated to the following code:
F map2 (\ n v -> replicate n v) ns vs ⇒

( ns,

let (flag_n ,flag_v) = zip ns vs |> mkFlagArray ns (0,0) |>unzip
in sgmScan𝑖𝑛𝑐 (+) 0 flag_n flag_v

)

The shape of the result is the array ns, from which one can compute the flag array if needed
later. The data array is computed by:
• calling mkFlagArray on its shape ns and the values to be inscribed at start-of-the-index
position being an array of tuples: one from ns and one from vs. This results in two “flag”
arrays having at the start-of-segment position the elements of ns and vs, respectively. Please
note that only the first one can be truely used as a flag array, because vs may contain the
value zero, hence it would denote the start of a segment with zero, which would be incorrect;
• distributing the start-of-the-segment value of each segment in flag_v to all remaining
elements of the segment. This is accomplished with the inclusive segmented scan with
addition operator in which the flag array is flag_n and the value array is flag_v. Note that
the implementation assumes the version of inclusive segmented scan that uses a integral
representation of the flag array, in which a number different than zero denote the start of a
segment.

We demonstrate the algorithm on the simple instance in which ns=[1,3,2] and vs = [7,8,9].
The computation of the nested parallel code is:
map2 (\ n v -> replicate n v) [1, 3, 2] [7,8,9] ≡
[ replicate 1 7, replicate 3 8, replicate 2 9 ] ≡
[ [7], [8, 8, 8], [9, 9] ]

The translation says that the shape of the result is equal to ns = [1,3,2], which is certainly
the case. The computation of the data array by the flat parallel program is demonstrated below:
let len = length ns -- 3

let (flag_n , flag_v) = -- flag_n = [1,3,0,0,2,0]

unzip <| -- flag_v = [7,8,0,0,9,0]

mkFlagArray ns (0,0) <|

zip ns vs

in sgmScan𝑖𝑛𝑐 (+) 0 flag_n flag_v -- [7,8,8,8,9,9]

It remains to discuss what happens when the element type is not numeric: most of the translated
code is the same, except for the zero in the second argument of mkFlagArray, and the associative
operator and neutral element of sgmScan. If the element type is a:
bool: then we can use false instead of 0 and logical or as operator;
tuple: of numeric types, then we suitably modify the sgmScan operator—e.g., for a tuple of integers:

( (x1,y1) (x2,y2) -> (x1+x2, y1+y2)).
array: then the inner replicate can be re-written in terms of map and iota as:
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replicate n v ≡ map (\i -> v[i % (length v)])

(iota (n * (length v)))

and flattening will be applied to the rewritten code.
If the element type is some strange scalar type that cannot be translated to numeric, there is

still a solution, albeit ugly: zero can be replaced with any (dummy) value of the type, and the plus
operator of inclusive segmented scan can be replaced with the first binary operator that simply
returns the first argument first (a: 𝛼) (b: 𝛼) : 𝛼 = a. This exploits the fact that the inclusive
(segmented) scan does not actually needs a neutral element (but exclusive scan does!) One can
check that first is associative first a (first b c) = a = first (first a b) c.

PMPH Lecture Notes for the Software Track, Vol. 1, No. 1, Article 1. Publication date: September 2018.



Lecture Notes for the Software Track of the PMPH Course 1:55

4.1.5 Flattening an Iota Directly Nested in a Map.

The main intuition is that iota n can be expressed by a composition of scan exclusive and
replicate, hence a translation can be derived from the flattening rules of scan and replicate:
iota n ≡ scan𝑒𝑥𝑐 (+) 0 (replicate n 1)

However, a much simpler translation can be achieved by high level reasoning, so it is worth to
write a specialized rule for replicate.

rule 4 (F (Map(Iota))).
Flattening a iota that is directly nested inside a map results in an array of the same shape as the
argument of map, and in a data array which is computed by the following flat-parallel code:
F ( map (\n -> iota n) ns ) ⇒

( ns,

let len = length ns

let flag = mkFlagArray ns 0 ns

let vals = map (\ f -> if f!=0 then 0 else 1) flag

in sgmScan𝑖𝑛𝑐 (+) 0 flag vals

)

We demonstrate the rule for iota by a simple example in which ns = [1,3,2].
map (\ n -> iota n) [1,3,2] ≡
[ iota 1, iota 3, iota 2 ] ≡
[ [0], [0, 1, 2], [0, 1] ]

The flat parallel program results in an array whose shape is equal to ns = [1,3,2], which is
how it should be. The flat-parallel computation of the value array requires:
• creating the flag array, then
• creating an array in which the value corresponding to the start of the segment is 0, and 1
otherwise, and
• performing a segmented scan on the two previous arrays.

This is demonstrated below for the case ns = [1,3,2]:
let len = length ns -- 3

let flag = mkFlagArray ns 0 (replicate len 1) -- [1,3,0,0,2,0]

let vals = map (\f -> ... ) flag -- [0,0,1,1,0,1]

in sgmScan𝑖𝑛𝑐 (+) 0 flag vals -- [0,0,1,2,0,1]
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4.1.6 Flattening a Reduce Directly Nested in a Map (Segmented Reduce).

rule 5 (F (Map(Reduce))).
Assume an irregular array of arrays mat of shape mat_shp : [num_rows]i64 and flat values mat_vals :
[n]𝛼 (n is equal to the sum of the elements of mat_shp) and an associative operator ⊙ : 𝛼 → 𝛼 → 𝛼 ,
with neutral element 𝑒⊙ : 𝛼 . An irregular segmented reduce on mat will be translated to an array
whose length is equal to the outer length (i.e., number of rows) of mat, and whose data is computed by:
F ( map (\ row -> reduce ⊙ e⊙ row) mat )⇒

let mat_flg '= mkFlagArray mat_shp 0 (replicate num_rows true)
let mat_flg = mat_flg ' :> [n]bool -- dynamic size cast

let sc_mat = sgmScan𝑖𝑛𝑐 ⊙ e⊙ mat_flg mat_val

let indsp1 = scan𝑖𝑛𝑐 (+) 0 mat_shp

let res = map2 (\shp ip1 -> if shp==0 then e⊙
else sc_mat[ip1 -1]

) mat_shp indsp1

in ( num_rows , res )

In essence, a scan inclusive on the shape of the input array computes the index of the last element
in each segment plus one, then a segmented inclusive scan is performed on the data with the
operator and neutral element of the reduce and finally, a map operation selects the last element of
the segment—this is because the last element of an inclusive scan, by definition, is the reduction
of the whole array (segment). Please note that in order to accomodate empty rows, the final map
checks whther the corresponding shape elements is zero, in which case 𝑒⊙ is returned—because a
reduce applied to the empty list is by definition supposed to result in the empty element.

Note that in order to get decent performance, the associative-binary operators of reduce/scan/seg-
mented scan should be rewritten whenever possible to operate on scalar types (i.e., a reduce with a
vectorized addition would be extremely inefficient).

We demonstrate the translation on a simple example in which our irregular array is
[[1,3,4], [], [6,7]] and the reduce operator is addition. The nested parallel program computes:
map (\ row -> reduce (+) 0 row) [[1,3,4], [], [6,7]] ≡
[ reduce (+) 0 [1,3,4], reduce (+) 0 [], reduce (+) 0 [6,7] ] ≡
[ 8, 0, 13 ]

The flat-data representation of the input array is mat_shp = [3,0,2], mat_val = [1,3,4,6,7],
mat_flg = [1,0,0,1,0]. The flat parallel program results in a uni-dimensional array whose shape
is [3]. The computation of the data array is:

-- mat_shp = [3,0,2]

let mat_flg = mkFlagArray ... -- [1,0,0,1, 0]

let sc_mat = sgmScan𝑖𝑛𝑐 (+) 0 mat_flg -- [1,0,0,1, 0]

mat_val -- [1,3,4,6, 7]

-- [1,4,8,6,13]

let indsp1= scan𝑖𝑛𝑐 (+) 0 mat_shp -- [3,3,5]

let res = map2 (\shp ip1 -> -- [8,0,13]

if shp == 0 then 0

else sc_mat[ip1 -1]

) mat_shp indsp1
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4.1.7 Flattening an If-Then-Else Directly Nested in a Map.

The rule assumes an if-then-else expression, such that the then or/and else expressions
contain parallel constructs; otherwise flattening it is not profitable (does not enhances the degree
of parallelism).

rule 6 (F (Map(If-Then-Else))).
Assuming the input array xs is a uni-dimensional array, and for simplicity, assuming 𝛼 and 𝛽 basic
(scalar) types, a specialized flattening rule is given below:
F ( map (\(x: 𝛼) : 𝛽 -> if p x then f x else g x) xs ) ⇒

( [length xs],

let len = length xs

let (is, q) = partition2 (\i -> p (x[i])) (iota len)

let (is𝑡ℎ𝑒𝑛, is𝑒𝑙𝑠𝑒 ) = split q is

let xs𝑡ℎ𝑒𝑛 = map (\i𝑡ℎ𝑒𝑛 -> xs[i𝑡ℎ𝑒𝑛]) is𝑡ℎ𝑒𝑛

let res𝑡ℎ𝑒𝑛= F ( map f xs𝑡ℎ𝑒𝑛 )

let xs𝑒𝑙𝑠𝑒 = map (\i𝑡ℎ𝑒𝑛 -> xs[i𝑒𝑙𝑠𝑒 ]) is𝑒𝑙𝑠𝑒

let res𝑒𝑙𝑠𝑒 = F ( map g xs𝑒𝑙𝑠𝑒 )

let res = scatter (replicate len dummy) is𝑡ℎ𝑒𝑛 xs𝑡ℎ𝑒𝑛

in scatter res is𝑒𝑙𝑠𝑒 xs𝑒𝑙𝑠𝑒

)

The data array of the result is computed as follows:
• the iteration space of the input array (iota len) is partitioned (see fig. 18 in section 3.2.3) ac-
cording to the predicate pwhich represents the condition of the if: the indices corresponding
to the elements that succeed under the predicate and take the then branch, namely is𝑡ℎ𝑒𝑛 ,
appear before the ones that take the else branch, namely is𝑒𝑙𝑠𝑒 .
• the elements that take the then branch are selected and processed with the f function; note
that the corresponding two maps can be fused. Also, in order for the if-then-else flattening to
fire (to be beneficial), we assume that f contains inner parallelism; it follows that we need to
recursively flatten map f. Similar thoughts apply to those that take the else branch.
• finally, the scatter operations place the results back in the order of the original array. This
step is significantly simplified by the assumption that the mapped function of the original
specification results in elements of a basic type.

We demonstrate on the simple example in which the predicate succeeds on odd numbers, the
function on the then branch is f x = 2*x, the function on the else branch is g x = x - 1, and the
input array is [3, 4, 6, 7]. The nested-parallel version results in [f 3, g 4, g 4, f 3] = [6,
3, 5, 14]. The flat parallel version executes as follows:

let (is, q) = partition2 (\i -> p (x[i])) (iota len)

let (is𝑡ℎ𝑒𝑛, is𝑒𝑙𝑠𝑒 ) = split q is -- ([0,3], [1,2])

let xs𝑡ℎ𝑒𝑛 = map (\i𝑡ℎ𝑒𝑛 -> xs[i𝑡ℎ𝑒𝑛]) is𝑡ℎ𝑒𝑛 -- [3, 7]

let res𝑡ℎ𝑒𝑛= map f xs𝑡ℎ𝑒𝑛 -- [6, 14]

let xs𝑒𝑙𝑠𝑒 = map (\i𝑡ℎ𝑒𝑛 -> xs[i𝑒𝑙𝑠𝑒 ]) is𝑒𝑙𝑠𝑒 -- [4, 6]

let res𝑒𝑙𝑠𝑒 = map g xs𝑒𝑙𝑠𝑒 -- [3, 5]

let res = scatter (scratch len 𝛽) is𝑡ℎ𝑒𝑛 xs𝑡ℎ𝑒𝑛 -- [6, u, u, 14]

in scatter res is𝑒𝑙𝑠𝑒 xs𝑒𝑙𝑠𝑒 -- [6, 3, 5, 14]
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4.1.8 Exercise: Flattening an Index Directly Nested in a Map.

Exercise 2 (F (Map(Index))).
Assume an irregular two-dimensional array mat (i.e., rows have different lengths), which has been
previously translated to a flat representation consisting of the shape mat_shp, flag mat_flg and data
mat_val arrays. Please write the rule that translates the following map that selects from each row of
the matrix the element corresponding to the index taken from inds:
F map2 (\row i -> row[i]) mat inds ⇒

( . . .

)
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4.2 Flattening a Simple, Contrived Program
We have presented so far, rather informally, a subset of the flattening rules. While we hope that
they make sense individually, it is still probably not very clear the manner in which they can
be combined to flatten a nested-parallel program. We demonstrate them on a very simple code
example:
map (\ i -> map (+(i+1)) (iota i) ) arr -- arr = [1, 2, 3, 4]

in which the mapped array is an uni-dimensional array of integers of length n. We will demonstrate
the execution in the particular case when arr = [1, 2, 3, 4].

We first perform the nested parallel computation:
map (\i -> map (+(i+1)) (iota i)) arr ≡ -- arr = [1, 2, 3, 4]

[

map (+(1+1)) (iota 1) ≡ map (+2) [0] ≡ [0+2] ≡ [2]

, map (+(2+1)) (iota 2) ≡ map (+3) [0,1] ≡ [3,4]

, map (+(3+1)) (iota 3) ≡ map (+4) [0,1,2] ≡ [4,5,6]

, map (+(4+1)) (iota 4) ≡ map (+5) [0,1,2,3] ≡ [5,6,7,8]

] ≡
[[2], [3,4], [4,5,6], [5,6,7,8]]

We now turn to the task of flattening our nested parallel program. The first observation is that
the program is not in a suitable form: it has to be normalized (or desugared) to a form that would
permit the application of the previously discussed rules—think three-address code (TAC) form.
In particular, whenever we encounter a variable that is variant inside the outer map construct,

and it is used inside the functional argument of an inner parallel construct (invariant), we will
modify the code so that it expands that variable with an extra array dimension (by replicate) and
pass it directly as an array argument to the inner-parallel construct. Such is the case of the map
(+(i+1)) call, because i is variant in the outer map but invariant in the inner one. We solve this by
expanding i (by means of replicate) to an array that is passed directly as parameter to the inner
map. The semantically-equivalent and normalized code is:
map (\ i -> let ip1 = i+1 in

let iot = (iota i) in
let ip1r= (replicate i ip1) in
in map (+) ip1r iot

) arr

We are ready for flattening, which corresponds to distributing the outer map over each “let-
statement” in the body. While doing so, we will semantically expand the left-hand side of the let
statement with an outer array dimension equal to the size of the outer map. We assume that we
also maintain a context Σ (think symbol table) that binds the variable names declared inside the
map to their expanded arrays (obtained by map distribution/fission). Initially, Σ = [i→arr], and
we will use the notation Σ(x) to get the flattened array corresponding to symbol x in the source
program. For example Σ(i) = arr. When we distribute the outer map across a statement we will
extend the arguments of the map with the expanded arrays corresponding to the symbols that are
used inside the current statement—those have been necessarily translated previously. Long story
short here is how the flattening is distributed across the statements of the outer map body:
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F ( map (\ i -> map (+(i+1)) (iota i) ) arr )

≡
let ip1s = F ( map (\i -> i+1) arr ) -- Σ=[i→arr ,ip1→ip1s]

let iots = F ( map (\i -> (iota i)) arr )

-- Σ=[i→arr ,ip1→ip1s ,iot→iots]

let ip1rs= F ( map2 (\(i,ip1) -> (replicate i ip1)) arr ip1s )

-- Σ=[i→arr ,ip1→ip1s ,iot→iots ,ip1r→ip1rs]

in F ( map2 (\ip1r iot -> map (+) ip1r iot) ip1rs iots )

The parameters of the distributed map are obtained by querying the symbols used inside the
corresponding let statement: for example the first statement uses only i, and Σ(i) = arr, thus the
map is over one array argument arr and the lambda formal argument is i. After the expression of
the first statement has been translated, a fresh variable name is produced ip1s to store the result,
and a new association is added to the symbol table ip1→ip1s, because the let statement in the
original program was producing variable named ip1. Similar thoughts apply to the second let
statement.
The third statement uses two variables: i and ip1. Querying the context results in the corre-

sponding expanded arrays arr and ip1s, which are passed as arguments to the map2, and similar
for the result expression, which uses source-program variables ip1r and iot.

Now we proceed to apply individual rules for each expression. The first one does not correspond
to any rule, because there is no inner parallelism to flatten, hence the translation is the identity:
let ip1s = F ( map (\i -> i+1) arr )

≡
let ip1s = map (\i -> i+1) arr -- [2, 3, 4, 5]

The second expression corresponds to a iota directly nested inside a map, and we can apply rule 4:
let iots = F ( map (\i -> (iota i)) arr )

≡
let len = length arr -- len=4, arr= [1,2,3,4]

let flag = mkFlagArray arr 0 arr -- [1,2,0,3,0,0,4,0,0,0]

let vals = map (\ f -> if f != 0 -- [0,0,1,0,1,1,0,1,1,1]

then 0

else 1

) flag

let iots = sgmScan𝑖𝑛𝑐 (+) 0 flag vals -- [0,0,1,0,1,2,0,1,2,3]

The third expression corresponds to a replicate directly nested inside a map, and we can apply
rule 3. Please note that in the code below the computation of the flag array is redundant—perhaps
compute the (flag, flag') pair in the previous step, so that flag is not computed twice.

let ip1rs = F ( map2 (\(i,ip1) -> (replicate i ip1)) arr ip1s )

≡
let (flag , flag ') = unzip <| -- flag = [1,2,0,3,0,0,4,0,0,0]

mkFlagArray arr (0,0) <| -- flag ' = [2,3,0,4,0,0,5,0,0,0]

zip arr ip1s

let ip1rs = sgmScan𝑖𝑛𝑐 (+) 0 flag flag ' -- [2,3,3,4,4,4,5,5,5,5]
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Finally, the last expression corresponds to a map directly nested inside an outer map, and we
can apply rule 2, which basically says that this case translates to a map on the flatten data:
in F ( map2 (\ip1r iot -> map2 (+) ip1r iot) ip1rs iots

≡
in map2 (+) ip1rs iots -- [2,3,3,4,4,4,5,5,5,5]

-- + + + + + + + + + +

-- [0,0,1,0,1,2,0,1,2,3]

-- = = = = = = = = = =

-- [2,3,4,4,5,6,5,6,7,8]

We remark that the shape of the program result is actually arr. This is derived from the io-
ta/replicate nested inside a map rules, which generate an array whose shape is the input array of
the map. Finally, the last rule (map nested inside a map) preserves the shape of the input array(s).
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4.3 Flattening Exercises
This section provides hints related to how to apply flattening to the following problems: sparse-
matrix vector multiplication (section 4.3.1), prime number computation (section 4.3.2), and quicksort
(section 4.3.3).

4.3.1 Exercise: Flattening Sparse-Matrix Vector Multiplication.

We recall that sparse matrix-vector multiplication was discussed in section 3.2.4, and it has the
following nested parallel implementation:
let spMatVctMul [m][n] (mat: [m][](i32 ,f32)) (vct: [n]) : [m]f32 =

map (\row -> let ps = map (\(i,v) -> v * vct[i]) row

in reduce (+) 0.0 f32 ps

) mat

where mat is assumed to be an irregular two dimensional array—in which rows have different
lengths (think list of lists)—whose elements are a tuple formed by (i) an integer denoting the
column number at which the non-zero element appears in the dense matrix, and (ii) a numeric
value corresponding to the non-zero value of the matrix element. For simplicity, we also assume
that the matrix does not have any empty rows (i.e., formed only by zero elements).
To flatten this code, we apply the same procedure used for our contrived example described

in section 4.2, in which we distribute the outer map across the statements of its lambda function
(body):
let pss = F ( map (\row -> map (\(i,v) -> v * vct[i]) row) mat )

in F ( map (\ps -> reduce (+) 0.0 f32 ps) pss )

It follows that we need to apply two flattening rules, corresponding to
(1) flattening a map directly nested in outer map (see section 4.1.3)
(2) flattening a reduce directly nested in an outer map (see section 4.1.6).

4.3.2 Exercise: Flattening Prime Number Computation (Sieve).

We recall that a nested-parallel implementation—for computing all prime numbers less than or
equal to an input integer n, and having work𝑂 (𝑛 𝑙𝑔 𝑙𝑔 𝑛) and depth𝑂 (𝑙𝑔 𝑙𝑔 𝑛)—has been discussed
in fig. 22 of section 3.2.5. The nested parallelism refers to the code:
...

let composite = -- uses nested parallelism

map (\ p -> let m = len / p

let arr = map (+2) ( iota (m -1))

in map (*p) arr

) sqrn_primes

let not_primes = reduce (++) [] composite

...

Our goals is to apply the flattening algorithm to the above code. We use the same procedure as for
our contrived example described in section 4.2, in which the first step is to “normalize” the code, by
• computing m-1 and iota (m-1) in separate let statements,
• normalizing the inner map such that p is expanded to an array and passed as argument to the
inner map.
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This results in the code below:
let composite = -- uses nested parallelism

map (\ p -> let m = len / p -- distribute map

let mm1 = m - 1 -- distribute map

let iot = iota mm1 -- F (Map(Iota))

let arr = map (+2) iot -- F (Map(Map))

let ps = replicate mm1 p -- F (Map(Replicate ))

in map2 (*) ps arr -- F (Map(Map))

) sqrn_primes

let not_primes = reduce (++) [] composite -- noop because composite

-- is in flat -data form

What remains is to distribute the outer map across the statements of the lambda body, as indicated
on the right-hand side of the code:

• F (Map(Map)) refers to the rule for translating a directly-nested inner map, as presented in
section 4.1.3;
• F (Map(Iota)) refers to the rule for translating a directly-nested inner iota, as presented
in section 4.1.5;
• F (Map(Replicate)) refers to the rule for translating a directly-nested inner replicate, as
presented in section 4.1.4.

4.3.3 Exercise: Flattening Quicksort.

We recall that a nested-parallel implementation for computing quicksort has been discussed
in fig. 23 of section 3.2.6. The main problem is that the implementation exhibits a map over the
recursively defined function quicksort, which is actually the function which we are trying to
flatten: map nestedQuicksort [s1 , s2]. This case has not been covered by our rules; but do
not fret, the treatment is not difficult.
Mapping a recursive function corresponds to lifting the function: this means that we need to

construct a function which is semantically similar to a map over the current function:

• the original parameters have to be expanded with a new outer-array dimension corresponding
to a generic number of instances, denoted p, of the original function that will be computed at
once (in parallel);
• a outer map of size p has to be distributed over the original body of the function;
• the map over the recursive function should be translated to the lifted function, because they
have equivalent semantics by construction.

The (still) nested-parallel definition of the lifted function is shown in fig. 25. One can go about
flattening it by following the rules explain in the previous chapter (and by deriving other rules).
However, there are several observations that may allow to derive in an easier way the flattened
program (at the expense of perhaps not respecting the work and depth asymptotic of the original
program):

(1) In order to eschew the complicate rule for an if directly nested inside a map, please observe
that the all segments actually belong to the same array, and a conservative and safe stop
condition for recursion is when the value array of arrs is completely sorted. In essence, if
the value array of arrs is already sorted, then we should just return it. This hints that the
implementation of liftedQuicksort should be a while loop, which terminates when the
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isSorted [n] (arr: [n]i32) : bool =

reduce (&&) true <|

map (\i -> i == 0 || arr[i-1] <= arr[i]) (iota n)

liftedQuicksort [p] (arrs: [p][]i32) : []i32 =

map (\arr ->

if n <= 1 || isSorted arr then arr

else
let q = length arr

let qm1= q - 1

let i = getRand (0, qm1)

let a = arr[i]

let s1 = filter (\x -> (x < a)) arr

let s2 = filter (\x -> (x >= a)) arr

let rs = map nestedQuicksort [s1, s2]

in (rs[0]) ++ (rs[1])

) arrs

quicksort [n] (arr: [n]i32) : [n]i32 = liftedQuicksort ([arr])

Fig. 25. Futhark-like (Nested-Parallel) LiftedQuicksort function.
(Please be aware that this code is illegal in Futhark!)

value array is sorted. It remains to distribute the body of the map on the statements belonging
to the body of the then branch.

(2) the computation of q can be obtained from the shape of arrs.
(3) getRand—which is supposed to return a random number between 0...qm1—should be lifted

as well; I suggest using a random number generator that does not have state, such as Sobol
numbers (ask for help if you chose this as project).

(4) the two filter operations can be rewritten by means of partition2, defined in fig. 18.
(5) the translation of the last two statement:

let rs = map nestedQuicksort [s1, s2] in rs[0]++rs[1]
would correspond to creating a new shape array that takes into account the split indices
resulted from applying partition2, which will be used by the next iteration of the encom-
passing while loop; please notice that rs[0]++rs[1] is a noop because the value array is
flat anyway.

In essence the function can be rewritten to operate on the flat-data representation, according to
the template presented in fig. 26, where F represents the application of the flattening transformation.
The tricky parts remaining to implement/flatten are:

• the flattening of the random-number generator (try sobol), which can be inlined and flattened
according to the rules,
• the flattening of the array indexing arr[i]—this was left as an exercise in exercise 2 of
section 4.1.8,
• the flattening of the partition2 call, which can be inlined and flattened according to the
rules; perhaps this is the most challenging part,
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liftedQuicksort [m][n] (arr_shp: [m]i32) (arr_val: [n]i32)
: ([m]i32 , [n]i32) =

loop (arr_shp , arr_val)

while not (isSorted arr_val) do
let qs = arr_shp

let qm1s = map (\q -> q-1) qs

let is = F ( map (\qm1 -> getRand (0,qm1)) qm1s )

let as = F ( map (\i -> arr[i]) arrs ) -- F (Map(Index))

let (arr_val ', ss) =

F ( map2 (\a arr -> partition2 (\x-> x<a) ) as arrs )

let arr_shp ' = ... ??? ... -- use split points in ss

in (arr_shp ', arr_val ') -- to create a new shape.

quicksort [n] (arr: [n]i32) : [n]i32 = -- initially one subarray of

let (_, arr ') = liftedQuicksort ([n]) ([arr]) in arr ' -- size n

Fig. 26. Flat-Parallel Template for Quicksort.

• finally the computation of the shape array corresponding to the segmented partition—this
can be done in an intuitive way (i.e., not according to rules).
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5 LOOP-BASED DATA-DEPENDENCE ANALYSIS AND APPLICATIONS
So far, we have assumed that the user writes a fresh implementation of a known algorithm, and we
have demonstrated how “parallel thinking” can

• derive a nested-parallel implementation, which is close, in spirit, to the algorithmic specification—
e.g., by faithfully reproducing the control structure of the algorithm—and which answers
well software engineering concerns such as modularity, code re-use, etc. In essence, the
nested-parallel implementation can be maintained direcly by the (algorithm-) domain ex-
pert rather than by the computer scientist who sleeps with the hardware-specification and
compiler-transformations books under his pillow.
• reason about the asymptotic work-depth behavior of the nested parallel implementation, and
• automatically derive a low-level, flat-parallel implementation that is suitable to being di-
rectly (statically) mapped on highly-parallel hardware, and which preserves the work-depth
asymptotic of the nested-parallel implementation (from which it has been derived).

One may rightfully raise the question “Why then do we need to learn how to reason about
low-level imperative code written in terms of loops and array accesses?” There are at least two
important reasons that justify this direction:

1) There is a lot of legacy (already written) sequential (scientific) code written in imperative lan-
guages such as C++, Java, Fortran, and either the precise algorithm to which they correspond
to (i) may have been forgotten (not documented), or (ii) a fresh implementation is infeasible
(e.g., because it costs too much). At some point you may wish (or be asked) to parallelize
such code to run efficiently on a certain hardware. This will require
a) to identify the computational kernels where most of the runtime is spent, and
b) to optimize them by reasoning at a lower-level of abstraction about which loops in the nest

are parallel, and
c) the manner in which loop nests can be re-written in order to optimize locality of reference,

load balancing, thread divergence, etc.
2) The flattening transformation guarantees preservation of the asymptotic operational work-

depth behavior of the transformed program, but
a) it may require impractically-high memory usage, which may be asymptotically higher

than the one corresponding to the sequential algorithm—for example a fully flattened
implementation of matrix-matrix multiplication of 𝑛 × 𝑛 matrices requires 𝑂 (𝑛3) memory
space in comparison with 𝑂 (𝑛2) required by the sequential implementation.

b) it does not account for locality of reference and inter-thread communication. In fact full flatten-
ing results in flat-parallel code that does not contain any inner recurrences (think no inner
sequential loops), and as such, it actually destroys the program structure necessary for
performing locality-based optimizations. For example, the fully flattened implementation
of matrix matrix multiplication would exploit all available parallelism but its performance
behavior, in practice, will be limited by the bandwidth supported by the underlying hard-
ware. In comparison, an implementation that sequentializes the innermost dot-product
operation and performs block tiling in scratchpad memory to optimize locality, would
exhibit a compute-bound behavior—in which the limiting factor for performance is the
throughput of floating point operations per second supported by the hardware (which is
typically much higher than the hardware bandwidth).

It follows that in many cases, especially the ones involving regular parallelism—in which the length
of the inner parallel construct is the same across the encompassing (outer) map operation—full
flattening yields very pessimistic performance results. While the style of reasoning introduced by
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the flattening transformation remains important, this chapter augments it with a set of lower-level,
loop-based transformations that address the major shortcomings identified above.
The main source of inspiration for the material presented in this section has been the book

“Optimizing compilers for modern architectures: a dependence-based approach” [38]. The goal
of this chapter is to provide the intuition by discussing a “simple” static analysis applied here to
multicore machines.

This section is organized as follows:
• section 5.1 introduces various nomenclature, in particular the notion of cross-iteration
dependency, and it shows how to summarize dependencies across the iteration space into
a succinct representation, named direction vectors, that promotes reasoning about various
code transformations;
• section 5.2 presents a simple theorem that allows easy identification of loop-level parallelism;
• section 5.3 presents a simple theorem that gives necessary conditions for the safety of the
transformation that interchanges two perfectly-nested loops;
• section 5.4 discusses the legality and the manner in which a loop can be distributed across the
statements in its body. The treatment is a bit more general than flattening, which essentially
distributes a parallel loop (map) across its statements; we will see that in some cases one can
also distribute a dependent (sequential) loop across subsets of its statements;
• section 5.5 discusses techniques for eliminating cross-iteration write-after-read and write-
after-write dependencies;
• section 5.6 discusses how one can recognize data-parallel operators hidden in sequential,
imperative code and the manner in which these can be parallelized;
• section 5.7 introducing a simple transformation, named stripmining, which is always valid,
and shows how block and register tiling can be derived as a combination of stripmining, loop
interchange and loop distribution.
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5.1 Data-Dependence Analysis: Direction Vectors
We start by recalling the so called data hazards, which should be familiar to the reader from the
introductory course in computer architecture. These refer to dependent instructions that must
receive special treatment when executing in a pipeline—for example by stalling the pipeline or by
forwarding values between pipeline stages—because otherwise their execution might be improperly
reordered in a way that contradicts the semantics of the program.
-- True Dependency | Anti Dependency | Output dependency

-- RAW | WAR | WAW

S1: X = .. | S1: .. = X | S1: X = ...

S2: .. = X | S2: X = .. | S2: X = ...

The possible data hazards are depicted in the code above between two statements S1 and S2,
which reside for simplicity in the same basic block—a straight-line of three-address code, which is
always entered by the first statement and is exited after the execution of the last statement.

RAW: refers to the case when a write to a register or memory location is followed, in program
order, by a read from the same register or memory location; this is typically referred to as a
read-after-write hazard in hardware-architecture nomenclature, and as a true dependency in
loop-based analysis nomenclature. The word true refers to the fact that such a dependency
denotes a producer-consumer relation, in which the value produced by S1 is used in S2. The
producer-consumer relation is an algorithmic property of the program; such a dependency
cannot be eliminated other than by changing the underlying algorithm.

WAR: refers to the case when a read from a register or memory location is followed, in program
order, by a write to the same register or memory location; this is referred to as a write-after-
read hazard, and equivalently as an anti dependency. The problem here is that, if the two
statements are reordered—meaning S2 executes before S1, then the value needed by S1 is no
longer available because it has been already overwritten by S2.

WAW: refers to the case when a write from a register or memory location is followed, in program
order, by another write to the same register or memory location; this is referred to as a
write-after-write hazard, and equivalently as an output dependency. The problem here is that,
if the two statements are reordered—meaning S2 executes before S1, then the final value
stored in register or memory location is that of S1 rather than that of S2.

In what parallelism or loop analysis is concerned, we are primarily interested in analyzing the
(true, anti and output) dependencies that occur across different iterations of the loop. For example such
a true dependency would correspond to the case in which an early iterations i writes/produces an
array element that is subsequently read/consumed in a later iteration j > i.

In what parallelization is concerned, the main limiting factor are the true dependencies—which
correspond to an algorithmic property—because the anti and output dependencies can be typically
eliminated by various techniques, which will be reviewed at a later time.

5.1.1 Loop Notation and Lexicographic Ordering of Iterations in a Loop Nest.

In the following we will write loop nests using the do-loop notation, inspired from Fortran:
do i = low_bound , high_bound , stride

... loop body ...

enddo

because Fortran do loops have the property that the loop index i cannot the modified inside the
loop. As such the first iteration uses i = low_bound, the second iteration uses i = low_bound +
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stride, the third uses i = low_bound + 2*stride, and so on, for as long as i ≤ high_bound.
When the stride is one, one may use the abbreviation do i = low_bound, high_bound.

In the following we will also assume that iterations in a loop nest are represented by a vector, in
which iterations numbers are written down from the corresponding outermost to the innermost
loop in the nest, and are ordered lexicographically—i.e., are ordered consistently with the order in
which they are executed in the (sequential) program. This means that in the loop nest below:
do i = 0, N-1

do j = 0, M-1

... loop -nest body ...

enddo
enddo

iteration 𝑘=(i=2,j=4) is smaller than iteration 𝑙=(i=3,j=3) (i.e., 𝑘 < 𝑙), because the second
iteration of the outer loop is executed before the third iteration of the outer loop, no matter what
the iteration numbers are executed for the inner loop (of index j). In essence the iteration numbers
of inner loops are only used to discriminate the order in the cases in which all the outer-loop
iterations are equal, for example 𝑘=(i=3,j=3) < 𝑙=(i=3,j=4)

5.1.2 Dependency Definition.

The precise definition of a dependency between two statements located inside a loop nest is
given below.

Definition 5 (Loop Dependency).
There is a dependency from statement 𝑆1 to statement 𝑆2 in a loop nest if and only if there exists
loop-nest iterations ®𝑘 , ®𝑙 such that ®𝑘 ≤ ®𝑙 and there exists an execution path from statement 𝑆1 to
statement 𝑆2 such that:

1. 𝑆1 accesses some memory location𝑀 in iteration ®𝑘 , and
2. 𝑆2 accesses the same memory location𝑀 in iteration ®𝑙 , and
3. one of these accesses is a write.

In such a case, we say that 𝑆1 is the source of the dependence, and that S2 is the sink of the dependence,
because 𝑆1 is supposed to execute before 𝑆2 in the sequential program execution.
Dependencies can be visually depicted by arrows pointing from the source to the sink of the dependence.

The definition basically says that in order for a dependency to exist, there must be two statements
that access the same memory location and one of the accesses must be a write—because two read
instructions to the same memory location do not produce a data hazard on any architecture that
we are aware of. The nomenclature denotes the statement that executes first in the program order
as the source and the other as the sink of the dependency. We represent a dependency graphically
with an arrow pointing from the source to the sink.

Optimizations aimed at optimizing instruction-level parallelism (ILP)—meaning eliminating as
much as possible the stalls from processor’s pipeline execution—typically rely on intra-iteration
analyses (i.e., 𝑘 = 𝑙). Higher-level optimizations, such as detection of loop parallelism, are mostly
concerned with analyzing inter-iteration dependencies (i.e., 𝑘 ≠ 𝑙 ). For example the main aim could
be to disprove the existence of inter-iteration dependencies, such that different iterations may be
scheduled out of order (in parallel) on different cores, while the body of an iteration is executed
sequentially on the same core. As such, intra-iteration dependencies are trivially preserved, hence
are not very interesting in such a context.
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do i = 0, N-1 | do i = 1, N-1 | do i = 1, N-1

do j = 0, N-1 | do j = 1, N-1 | do j = 0, N-1

𝑆1 : A[j,i]=A[j,i]... | 𝑆1 : A[j,i]=A[j-1,i -1]... | 𝑆1 : A[i,j] =

enddo | 𝑆2 : B[j,i]=B[j-1,i ]... | A[i-1,j+1]...

enddo | enddo | enddo
| enddo | enddo

-- (a) | (b) | (c)

Fig. 27. Three Simple Running Code Examples that will be used to demonstrate data-dependency analysis
and related transformation.
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Fig. 28. Graphical representation of the dependencies for the three running examples shown in fig. 27; the 𝑥
and 𝑦 axis correspond to the index of the inner and outer do loop, respectively.

5.1.3 Aggregating Dependencies by Means of Direction Vectors.

Assume the three loops presented in fig. 27, which will be used as running example to demonstrate
data-dependency analysis and related transformations. We make the important observation that
the code is not in three-address code (TAC) form: a statement such as A[j,i] = A[j,i] + 3would
correspond to three TAC or hardware instructions: one that loads from memory tmp1 = A[j,i],
followed by one that performs the arithmetic operation tmp2 = tmp1 + 3, followed by one that
writes to memory A[j,i] = tmp2. Analysis should semantically be carried out (reasoned) on TAC
form but, for brevity, our analysis (and also compiler analysis) will be carried out at the statement
level. A human may start analyzing dependencies:
• by depicting the iteration space in a rectangle in which the 𝑥 axis and 𝑦 axis correspond to
iteration numbers of the inner loop 𝑗 and outer loop 𝑖 , respectively, and
• then by reasoning point-wise about what dependencies may happen between two iterations.

A graphical representation of the dependencies of the three running code examples is shown in
fig. 28. They can be intuitively inferred as follows:
• For the loop in fig. 27(a), different loop-nest iterations (𝑖1, 𝑗1) and (𝑖2, 𝑗2) necessarily read and
write different array elements A[ 𝑗1, 𝑖1] and A[ 𝑗2, 𝑖2]. This is because the assumption was that
(𝑖1, 𝑗1) ≠ (𝑖2, 𝑗2), hence it cannot be that both 𝑖1 = 𝑖2 and 𝑗1 = 𝑗2. As such, the representation
of dependencies should be a set of points (no arrows), meaning that all dependencies actually
occur inside the same iteration—in fact they are anti intra-iteration dependencies (WAR)
because A[j,i] is read first and then A[j,i] is written inside the same iteration.
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• For the loop in fig. 27(b) we reason individually for statements 𝑆1 and 𝑆2 because each
statement accesses (one) array A and B, respectively:

𝑆1 : Let’s take an iteration, say (𝑖1 = 2, 𝑗1 = 3), which reads element A[ 𝑗1-1,𝑖1-1] = A[2,1].
Since an iteration (𝑖, 𝑗) always writes the element A[i,j], we can reason that iteration
(𝑖2 = 1, 𝑗2 = 2) will write the same element A[2,1]. It follows that we have discovered a
true (RAW) dependency, depicted in the figure with and arrow, from the source iteration
(𝑖2 = 1, 𝑗2 = 2)—which writes A[2,1]—to the sink iteration (𝑖1 = 2, 𝑗1 = 3)—which reads
A[2,1]. This is because iteration (1, 2) < (2, 3) according to the lexicographical ordering,
and as such, the read happens after the write (RAW) in program order. One can individually
reason for each point of the iteration space and fill it with oblique, forward-pointing arrows
denoting true dependencies between different instances of statement 𝑆1 (executing in
different iterations).

𝑆2 : Following a similar rationale, iteration (𝑖1 = 2, 𝑗1 = 3) reads element B[ 𝑗1-1,𝑖1] = B[2,2],
and iteration (𝑖2 = 2, 𝑗2 = 2) writes element B[2,2]. It follows that we have discovered
a true (RAW) dependency with source (𝑖2 = 2, 𝑗2 = 2) and sink (𝑖1 = 2, 𝑗1 = 3), because
(2, 2) < (2, 3) in lexicographic ordering. Since 𝑖1 = 𝑖2 we depict the arrow parallel with the
horizontal axis (that depicts values of 𝑗 ). One can fill in the rest of the iteration space with
horizontal arrows.

• For the loop in fig. 27(c) we reason in a similar way: take iteration (𝑖1 = 2, 𝑗1 = 3) that reads
element A[2-1,3+1] = A[1,4]. This element is written by iteration (𝑖2 = 1, 𝑗2 = 4). It follows
that we have discovered a true (RAW) from source (𝑖2 = 1, 𝑗2 = 4) to sink (𝑖1 = 2, 𝑗1 = 3)—
because the read happens in iteration (2, 3) which comes after the write in iteration (1, 4),
i.e., (1, 4) < (2, 3). Thus, one can fill in the iteration space with oblique, backward-pointing
arrows, denoting true dependencies between instances of 𝑆1 executing in different iterations.

We have applied above a human type of reasoning and, as a result, we have a graphical represen-
tation of all dependencies. However, such a reasoning is not suitable for compiler-based automation
because (i) the loop counts are statically unknown—they depend on the dataset—hence one cannot
possibly represent an arbitrary large iteration space, and, more importantly, (ii) even if the loop
counts would be statically known it is still inefficient to maintain and work with all this pointwise
information.

A representation that promotes compiler reasoning should succinctly capture the pattern that is
multiplexed in the figure. Intuitively and imprecisely, for fig. 27(a) the pattern would correspond to
a point, for fig. 27(b) it would correspond to two arrows—one oblique and one horizontal forward
pointing arrows—and for fig. 27(c) it would correspond to an oblique, backward-pointing arrow.
These patterns are formalized by introducing the notion of direction vectors, which are defined
below.

Definition 6 (Dependency-Direction Vector).
Assume there exists a dependency with source 𝑆1 in iteration 𝑘 to sink 𝑆2 in iteration 𝑙 (𝑘 ≤ 𝑙). We
denote by m the depth of the loop nest, we use 𝑖 to range from 0, . . . ,m-1, and we denote by 𝑥𝑖 the 𝑖𝑡ℎ
element of some vector 𝑥 of length m.
The direction vector between the instance of statement 𝑆1 executed in some source iteration 𝑘and

statement 𝑆2 executed in sink iteration 𝑙 is denoted by 𝐷 (𝑆1 ∈ 𝑘, 𝑆2 ∈ 𝑙), and corresponds to a vector
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of length m, whose elements are defined as:

𝐷𝑖 (𝑆1 ∈ 𝑘, 𝑆2 ∈ 𝑙) =


< if it is provably that 𝑘𝑖 < 𝑙𝑖 ,

= if it is provably that 𝑘𝑖 = 𝑙𝑖 ,

> if it is provably that 𝑘𝑖 > 𝑙𝑖 ,

* if 𝑘𝑖 and 𝑙𝑖 are statically uncomparable.

The first three cases of the definition above assume that the ordering relation between 𝑘𝑖 and 𝑙𝑖
can be statically derived in a generic fashion (for any source 𝑘𝑖 and 𝑙𝑖 ); if this is not possible than
we use the notation * which conservatively assumes that any directions may be possible—i.e., star
should be understood as simultaneous existence of all <, =, > directions. For example, the loop
do i = 0, N-1

𝑆1 : A[ X[i] ] = ...

enddo

would result in direction vector [*] corresponding to a potential output dependency (WAW),
because the write access to A[ X[i] ] is statically unanalyzable—for example under the assumption
that the indirect array X is part of the dataset—and, as such, all direction vectors may possibly hold
between various pairs of instances of statement 𝑆1 executed in different iterations.

We also remark that the symbols <, =, > are not connected at all to the type of the dependency,
e.g., true (RAW) or anti (WAR) dependency. The type of the dependency is solely determined by
the operation of the source and that of the sink: If the source is a write statement and the sink is a
read then we have a true (RAW) dependency; if the source is a read and the sink is a write then we
have an anti (WAR) dependency; if both source and sink are writes then we have an output (WAW)
dependency.
The meaning of the symbol > at some position 𝑖 is that the source iteration at loop-level 𝑖 is

greater than the sink iteration at loop-level 𝑖 . This case is possible, for example the code in fig. 27(c)
shows a dependency with source iteration (1, 4) and sink iteration (2, 3). At the level of the second
loop, we have 4 > 3 hence the direction is > but still the source iteration is less than the sink
iteration (1, 4) < (2, 3) because of the first loop level. This observation leads to the following
corollary:

Corollary 1 (Direction Vector Legality).
A direction vector is legal (well formed), if filtering out the = entries does not result in a leading >
symbol. This would mean that a current iteration depends on a future iteration, but depending on a
future event is (considered) impossible, and as such illegal.

It remains to determine the sort of automatic reasoning (think compiler reasoning) that can be
applied to compute the direction vectors for the code examples in fig. 27:

fig. 27(a): dependencies can occur only between instances of statement 𝑆1, executed in different
(or the same) iterations. We recall that, by the definition of dependency, the two (dependent)
iterations must access the same element of A and at least one iteration should perform a
write. Since statement 𝑆1 performs a read and a write to elements of array A, two kinds of
dependencies may occur:
WAW: an output dependency may be caused by two write accesses in two different iterations,

denoted (𝑖1, 𝑗1) and (𝑖2, 𝑗2). The written element is thus A[j1,i1], which must be the same

as A[j2,i2] for a dependency to exist. This results in the system of equations

{
𝑖1 = 𝑖2

𝑗1 = 𝑗2
which leads to direction vector [=,=]. Hence, an output dependency from 𝑆1 to 𝑆1 happens

PMPH Lecture Notes for the Software Track, Vol. 1, No. 1, Article 1. Publication date: September 2018.



Lecture Notes for the Software Track of the PMPH Course 1:73

in the same iteration, but statement 𝑆1 executes only one write access in the same iteration.
The conclusion is that no output dependency can occur, hence the direction vector is
discarded.

RAW: a true or anti dependency—we do not know yet which—will be caused by the read
access from A and the write access to A in different (or same) iterations. Remember that
a statement such as A[j,i] = A[j,i] + 3 actually corresponds to three hardware
instructions, hence either an inter- or an intra-dependency will necessarily occur. Assume
some iteration (𝑖1, 𝑗1) reads from A[j1,i1] and iteration (𝑖2, 𝑗2) writes to A[j2,i2]. In order
for a dependency to exist, the memory location of the read and write must coincide; this

results in the system of equations:

{
𝑖1 = 𝑖2

𝑗1 = 𝑗2
from which we can derive the direction

vector: [=,=]. This implies that the dependency happens in the same iteration, hence it is
an intra-dependency. Furthermore, since the write follows the read in the instruction order
of an iteration, this is an anti dependency (WAR).

fig. 27(b): dependencies may possibly occur between instances of statement 𝑆1 and between
instances of statement 𝑆2. The case of output dependencies is disproved by a treatment similar
to the bullet above. It remains to examine the dependency caused by a read and a write in
different instances of 𝑆1 and 𝑆2, respectively:
𝑆1: assume iteration (𝑖1, 𝑗1) and iteration (𝑖2, 𝑗2) reads from and writes to the same element

of A, respectively. Putting this in equation results in the system:

{
𝑖1 − 1 = 𝑖2

𝑗1 − 1 = 𝑗2
, which

necessarily means that 𝑖1 > 𝑖2 and 𝑗1 > 𝑗2. However, we do not know yet which iteration is
the source and which is the sink. Assuming that (𝑖1, 𝑗1) is the source results in the direction
vector [>,>], which is illegal by corollary 1, because a direction vector cannot start with
the > symbol. It follows that our assumption was wrong: (𝑖2, 𝑗2) is the source and (𝑖1, 𝑗1)
is the sink, which means that this is a cross-iteration (inter-iteration) true dependency
(RAW)—because the sink iteration reads the element that was previously written by the
source iteration—and its direction vector is [<,<].

𝑆2: a similar rationale can be applied to determine that two instances of 𝑆2 generate a true
cross-iteration dependency (RAW), whose direction vector is [=,<]. In short, using the

same notation results in the system of equations

{
𝑖1 = 𝑖2

𝑗1 − 1 = 𝑗2
, hence the source must be

(𝑖2, 𝑗2) and the sink must be (𝑖1, 𝑗1) and the direction vector is [=,<].
fig. 27(c): dependencies may possibly occur between instances of statement 𝑆1. Assume itera-

tion (𝑖1, 𝑗1) and (𝑖2, 𝑗2) reads from and writes to the same element of A, respectively. Putting

this in equation results in the system

{
𝑖1 − 1 = 𝑖2

𝑗1 + 1 = 𝑗2
, which necessarily imply that 𝑖1 > 𝑖2 and

𝑗1 < 𝑗2. Choosing (𝑖1, 𝑗1) as the source of the dependency results in direction vector [>,<],
which is illegal because it has > as the first non-= outermost symbol, as stated by corollary 1.
It follows that (𝑖1, 𝑗1) must be the sink and (𝑖2, 𝑗2) must be the source, which results in the
direction vector [<,>], which is legal. Since the source writes and the sink reads, then we
deal with a true dependency (RAW). Moreover since the direction vector indicates that the
source iteration is strictly less than the sink iteration, this is also a cross-iteration dependency.
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Definition 7 (Dependency-Direction Matrix). A direction matrix is obtained by stacking
together the direction vectors of all the intra- and cross-iteration dependencies of a loop nest (i.e.,
between any possible pair of write-write or read-read instruction instances).

In conclusion the direction matrices for the three running code examples in fig. 27 are:

(a):
{
[=,=]

(b):

{
[<,<]

[=,<]

(c):
{
[<,>]

The following section will show how the legality of powerful code transformations can be reasoned
in a simple way in terms of direction vectors/matrices.

5.2 Determining Loop Parallelism by Analyzing Direction Vectors
A loop is said to be parallel if its execution does not cause any (true, anti or output) dependencies
across its iterations—the loop execution is assumed to be fixed in a specific iteration of an (potentially
empty) enclosing loop context.

The following theorem states that a sufficient condition for a loop to be parallel is that for all the
elements in the loop’s corresponding direction-matrix column, it holds that the element is either =
or there exists an outer loop whose corresponding direction is < (on that row). In the latter case
we say that the outer loop carries all the dependencies of the inner loop, i.e., fixing an iteration
of the outer loop (think executing the outer loop sequentially) would guarantee the absence of
cross-iteration dependencies in the inner loop.

Theorem 6 (Parallel Loop).
We assume a loop nest denoted by 𝐿, whose direction matrix is denoted by𝑀 and consists of𝑚 rows. A
sufficient condition for a loop at depth 𝑘 in 𝐿, denoted 𝐿𝑘 , to be parallel is that ∀𝑖 ∈ {0, . . .𝑚 − 1}
either𝑀 [𝑖, 𝑘] is equal to = or there exists an outer loop (at depth 𝑞 < 𝑘) such that𝑀 [𝑖, 𝑞] is equal to <.
The proof is left as an exercise.

Theorem 6 claims to give only a sufficient condition for loop parallelism because it assumes that
symbols such as * may be part of the direction vector elements—we recall that * conservatively
assumes that all directions <,=,>may be possible. If * does not appear in the direction matrix, then
the condition becomes necessary and sufficient, i.e., the loop is parallel if and only if . . .. Let us
analyze the parallelism of each loop in our running examples:

fig. 27(a): The direction matrix is [=,=], hence by theorem 6, both loops in the nest are parallel
because all the directions are equal to =.

fig. 27(b): The direction matrix is𝑀 =

{
[<,<]

[=,<]
, hence neither the outer nor the inner loop

can be proven parallel by theorem 6. In the former case this is because 𝑀 [0, 0] is equal to
< and there is no other outer loop to carry dependencies. In the latter case this is because
𝑀 [1, 1] is equal to < and the outer loop for that row has direction = (instead of <, which
would have been necessary to carry the dependencies of the inner loop).

fig. 27(c): The direction matrix is [<,>], which means that the outer loop is not parallel—
because it has a leading < direction)—but the inner loop is parallel because the outer loop starts
with < on the only row of the direction matrix, and, as such, it carries all the dependencies
of the inner loop. To understand what this means, take a look again at the actual code in
fig. 27(c): let us fix the outer iteration number to some value i. Then the read accesses always
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refer to row i-1 of matrix A and the write accesses always refer to row i of A; hence a
cross-iteration dependency cannot happen in the inner loop because no matter of the value
of j, the read and write statement instances cannot possibly refer to the same location of A.

5.3 Loop Interchange: Legality and Applications
Direction vectors are not used only for proving the parallel nature of loops, but they can also enable
powerful code restructuring techniques. For example they can be straightforwardly applied to
determine whether it is safe to interchange two loops in a perfect loop nest12—which may result in
better locality and even in changing an inner loop nature from dependent (sequential) to parallel.

The following theorem gives a sufficient condition for the legality of loop interchange—i.e., for
the transformation to result in code that is semantically equivalent to the original one.

Theorem 7 (Legality of Loop Interchange).
A sufficient condition for the legality of interchanging two loops at depth levels 𝑘 and 𝑙 in a perfect
nest is that interchanging columns 𝑘 and 𝑙 in the direction matrix of the loop nest does not result in a
(leading) > direction as the leftmost non-= direction of any row.

The theorem above shows that the legality of loop interchange can be determined solely by
inspecting the result of permuting the direction matrix in the same way as the one desired for
loops. For the rationale related to why a row-leading > direction is illegal, we refer the reader to
corollary 1: a non-= leading > direction would correspond to depending on something that happens
in the future: this currently seems impossible in our universe, and as such it signals an illegal
transformation. The following corollary can be easily derived from theorem 7:

Corollary 2 (Interchanging a Parallel Loop Inwards).
In a perfect loop nest, it is always safe to interchange a parallel loop inwards one step at a time (i.e., if
the parallel loop is the 𝑘𝑡ℎ loop in the nest then one can always interchange it with loop 𝑘 + 1, then
with loop 𝑘 + 2, etc.).

The corollary says that if we somehow know the parallel nature of a loop, then we can safely
interchange it in the immediate inward position, without even having to build the dependence-
direction matrix. For example, map operations have inherently parallel semantics, and, as such, one
can freely interchange inwards the loops semantically corresponding to map operations (as long as
the counts of the inner loops in the nest do not depend on the index of the map-like loop).

Let us analyze the legality of loop interchange for the three loop nests of our running example:
fig. 27(a): The direction matrix is [=,=] and, as such, it is legal to interchange the two loops,

because it would result in direction matrix [=,=]. Moreover applying loop interchange in
this case is highly beneficial because it optimizes locality of reference (in a CPU setting):
the loop of index i appears in the innermost position after the interchange, which optimally
exploits spatial locality for the write and read accesses to A[j,i].

fig. 27(b): The direction matrices are 𝑀 =

{
[<,<]

[=,<]
and 𝑀𝑖𝑛𝑡𝑐ℎ𝑔 =

{
[<,<]

[<,=]
before and

after interchange, respectively. It follows that the loop interchange is legal—because𝑀𝑖𝑛𝑡𝑐ℎ𝑔

satisfies theorem 7—and it also optimizes spatial locality (as before). What is interesting about
this example is that after the interchange, the innermost loop has become parallel, by the-
orem 6, because the outer loop caries all dependencies—the direction column corresponding
to the outer loop consists only of < directions.

12A perfect loop nest is a nest in which any two loops at consecutive depth levels are not separated by any other statements;
for example all loop nests in fig. 27 are perfectly nested.
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fig. 27(c): The direction matrix is [<,>] and interchanging the two loops is illegal because
the direction matrix obtained after the interchange [>,<] starts with a > direction; this would
mean that the current iteration depends on a future iteration, which is impossible, hence the
interchange is illegal.

5.4 Loop Distribution: Legality and Applications
This section introduces a transformation, named loop distribution, that refers to the manner in
which a loop can be safely distributed across its statements. Potential benefits are:
• loop distribution provides the bases for performing vectorization: the innermost loop is
distributed across its TAC statements, and then the distributed loops are chunked (stripmined)
by a factor that permits utilization of processor’s vector instructions.
• loop distribution may enhance the degree of parallelism that can be statically mapped to the
hardware, in a similar way in which it has been applied for flattening in section 4.2. There, a
map was distributed across its statements such as to create perfect nests of parallel constructs,
which are then flattened by applying corresponding re-write rules.

Loop distribution requires the construction of the dependency graph, which is defined below.

Definition 8 (Dependency Graph).
A dependency graph of a loop is a directed graph in which the nodes correspond to the statements of
the loop nest and the edges correspond to dependencies. An edge is directed (points) from the source to
the sink of the dependency, and is annotated with the direction corresponding to that dependence.

In the case when the loop contains another inner loop, then the inner loop is represented as a single
statement that conservatively summarizes the behavior of all the statements of the inner loop.

The dependency graph of a loop can be used to characterize its parallel behavior:

Theorem 8 (Dependency Cycle).
A loop is parallel if and only if its dependency graph does not have cycles.

If the loop contains a cycle of dependencies, then it necessarily exhibits at least a cross iteration
dependency (needed to form the cycle), and thus the loop is not parallel. The following theorem
specifies how the transformation can be implemented:

Theorem 9 (Loop Distribution).
Distributing a loop across its statements can be performed in the following way:

1. The dependency graph corresponding to the target loop is constructed.
2. The graph is decomposed into strongly-connected components (SCCs)13, and a new graph 𝐺 ′ is

formed in which the SCCs are nodes.
3. The loop can be safely distributed across its strongly-connected components, in the graph order

of 𝐺 ′. Assuming a number 𝑘 of SCCs, this means that the result of the transformation will be 𝑘
loops, each containing the statements of the corresponding SCC. Inside an SCC, the statements
remain in program order, but the distributed loops are ordered according to 𝐺 ′.

4. Array expansion must be performed for the variables that
– are either declared inside the loop or overwritten in each iteration (output dependencies), and
– are used in at least two strongly-connected components.

13A graph is said to be strongly connected if every vertex is reachable from every other vertex, i.e., a cycle. It is possible to
find the strongly-connected components of an arbitrary directed graph in linear time Θ(𝑉 + 𝐸) , where𝑉 is the number of
vertices and 𝐸 is the number of edges.
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The theorem above says that the statements that are in a dependency cycle must remain in (form)
one loop (which is sequential by theorem 8). As such, the loop can be distributed across groups of
statements corresponding to the strongly connected components (SCC) of the dependency graph.
If the graph has only one SCC than it cannot be distributed. The resulting distributed loops are
written in the order dictated by the graph of SCCs. We demonstrate theorem 9 on the simple code
example presented below:
forall i = 2, N

𝑆1 : A[i] = B[i-2] ...

𝑆2 : B[i] = B[i-1] ...

endfor

The code has two dependencies:
𝑆2 → 𝑆1: In order for a dependency on B to exist the read from B in iteration 𝑖1 of 𝑆1 and the

write to B in iteration 𝑖2 of 𝑆2 must refer to the same location. Hence i1-2 = 𝑖2, which means
i1 > i2, hence 𝑆2 is the source, 𝑆1 is the sink and the direction vector is [<];

𝑆2→ 𝑆2: similarly, there is a dependency between the read from B in 𝑆2 and the write to B in
𝑆2 of direction vector [<].

The dependency graph is thus:

S2

[ < ]

S1

[ < ]

and it exhibits two strongly-connected components: one formed by statement 𝑆2 and one formed
by statement 𝑆1. Loop distribution results in the following restructured code:
forall i = 2, N

𝑆2 : B[i] = B[i-1] ...

endfor
forall i = 2, N

𝑆1 : A[i] = B[i-2] ...

endfor

in which, according to the graph order, the loop corresponding to statement 𝑆2 appears before the
one corresponding to statement 𝑆1. Please notice that this does not match the program order of
statements 𝑆1 and 𝑆2 in the original program. Please also notice that the first loop is not parallel
because the SCC consisting of 𝑆2 has a (dependency) cycle, but the second loop is parallel because
the SCC corresponding to 𝑆1 does not have cycles.
One can notice that if a loop is parallel then it can be straightforwardly distributed across its

statements in program order because:
• by theorem 8, the loop dependency graph have no cycles and thereby each statement is a
strongly connected component;
• the program order naturally respects all dependencies.

Corollary 3 (Parallel Loop Distribution).
A parallel loop can be directly distributed across each one of its statements. The resulted loops appear
in the same order in which their corresponding statements appear in the original loop.

In fact, this is the theorem that provides the safety rationale for the map distribution used to
perform flattening in section 4.2 (under the trivial observation that a map is a parallel loop).
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Finally, it remains to demonstrate array expansion, mentioned in the fourth bullet of theorem 9.
Assume the slightly modified code:
float tmp;

forall j = 0, N-1

i = j + 2

𝑆1 : tmp = 2 * B[i-2]

𝑆2 : A[i] = tmp

𝑆3 : B[i] = tmp + B[i-1]

endfor

Statements 𝑆1 and 𝑆3 are in a dependency cycle, because there is a dependency 𝑆3 → 𝑆1 with
direction < caused by the write to and the read from array B, and a dependency 𝑆1 → 𝑆3 with
direction = caused by tmp. Statement 𝑆2 is not in a dependency cycle, but there is a dependency
𝑆1 → 𝑆2, and hence its distributed loop should follow the distributed loop containing 𝑆1 and 𝑆3. If
we do not perform array expansion, the distributed code:
float tmp;

forall j = 0, N-1

i = j + 2

𝑆1 : tmp = 2 * B[i-2]

𝑆3 : B[i] = tmp + B[i-1]

endfor
forall j = 0, N-1

i = j + 2

𝑆2 : A[i] = tmp

endfor

does not respect the semantics of the original program because the second loop uses the same value
of tmp—the one set by the last iteration of the first loop—while the original loop writes and then
reads a different value of tmp for each iteration. It follows that we must perform array expansion
for tmp, which means that we must expand it with an array dimension equal to the loop count and
replace its uses with corresponding indexing expressions of the expanded array. This results in the
following correct code:
float tmp[N];

forall j = 0, N-1

i = j + 2

𝑆1 : tmp[j] = 2 * B[i-2]

𝑆3 : B[i] = tmp + B[i-1]

endfor
forall j = 0, N-1

i = j + 2

𝑆2 : A[i] = tmp[j]

endfor

Array expansion requires to normalize the loop first—this means rewriting the loop such as its
index starts from 0 and increases by 1 each iteration. This is why we have not written our example
as for i = 2, N+1.
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5.5 Eliminating False Dependencies (WAR and WAW)
Anti and output dependencies are often referred to as false dependencies because they can be
eliminated in most cases by copying or privatization operations:
• Cross-iteration anti dependencies (WAR) typically correspond to a read from some original
element of the array—whose value was set before the start of the loop execution—followed
by an update to that element in a later iteration. As such, this dependency can be eliminated
by copying (in parallel) the target array before the loop and rewriting the offending read
access inside the loop such that it refers to the copy of the array.
• Cross-iteration output dependencies (WAW) can be eliminated by a technique named privati-
zation (or renaming), whenever it can be determined that every read access from a scalar or
array location is covered by an update to that scalar or memory location that was previously
performed in the same iteration. Semantically, privatization moves the declaration of the
offending variable inside the loop, because it has been already determined that the read/used
value was produced earlier in the same iteration.
• Reasoning based on direction vectors is limited to relatively simple loop nests; for example it
is difficult to reason about privatization by means of direction vectors.

5.5.1 Eliminating WAR Dependencies by Copying.

Consider the simple C code below which rotates an array in the right dimension by one:
float tmp = A[1];

for (int i=0; i<N-1; i++) {

A[i] = A[i+1]; -- 𝑆1
}

A[N-1] = tmp;

The loop exhibits a cross-iteration anti dependency (WAR) 𝑆1 → 𝑆1 (with direction vector [<]),
and, as such, it is not safe to execute it in parallel. However, one can observe that the reads from A
inside the loop correspond to the original elements of A before the loop, because they are rewritten
in a later iteration. As such one can perform a copy of A before the loop, and replace the read access
inside the loop to operate on the copy of array A. This preserves the original loop semantics and
results in a parallel loop because the read and write accesses operate on different arrays, hence a
dependency cannot occur. We present below the OpenMP code, which is a popular parallel API for
multicore hardware:
float Acopy[N];

#pragma omp parallel for
for(int i=0; i<N; i++)} {

Acopy[i] = A[i];

}

tmp = A[1];

#pragma omp parallel for
for (int i=0; i<N-1; i++) {

A[i] = Acopy[i+1];

}

A[N-1] = tmp;
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The code uses the #pragma omp parallel for annotation, by which the programmer solemnly
swears that the following for loop is actually parallel; if the programmer breaks the vow then the
parallel and sequential execution of the code will give different results; the API does not provide any
guarantees about the absence of race-conditions. To compile with support for OpenMP annotation
in gcc, please use the -fopenmp compilation flag. The number of cores that are going to be used
for parallel execution can be set by environment variable OMP_NUM_THREADS for example by the
command line $export OMP_NUM_THREADS=8 if you would like to utilize eight threads.

5.5.2 Eliminating WAW Dependencies by Privatization.

Consider the contrived and ugly looking C code below:
int i;

int A[M];

for(i=0; i<N; i++){

for(int j=0, j<M; j++) { -- writes slice A[0:M-1]

A[j] = (4*i+4*j) % M; -- 𝑆1
}

for(int k=0; k<N; k++) { -- reads A[j] where j∈{0, . . .M-1}
X[i,k] = X[i,k-1] * A[ A[(2*i+k)%M] % M]; -- 𝑆2

} -- because % denotes modulus op

}

Analyzing the cross-iteration dependencies of the outer loop, one can observe that there are
frequent output dependencies 𝑆1 → 𝑆1 of all directions (*), because, in essence, all elements of A at
indices 0 . . . 𝑀 − 1 are (over)written in each iteration of the outer loop. This also causes frequent
cross-iteration WAR and RAW dependencies between 𝑆1 and 𝑆2 of all directions * because 𝑆2 reads
some of the values of A which are written in 𝑆1. The read access is also statically unanalyzable
because the index into A depends on a value of A (i.e., it is an indirect-array access A[ A[...] ]).
It would thus seem that this is a hopeless case and parallel execution is a pipe dream. Not so!

Actually the rationale of how to transform the outer loop into a parallel one is quite simple. One
may observe that each iteration of the outer loop writes the same indices of A, namely the ones
belonging to the closed integral interval [0,M-1]. One may also observe that 𝑆2 reads from A
elements whose indices necessarily belong to [0,M-1]—due to the two modulus-M operations. As
such, one may conclude that any value read in 𝑆2 must have been produced in the same iteration of
the outer loop (in the inner loop enclosing 𝑆1).

It follows that it is safe to rewrite the loop in the following way:
(1) declare a new variable A’ of the same dimensions as A just inside the outer loop (or equivalently

perform array expansion of array A’ with a new outer dimension of size N), and
(2) replace all the uses of A in the outer loop by uses of A’;
• the resulting loop is safe to execute in parallel because there can be no dependencies on A’
since each iteration uses a different array A’;

(3) as a last step, after the parallel execution of the loop terminates, one must copy (in parallel)
the elements produced by the last iteration of the outer loop (i.e., A’[0,. . .,M-1] back to A.
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The parallel OpenMP code that implements these steps is presented below:
int A[M];

int i;

#pragma omp for lastprivate(i) lastprivate(A)

for(i=0; i<N; i++) {

for(int j=0, j<M; j++) {

A[j] = (4*i+4*j) % M;

}

for(int k=0; k<N; k++) {

X[i,k]=X[i,k-1] * A[ A[(2*i+k) % M] % M];

} }

Declaring array A as private (by private(A)) would result in semantically performing steps (1)
and (2) above. Declaring it as lastprivate(A) instructs the OpenMP compiler to also perform
step (3)—to copy back the privately-maintained result of A of the last executing iteration into the
globally-declared array A.
Please also note that the OpenMP execution will not allocate a new A’ for each iteration of

the outer loop—this is actually equivalent to performing array expansion which is also applicable
here—but instead it will allocate a copy of A for each active thread, thus significantly reducing the
memory footprint and/or the number of (de)allocations.

We also remark that i is also declared lastprivate—because its value might be needed after the
loop. Semantically, i generates true cross-iteration dependencies, and we have said that those are
difficult to eliminate in general, because they correspond to algorithmic properties. The technique
by which variables such as i14 can be resolved is not actually privatization (OpenMP uses the
wrong nomenclature here), but rather induction-variable recognition and substitution.

We conclude by repeating that privatization can be applied whenever one can prove that every
read access in an iteration is covered by a previously-performed write access in the same iteration.
Privatization can be implemented by performing either array expansion or moving the declaration
of the target variable from outside to inside the loop. However, it saves memory to allocate the
private copy per active thread rather than per iteration, which is what OpenMP is doing. In the GPU
context (CUDA) it is likely that you would have to implement privatization by array expansion.

14which are incremented by same ammount in each iteration of the loop
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5.6 Recognizing Data-Parallel Operators Hidden in Sequential, Imperative Code
Section 3 has argued that programs written with parallelism in mind should be built—or at least
be reasoned about—in terms of a nested composition of operators that have inherently parallel
semantics, such as map, reduce, scan, filter. An important question is then “How can one identify
and extract such operators from a sequential (legacy) code base?”. This section attempts to provide
an (incomplete) answer to this question, in the simpler case when the hardware is a multi-core
machine.

5.6.1 Recognizing Reduce Operators.

We say that a (scalar) variable x in a target loop is in a reduce pattern if and only if all the
statements in which x appears are of the form x = x ⊙ exp, where x does not appears in exp
and ⊙ is an associative operator. Such statements naturally raise cross-iteration true dependencies
(RAW). However, these dependencies can be resolved in a simple way, by:

(1) privatizing x, which is initialized with the neutral element for each thread;
(2) executing the loop in parallel, such that each thread computes its own partial value for x,

corresponding to the iterations it executes;
(3) reducing the partial values of x across processors by a reduction tree—or sequentially if the

number of cores is small, which is the case of multicores;
(4) adding to the result the value of x from before the loop.

This is a simple technique; we point to the work of Lu and Mellor-Crummey for advanced compiler
algorithms for identifying and optimizing reductions [41].
In fact, the procedure above refers to parallelizing a map-reduce composition—see list homo-

morphism section 2—in which, intuitively, the various exps for a given iteration are obtained and
added together semantically by a map operation, and then reduced across iterations by ⊙. When
using OpenMP, one must remember that OpenMP supports a fixed (small) set of reduce operators,
such as integral or float addition, multiplication, and perhaps taking the maximum/minimum; it is
not possible to work with an arbitrary operator. Please also notice that the same kind of rationale
can be used in principle for the case when the variable is of an array type—for example a reduce
with vectorized addition—except that it will be more difficult to recognize the operator, since this
will likely be implemented as a loop.

We demonstrate the case of reduction on the following code, where we aim to parallelize the
outer loop:
int i, j;

float x = 6.0;

for(i=1; i<N; i++) {

for(j=1; j<N; j++) {

if ( A[i,j] >= 2.0 ) x += 2*A[i,j-1];

else if( A[i,j] > 0.0 ) x += A[i-1,j+1];

}

if (i % (j+1) == 3)

x += A[i,i];

}

One may observe that all uses of variable x inside the outermost loop respect the reduction
pattern, i.e., x is only used inside reduction statements. The outer loop can be parallelized under
OpenMP by placing the following reduction annotation just before the outermost loop:
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#pragma omp parallel for reduction(+:x) private(i,j)
and the program can be compiled with gcc by using the -fopenmp flag.
The above imperative program is semantically equivalent with the following Futhark program

let x_ini = 6.0

let xs = map (+1) (iota (N-1)) |>

map (\i ->

let exps = map (+1) (iota (N-1)) |>

map (\j -> let a = A[i,j] in
if a >= 2.0 then 2*A[i,j-1]

else if a > 0 then A[i-1,j+1]

else 0.0

)

let e = reduce (+) 0.0 exps

let e' = if (i % (j+1) == 3) then A[i,i] else 0.0

in e + e'

)

let x = (reduce (+) 0 xs)

in x_ini + x

in which, if desired, the inner parallelism can be either exploited or sequentialized.
Finally, we remark that imperative code patterns might be deceiving, for example a reduction

pattern might actually turn to be a map or a scatter. For example, in the code below:
for(int i=0; i<N; i++)

A[i] = A[i] + 2;

the statement that updates A[i] respects the reduction patterns, but the loop is actually a map
operation: map (+2) A. This is a simple one, which is easy to recognize. But what about the
following one:
for(int i=0; i<N; i++)

A[ B[i] ] = A[ B[i] ] + 2;

The parallel semantics of the loop above actually depends on the contents of indirect array B,
which is typically part of the dataset, and thus statically unknown:

(1) if array B does not contains duplicated elements—i.e., ∀𝑖, 𝑗 ∈ {0 . . . 𝑁 − 1}, 𝑖 ≠ 𝑗 we have that
B[𝑖] ≠ B[ 𝑗] then the loop has the semantics of a scatter:
scatter A B <| map (\k -> A[k]+2) B.

(2) if array B contains duplicated elements then the pattern is often called a generalized reduction
on arrays (think histograms!), and can be executed in parallel for example by using an atomic
add operation—this of course requires the operator to be associative and commutative, because
the increments happen out of (the sequential) order.

The test whether B contains duplicates can also be performed in parallel, and may guard the two
different versions: a sufficient condition for disproving duplicates is to check whether the values of
B are strictly monotonically increasing; this can be computed with the following efficient predicate:
map (+1) (iota (N-1)) |> map (\i -> B[i-1]<B[i]) |> reduce (&&) true
A precise test is also possible by:
N == (scatter (replicate N 0) B (replicate N 1) |> reduce (+) 0)
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which first writes 1 in an array of zeros at the indices of B, then sums the result and checks equality
with the length of B. Here the idea is that if B contains duplicates than at least two ones will be
written in the same location, and necessarily the sum will be smaller than N. However, this test is
significantly slower (about 3×) than the monotonicity test.

5.6.2 Recognizing Scan Operators.

Scan operations are difficult to recognize by the compiler. In principle, a loop-based implemen-
tation of scan will result in dependency cycle indicating a true dependency (RAW) of distance
one—i.e., the current iterations depends on the result of the previous one. However not all such
dependency pattern indicate scan operations. Furthermore, scan can be sequentially implemented
in a multitude of forms, and as such they are difficult pattern match.

For example, the sequential, imperative code below:
A[0] = B[0];

for(i=1; i<N; i++) {

A[i] = A[i-1] + B[i];

}

is an inclusive scan: let A = scan (+) 0 B.
The following loop:

acc = 0;

for(i=0; i<N; i++) {

acc = acc + i;

A[i] = acc;

}

is also an inclusive scan, albeit applied to the iota N array: let A = scan (+) 0 (iota N).

Let us conclude with a non-trivial example. What kind of scan is represented by the code below?
for(j=0; j<M; j++)

A[0,j] = B[0,j];

for(i=1; i<N; i++) {

for(j=0; j<M; j++)

A[i,j] = A[i-1,j] + B[i,j];

}

One can observe that, if we transpose matrices A and B, then the inner loop will resemble an
inclusive scan, because it will have the pattern: A𝑡𝑟[j,i]=A𝑡𝑟[j,i-1] + B[j,i]. It follows that
the second loop nest (of depth 2) actually performs a scan on each column of the matrix B, and
the first single loop nest initializes the first element of the column result with the corresponding
element for B. The code is thus semantically equivalent to:
let A = transpose B |> map (scan (+) 0.0) |> transpose
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5.6.3 Recognizing Filter Operators.

The natural implementation for let B = filter pred A is by a loop which selectively adds
elements to the result array whenever the predicate succeeds on the current array element:
int k = 0;

for(i=0; i<N; i++) {

if pred(A[i]) {

B[k] = A[i];

k = k + 1;

}

}

This loop presents analysis challenges because:
(1) variable k does not respect the reduction pattern since it is read in B[k];
(2) variable k is incremented in only some of the loop iterations, hence it cannot be replaced by

a closed-formed formula in i (i.e., k it is not a proper induction variable);
(3) this makes it difficult to prove (by the compiler) that accesses to B[k] cannot generate

cross-iteration output dependencies.
Solutions exist to automatically parallelize such loops in which arrays are indexed based on such
conditionally-incremented scalars—but they require complex analysis [58], which exploits the
monotonic nature of the values of k in different iterations.

5.7 Loop Stripmining, Block and Register Tiling
This section discusses several simple compiler transformations that are going to be combined in
various ways to optimize locality of reference (both temporal and spatial locality).

Stripmining refers to the following transformation, which is always safe to apply:
for(int i = 0; i<N; i++) { for(int ii = 0; ii<N; ii+=T){

iteration body ⇒ for(int i=ii, i<min(ii+T,N); i++)

} iteration body

} }

In essence, a normalized loop is split into a perfect nest of two loops, in which the first loop goes
with stride T, and the second one goes with stride 1. Please notice that the resulting loop nest
executes the same number of statements and in the same order as the original loop.

Block Tiling refers to the transformation that stripmines several consecutive innermost loops in
a perfect loop nest—named 𝑙𝑘+1 . . . 𝑙𝑘+𝑛—and then interchanges inwards the resulting loops of stride
1. The transformation is valid/safe if in the original program it is safe to interchange any of the
loops 𝑙𝑘+𝑖 , 𝑖 ∈ {1, . . . , 𝑛 − 1} in the innermost position. For example, the code below demonstrates
block tiling a perfect loop nest of depth two:
for(i = 0; i<N; i++) { for(ii=0; ii<N; ii+=T1) {

for(j = 0; j<M; j++) { for(jj=0; jj<M; jj+=T2) {

iteration body ⇒ for(i=ii; i<min(ii+T1,N); i++) {

} for(j=jj; j<min(jj+T2,M); j++) {

} iteration body

} } } }
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Unroll and jam refers to the transformation that partially unrolls one or more of the outer
loops in a perfect nest and then fuses (“jams”) the resulting loops. Equivalently, one can stripmine
an outer loop, then interchange (distribute) it in the innermost position, then completely unroll it.
The transformation is aimed at decreasing the number of memory loads and stores by storing to
and reusing values from registers, and thus it is applied when the original loop nest contains data
references that allow for temporal reuse—e.g., their indexes are invariant to some of the loops in
the nest. Due to this, it is also known as “register tiling”. We demonstrate the transformation on the
matrix-matrix multiplication code below:
for(i=0; i<N; i++) {

for(j=0; j<M; j++) {

float c;

c = 0.0;

for(k=0; k<N; k++) {

c += A[i,k] * B[k,j];

}

C[i,j] = c;

}

}

The plan is to stripmine the loop of index j by a tile of size 2, and to interchange it to the
innermost position, while performing the necessary loop distribution and array expansion:
for(i=0; i<N; i++) {

for(jj=0; jj<M; jj+=2) {

float cs[2];

for(j=jj; j<min(jj+2,M); j++) {

cs[j-jj] = 0.0;

}

for(k=0; k<N; k++) {

for(j=jj; j<min(jj+2,M); j++) {

cs[j-jj] += A[i,k] * B[k,j];

} }

for(j=jj; j<min(jj+2,M); j++) {

C[i,j] = cs[j-jj];

}

} }

One can observe that the access A[i,k] is invariant to its immediately contained loop of index
j and thus it can be hoisted outside it and saved into a register. Then the loops of index j can be
unrolled, and array cs can be scalarized as well:
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for(i=0; i<N; i++) {

for(jj=0; jj<M; jj+=2) {

float c1, c2;

if (jj < M) c1 = 0.0;

if (jj+1 < M) c2 = 0.0;

for(k=0; k<N; k++) {

float a;

a = A[i,k];

if (jj < M) c1 += a * B[k,jj ];

if (jj+1 < M) c2 += a * B[k,jj+1];

}

if (jj < M) C[i,jj ] = c1;

if (jj+1 < M) C[i,jj+1] = c2;

} }

In the resulted code, the accesses to the elements of A have been halved. We can similarly apply
unroll and jam for the loop of index i with a tile size equal to 3. This will cut down the accesses to
B by a factor of 3. The resulted code is shown in fig. 29.

5.8 Related Work to Dependency Analysis of Loop-Based Code
The goal of this section has been to present a simple instance of (static) dependency analysis — i.e.,
based on direction vectors — that is enough to allow one to reason about the legality of individual
loop transformations, which can be then composed to implement more complex optimization
recipes. More advanced treatments that combines static [10, 65] and dynamic analyses have been
studied in the context of automatic parallelization of loop-based programs and can be found
elsewhere [25, 45, 56–58]. For example, some of these approaches:
• statically extracts (a cascade of) lightweight predicates which constitute sufficient conditions
under which the target loop is provably parallel;
• the extracted conditions are then evaluated at runtime in the order of their complexity, and if
one of them succeeds, then the loop is parallelized, otherwise it is executed sequentially.

Entirely dynamic analyses for automatic parallelization have also generated a lot of interest.
Their appeal has been the promise that the maximal amount of parallelism can be extracted from
partially-parallel loops — however partially-parallel loops are rare in practice and the runtime
overheads of such techniques is significant. The most known instances of such analyses include:
• inspector-executor techniques [66, 68] in which the inspector identifies slices of computation
that are safe to be performed in parallel by the executor, and
• software thread-level speculation (S-TLS) [17, 53, 54, 60, 67, 70] techniques that simulate
in software an extended cache-coherence protocol that tracks cross-iteration dependencies
at run-time and rolls back (and restarts) the computation to (from) a safe point whenever
dependency violations are detected.

Finally, various dynamic analyses have been applied to optimize (spatial and temporal) locality
of reference in challenging cases in which the re-use distance is sensitive to the (input) dataset.
Examples of such analyses are techniques for re-ordering the data layout and of the iterations of a
loop [18, 73], and for re-ordering the traversal of graph nodes in tracing algorithms [55].
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for(ii=0; ii<N; ii+=3) {

for(jj=0; jj<M; jj+=2) {

float c11 , c12 , c21 , c22 , c31 , c32;

if (ii < N && jj < M) c11 = 0.0;

if (ii+1 < N && jj < M) c21 = 0.0;

if (ii+2 < N && jj < M) c31 = 0.0;

if (ii < N && jj+1 < M) c12 = 0.0;

if (ii+1 < N && jj+1 < M) c22 = 0.0;

if (ii+2 < N && jj+1 < M) c32 = 0.0;

for(k=0; k<N; k++) {

float a1, a2, a3, b1, b2;

if (ii < N) a1 = A[ii ,k];

if (ii+1 < N) a2 = A[ii+1,k];

if (ii+2 < N) a3 = A[ii+2,k];

if (jj < M) b1 = B[k,jj ];

if (jj+1 < M) b2 = B[k,jj+1];

if (ii < N && jj < M) c11 += a1 * b1;

if (ii+1 < N && jj < M) c21 += a2 * b1;

if (ii+2 < N && jj < M) c31 += a3 * b1;

if (ii < N && jj+1 < M) c12 += a1 * b2;

if (ii+1 < N && jj+1 < M) c22 += a2 * b2;

if (ii+2 < N && jj+1 < M) c32 += a3 * b2;

}

if (ii < N && jj < M) C[ii, jj ] = c11;

if (ii+1 < N && jj < M) C[ii+1,jj ] = c21;

if (ii+2 < N && jj < M) C[ii+2,jj ] = c31;

if (ii < N && jj+1 < M) C[ii, jj+1] = c11;

if (ii+1 < N && jj+1 < M) C[ii+1,jj+1] = c21;

if (ii+2 < N && jj+1 < M) C[ii+2,jj+1] = c31;

}

}

Fig. 29. Result of unroll-and-jam applied to matrix-matrix multiplication, where the first and second outer
loops were tiled with sizes 3 and 2, respectively. The number of accesses to A and B has been reduced by a
factor of 2× and 3×, respectively, at the expense of introducing some conditional statements.
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Fig. 30. Coalesced Access Pattern: the threads executing in lockstep access consecutive global-memory
locations in a SIMD load or store instruction.

6 APPLICATIONS OF DATA-DEPENDENCE ANALYSIS ON GPU HARDWARE
This section discusses in the context of GPGPU-hardware execution, how to apply tiling transfor-
mations in order to optimize spatial and temporal locality of reference:
• section 6.1 introduces the pattern of “coalesced-access” to global memory—which is efficiently
supported by GPU hardware—and discusses how transposition can be used to transform
non-coalesced accesses to coalesced ones in many cases.
• section 6.2 presents the typical GPU implementation of matrix transposition, which uses
block tiling to ensure coalesced access to global memory for both read and write operations;
• section 6.3 starts from the naive implementation of matrix-matrix multiplication and demon-
strates how block tiling can be applied to derive an optimized implementation that exploits
temporal locality—which is implemented by utilizing GPU’s scratchpadmemory as a software-
managed cache;
• section 6.4 proposes an exercise in which the reader is directed to follow the steps necessary
to combine register and block tiling in order to further optimize locality of reference in the
case of matrix-matrix multiplication executed on GPU hardware.

6.1 Optimizing the Spatial Locality of Read/Write Accesses on GPUs by Transposition
Definition 9 (Coalesced Access).

A read or write access to GPU global memory is said to be coalesced, if the consecutive threads that
execute in lockstep access consecutive global-memory locations in the corresponding SIMD load or store
instruction.

The definition above and fig. 30 introduce the notion of coalesced access to global memory.
This corresponds to a certain memory pattern, whose spatial locality is efficiently supported by
the GPU hardware. In essence if the threads that execute in lockstep access consecutive memory
locations in their SIMD load or store instruction, then the GPU memory system will perform the
data transfer in only one memory transaction. Otherwise, if the memory locations accessed by
the 𝑤 lockstep-executing threads are spread out in memory, executing the SIMD load or store
instruction may require up to𝑤 memory transactions. Given that, in practice, common values for
𝑤 are 16 and 32, optimizing a program to perform coalesced (rather than uncoalesced) accesses to
global memory gives an important (huge) performance boost.

Luckily, in the case when the array subscript is an affine formula of the indices of the enclosing
loop nest, then a general technique exists for optimizing coalesced accesses. The technique relies
on changing the layout of the corresponding multi-dimensional arrays by means of (generalized)
transposition. We demonstrate the technique on the code example below:
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float A[N,64];

// ... code to fill in array A

float B[N,64];

forall (i=0; i<N; i++) { // parallel

float tmpA , tmpB , accum;

tmpB = A[i,0] * A[i,0];

B[i,0] = tmpB;

for(j=1; j<64; j++) { // sequential

tmpA = A[i,j];

accum = sqrt(tmpB) + tmpA*tmpA;

B[i,j] = accum;

tmpB = accum;

}

}

In the code example, the outermost loop is parallel (why?) and the inner loop is sequential
(why?). It follows that the CUDA kernel would correspond to the body of the outermost loop (which
includes the inner loop), and a number of (at least) N CUDA threads are spawned to execute the
kernel.
Let us analyze what happens when a warp15 of threads execute statement tmpA = A[i,j] in

some fixed iteration j of the inner loop. Since i ranges through thread numbers, the values of i for
the current warp k can be written as 32*k+0, 32*k+1, . . ., 32*k+31. It follows that in the original
program, the SIMD load instruction from array A will read the following (flattened) words/locations
of A: (32*k+0)*64 + j, (32*k+1)*64 + j, . . ., (32*k+31)*64 + j. This corresponds to a
strided access in which the stride is 64 words, no matter of the value of j—i.e., each thread accesses
a location which is 64 words apart from the previous thread access. As such we can expect that
our SIMD load instruction will generate 32 independent memory transactions, resulting in terribly
inefficient execution. Similar thoughts apply to the SIMD instructions executing the load from
A[i,0] and the store to B[i,0] and B[i,j].

One can optimize the program by changing the layout of the input and result arrays A and B,
respectively:
(1) introduce a new computation before the loop that stores in array A’ the transposed form of

array A;
(2) inside the loop, rewrite the uncolaesced accesses to A and B into coalesced accesses to A’ and

B’—where B’ is similarly the transpose of B;
(3) introduce a new computation after the loop that transposes B’ into B.

Applying the transformation results into the semantically-equivalent program:

15In CUDA terminology, a warp is the group threads that execute in lockstep an SIMD instruction.
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float A [N,64];

float A'[64,N];

// ... code to fill in array A

float B [N,64];

float B'[64,N];

A' = transpose(A);

forall (i=0; i<N; i++) { // parallel

float tmpA , tmpB , accum;

tmpB = A'[0,i] * A'[0,i];

B'[0,i] = tmpB;

for(j=1; j<64; j++) { // sequential

tmpA = A'[j,i];

accum = sqrt(tmpB) + tmpA*tmpA;

B'[j,i]= accum;

tmpB = accum;

}

}

B = transpose(B');

Now all the read and write accesses to arrays A’ and B’ are coalesced. Take for example the read
access to A’[j,i]. The current warp k will result in the following values of i: 32*k+0, 32*k+1,
. . ., 32*k+31. For a fixed j, the flat locations read from A’[j,i] by the current warp will be
j*N + (32*k+0), j*N + (32*k+1), . . ., j*N + (32*k+31), because the size of the innermost
dimension of A’ is N. It follows that the current warp accesses in the same SIMD load instruction
consecutive memory locations, hence the access is coalesced. Similar thoughts apply to the read
from A’[0,i] and to the write to B’[0,i] and B’[j,i].
Note that the original program performs N*64 reads (from A) and N*64 writes (to B) to global

memory. The transformed program performs 3× more reads and writes than the original program,
because of the two transpose operations. In spite of this, one is likely to observe that the trans-
formed program executes much faster than the original one, because it exhibits the kind of spatial
locality (of accesses to A’ and B’) that is efficiently supported by the GPU hardware.
Next section presents how the transpose operation can be efficiently implemented in CUDA,

such that it uses only coalesced (read and write) accesses to global memory.

6.2 Transposition: Block Tiling Optimizes Spatial Locality
In the previous section we have seen how one can transform uncoalesced accesses to global memory
into coalesced ones by means of transposition. However, this assumes that the transpose operation
itself can be written only in terms of coalesced accesses to global memory. This step is nontrivial
and is covered in this section.
We start with the mathematical definition of the transpose operator: given a 𝑟 × 𝑐 matrix A—

where 𝑟 and 𝑐 denotes the number of rows and columns, respectively—the transpose of A, denoted
A’ is a 𝑐 × 𝑟 matrix such that A’[j,i] = A[i,j], ∀𝑖 ∈ {0 . . . 𝑟 − 1} and ∀𝑗 ∈ {0 . . . 𝑐 − 1}. This
leads to the following naive code:
forall (i=0; i<R; i++) { // parallel

forall (j=0; j<C; j++) { // parallel

A'[j,i] = A[i,j];

} }
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In the naive code, both loops are parallel and the second one of index j iterates faster. It fol-
lows that the read access from A[i,j] will be coalesced and the write access to A’[j,i] will be
uncoalesced. Intuitively, if C is a multiple of 32, then:
• a warp of threads would correspond to the same value of i and consecutive values of j:
k*32+0, k*32+1, . . ., k*32 + 31,
• the flat indices of A’[j,i] written by a warp in an SIMD instruction will have the form:
(k*32+0)*R + i, (k*32+1)*R + i, . . ., (k*32+31)*R + iwhich corresponds to a strided
access with stride equal to the number of rows R, hence the write is not coalesced.

We aim to have both accesses to A and A’ in coalesced form. The first step is to apply block
tiling with a generic tile of size T to both parallel loops. We recall that block tiling corresponds to
stripmining both loops with an inner one that goes with a count T and increment one, followed
by interchanging the stripmined loops in the innermost position. The safety of the interchange is
guaranteed by the parallel nature of the two loops (see corollary 2). After applying block tiling the
code becomes:
forall (ii=0; ii<R; ii+=T) { // parallel grid.y

forall (jj=0; jj<C; jj+=T) { // parallel grid.x

forall (i=ii; i<min(ii+T,R); i++) { // parallel block.y

forall (j=jj; j<min(jj+T,R); j++) { // parallel block.x

A'[j,i] = A[i,j];

} }

} }

In the code above, the outer two loops of indices ii and jj will correspond to the CUDA grid,
while the innermost two loops of indices i and j will correspond to the CUDA block—i.e., we will
work with two-dimensional grids of blocks, in which the block is also two dimensional. Please note
that the total size of a block cannot exceed 1024 in CUDA, and the size of our CUDA block will be
T×T because each inner loop has count T. It follows that T2 ≤ 1024, hence valid values of T are less
than or equal to 32.
We assume for simplicity that R and C evenly divide T. Let us compute first the indices that are

read from and written into arrays A and A’, respectively, for a given block [ii,jj] in the grid. The
innermost two loops have indices i = ii+0,. . .,ii+T-1 and j = jj+0,. . ., jj+T-1, hence our
block will read the slice A[ii:ii+T, jj:jj+T]. By convention the slice excludes the last element,
so the size of the slice is naturally T2. We would like to read the slice in shared memory—we recall
that CUDA’s “shared” memory refers to fast scratchpad memory—and figure out from there how to
rewrite the write access to be coalesced. The CPU orchestrating code is:
void transposeFloat( float* mat , float* mat_tr ,

const unsigned int R, // height

const unsigned int C // width

) {

unsigned int dimy = (R + T - 1) / T;

unsigned int dimx = (C + T - 1) / T;

dim3 block(T,T,1), grid (dimx , dimy , 1);

transpose <<< grid , block >>>(mat , mat_tr , R, C);

}

and the intermediate code of the CUDA kernel is presented below:
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__global__ void transpose(float* A, float* trA , int R, int C) {

__shared__ float tile[T][T];

unsigned int tidx = threadIdx.x;

unsigned int tidy = threadIdx.y;

unsigned int j = blockIdx.x*T + tidx;

unsigned int i = blockIdx.y*T + tidy;

if( j < C && i < R )

tile[tidy][tidx] = A[i*colsA + j];

__syncthreads ();

if ( j < C && i < R )

trA[j*R + i] = tile[tidy][tidx];

}

The code above simply spawns a CUDA thread for each of the elements of A, then it computes the
corresponding indices i and j for a given thread. Please note that the iteration space corresponds
directly to the input array: the two-dimensional grid contains ⌈𝑅

𝑇
⌉ × ⌈𝐶

𝑇
⌉ blocks, each block contain-

ing T×T elements. Index i is obtained by computing the displacement of the current block on the y
axis—i.e., blockIdx.y*T to which we add the row number of the current block—i.e., threadIdx.y.
Index j is computed in a similar way. The kernel then copies element A[i,j] in a T×T array, named
tile, which is allocated in shared memory, and finally it reads the same element from shared
memory and writes it in the transposed position in the transposed array.

So far, we have accomplished nothing, because the access to trA is still uncoalesced; in essence
a coalesced access should have a + tidx term, but our access has a + tidx*R term which would
correspond to a strided access to global memory by a stride equal to R. This is because we currently
use thread [tidy,tidx] to write the local element tile[tidy][tidx] to result array trA.

The essential step in fixing the uncoalesced access is to use the current thread [tidy,tidx] to
write the “transposed” local element in the current block, i.e., tile[tidx][tidy]. This introduces
non-coalesced access to tile, which is fine because tile is allocated in shared memory and it does
not suffer the penalty of non-coalesced accesses (only global-memory accesses do!). The global
index in A corresponding to local element tile[tidx][tidy] will be i’ = blockIdx.y*T + tidx
and j’ = blockIdx.x*T + tidy, which will be written in trA[j’,i’], resulting in coalesced
access to trA because i’ carries the + tidx term—i.e., T consecutive threads on the x direction
will write T consecutive element locations in memory. The final code is presented below:
__global__ void transpose(float* A, float* trA , int R, int C) {

__shared__ float tile[T][T+1];

unsigned int tidx = threadIdx.x;

unsigned int tidy = threadIdx.y;

unsigned int j = blockIdx.x*T + tidx;

unsigned int i = blockIdx.y*T + tidy;

if( j < C && i < R )

tile[tidy][tidx] = A[i*colsA + j];

__syncthreads ();

unsigned int j' = blockIdx.x*T + tidy;

unsigned int i' = blockIdx.y*T + tidx;

if ( j' < C && i' < R )

trA[j'*R + i'] = tile[tidx][tidy];

}
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The observant reader has noticed a modification in the declaration of the shared memory buffer
tile: previously it was declared as a T×T array, while now it is declared as a T×(T+1) array. The
reason for that is that, in CUDA, the number of shared-memory banks is a power of two: typically
16 or 32. The shared memory does not need to be accessed in coalesced fashion, but it suffers a
significant performance bottleneck when two threads in the same warp access in an SIMD load or
store instruction two memory locations situated on the same bank. In this case the two (or multiple)
accesses are sequentialized; while the shared-memory transactions have much smaller latency than
global-memory transactions, this bottleneck may still significantly restrict performance gains.

Assume that in our code we use T=32 and CUDA shared memory is also distributed on 32 banks.
If we declare our tile array to be of size T×T then the last read access from tile[tidx][tidy]
would have an entire warp reading different memory locations from the same memory bank. This
is because tidx ranges through 0,. . .,31 and tidy is the same for an entire warp—i.e., with our
setting we will have tidy ranging through the warps in a CUDA block. It follows that an entire
warp will access the same shared-memory bank tidy in the last read from tile[tidx][tidy], and
the 32 shared-memory transactions of the warp will be sequentialized. Luckily, the fix is simple:
we make the innermost dimension of our shared-memory buffer equals to T+1 rather than T, which
will spread the accesses in a warp to different banks. This comes at the expense of allocating an
additional number of T shared-memory locations which will not be utilized.

6.3 Matrix-Matrix Multiplication: Block Tiling Optimizes Temporal Locality
We turn our attention to how block tiling can optimize temporal locality of reference. We use
for demonstration the dense matrix-matrix multiplication algorithm. We start from the naive
implementation given below, which multiplies matrices A and B whose sizes are M×U and U×N,
respectively, and results in a matrix C of size M×N (i.e., M rows and N columns):

forall (i=0; i<M; i++) { // parallel map

forall (j=0; j<N; j++) { // parallel map

float c = 0.0;

for (k=0; k<U; k++) { // sequential (reduce o map)

c += A[i,k] * B[k, j]

}

C[i,j] = c;

}

}

One can observe that there is potential to exploit temporal locality: read access A[i,k] is invariant
to the second loop of index j, and read access B[k,j] is invariant to the outermost loop of index i.
As such the program redundantly reads each element of A N times, and each element of B M times.
However, in the current form it is not possible to (fully) exploit the temporal locality to arrays A
and B.

We restructure the code by applying block tiling to the two outer loops—i.e., we stripmine them,
each with a tile equal to T and we interchanges inwards the stripmined loops of stride one—and we
also stripmine the innermost loop of index k. This results in the code shown in fig. 31.
In the restructured code, we reason as before that the two outer loops correspond to a two-

dimensional CUDA grid containing ⌈𝑀
𝑇
⌉ × ⌈𝑁

𝑇
⌉ two-dimensional blocks. A CUDA block would

correspond to the third and fourth loops of indices i and j, thus each block contains 𝑇 ×𝑇 threads.
With the code in this form we turn our attention to the elements that are accessed in the innermost
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forall (ii=0; ii<M; ii+=T) { // parallel grid.y

forall (jj=0; jj<N; jj+=T) { // parallel grid.x

forall (i=ii; i<min(ii+T,M); i++) { // parallel block.y

forall (j=jj; j<min(jj+T,M); j++) { // parallel block.x

float c = 0.0;

for (kk=0; kk<U; kk+=T) { // sequential (reduce o map)

// The loop below reads the following slices:

// A[ii:ii+T, kk:kk+T] and B[kk:kk+T, jj:jj+T]

for (k=kk; k<min(kk+T,U); k++) { // sequential

c += A[i,k] * B[k, j]

} }

C[i,j] = c;

} }

} }

Fig. 31. C-like pseudocode for block-tiled matrix matrix multiplication

loop of index k. This loop accesses elements of A in the slice A[ii:ii+T, kk:kk+T] and elements
of B in the slice B[kk:kk+T, jj:jj+T].
In essence, a given CUDA block of size T×T, performs in some iteration of the kk loop a total

of 2×T3 accesses to global memory (T3 to array A and T3 to array B), but the number of distinct
elements of A and Bwhich are accessed in a block is only T2. We can take advantage by this property
by making the threads of a CUDA block to collectively copy just before the entry into the loop of
index k the slices A[ii:ii+T, kk:kk+T] and B[kk:kk+T, jj:jj+T] to buffers allocated in shared
memory. This would allow the innermost loop to only access the shared memory buffers instead of
global memory. The resulted CUDA kernel code is shown in fig. 32.

The CPU orchestrating code that calls the kernel is shown below:
double MatMatMultFloat( float* A_d , float* B_d , float* C_d ,

int M, int N, int U ) {

unsigned int dimy = (M + T - 1) / T;

unsigned int dimx = (N + T - 1) / T;

dim3 block(T,T,1), grid (dimx , dimy , 1);

unsigned long int elapsed;

struct timeval t_start ,t_end ,t_diff;

gettimeofday (&t_start , NULL);

MatMatMult <<< grid , block >>>(A_d , B_d , C_d , M, N, U);

gettimeofday (&t_end , NULL);

timeval_subtract (&t_diff , &t_end , &t_start );

elapsed =( t_diff.tv_sec *1e6 + t_diff.tv_usec );

double flops = 2.0 * M * N * U;

double gigaFlops =(flops *1.0e-3f) / elapsed;

return gigaFlops;

}

PMPH Lecture Notes for the Software Track, Vol. 1, No. 1, Article 1. Publication date: September 2018.



1:96 Cosmin E. Oancea

__global__ void MatMatMult( float* A, float* B, float* C

, int M, int N, int U) {

__shared__ float Ash[T][T];

__shared__ float Bsh[T][T];

unsigned int tidx = threadIdx.x, tidy = threadIdx.y;

unsigned int ii = blockIdx.y * T, jj = blockIdx.x * T;

unsigned int i = ii + tidy;

unsigned int j = jj + tidx;

float c = 0.0;

for (int kk=0; kk<U; kk+=T) { // sequential (reduce o map)

Ash[i-ii][tidx] = (i < M && kk+tidx < U) ?

A[i*U + (kk+tidx)] : 0.0;

Bsh[tidy][j-jj] = (j < N && kk+tidy < U) ?

B[(kk+tidy)*N + j] : 0.0;

__syncthreads ();

#pragma unroll

for (int k=0; k<T; k++) { // sequential

c += Ash[i-ii][k] * Bsh[k][j-jj];

}

__syncthreads ();

}

if (i < M && j < N)

C[i*N + j] = c;

}

Fig. 32. CUDA kernel code for block-tiled matrix matrix multiplication

The CPU code measures the kernel runtime, and then computes the performance in giga floating-
point operations per second (1 GFlops per sec = 109 flops per sec). The number of floating-point
operations for matrix-matrix multiplication is: 2×M×N×U because there are three nested loops of
size M, N, and U which perform a floating-point addition and a multiplication. The elapsed time has
been computed in microseconds (1 microsecond equals 10−6 seconds). It follows that the number
of giga-flops per second equals the number of flops divided by the time in microseconds and the
result is divided by an extra 103.

We conclude by remarking that block tiling can be similarly applied in one dimension or in more
dimensions (e.g., three dimensions)—it all depends on how many loops do we need to tile in order
to exploit temporal locality.
forall (i=0; i<M; i++) { // parallel

float s = 0, a = A[i]; float a_sq = a * a;

for (k=0; k<N; k++) { // sequential

float a_k = A[k];

s += sqrt (a_sq - a_k*a_k);

}

B[i] = s;

}
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For example, in the code above the access to A[k] is invariant to the outermost parallel loop,
and can be optimized by one-dimensional tiling as below:
forall (ii=0; ii<M; ii+=T) { // grid.x

forall (i=ii; i<min(ii+T,M); i++) { // block.x of size T

__shared__ float Ash[T];

float s = 0, a = A[i];

float a_sq = a * a;

for (kk=0; kk<N; kk+=T) { // sequential

// collectively copy A[kk:kk+T] in Ash[0:T]

for (k=kk; k<min(kk+T,N); k++) { // sequential

float a_k = Ash[k-kk];

s += sqrt (a_sq - a_k*a_k);

}

}

B[i] = s;

}

}

6.4 Exercise: Block and Register Tiling for Matrix-Matrix Multiplication
This section presents the steps by which block and register tiling can be combined to further
optimize the temporal locality of matrix-matrix multiplication. We start as before with the naive
code:
forall (i=0; i<M; i++) { // parallel map

forall (j=0; j<N; j++) { // parallel map

float c = 0.0;

for (k=0; k<U; k++) { // sequential (reduce o map)

c += A[i,k] * B[k, j]

}

C[i,j] = c;

}

}

We then tile the three loops in the following way:
• we stripmine the parallel dimension of index i by a tile of size T and stride 1;
• we double stripmine the second parallel dimension of index j by a tile of size T2 and stride T,
and then by a tile of size T and stride 1;
• we stripmine the sequential dimension of index k by a tile of size T and stride 1.

Since the loops of index i and j are parallel, we can interchange their tiles inwards and distribute
them as we desire, and our desire is as follows:
• we move the tile of loop i innermost and we sequentialize it;
• we move the double tiles of the loop of index j just inside the original loop of index k.

The resulting code is shown in fig. 33:
• the two outer parallel loops of indices ii and jjj correspond to the two-dimensional CUDA
grid, which contains ⌈𝑀

𝑇
⌉ × ⌈ 𝑁

𝑇 2 ⌉ blocks;
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unsigned int ii, i, jjj , jj, j, kk, k;

forall (ii = 0; ii < M; ii += T ) { // parallel grid.y

forall (jjj = 0; jjj < N; jjj += T*T ) { // parallel grid.x

float cs[T][T][T];

forall(jj=jjj; jj<min(jjj+T*T,N); jj+=T){ // parallel block.y

forall(j=jj; j<min(jj+T,N); j++) { // parallel block.x

for (i=ii; i<min(ii+T,M); i++) { // sequential

cs[(jj-jjj)/T][j-jj][i-ii] = 0.0;

} } }

for (kk = 0; kk < U; kk += T) { // sequential

// here we will insert a collective copy to shared

// memory of the slice: A[ii : ii+T, kk : kk+T]

for (k = kk; k < min(kk+T,U); k++) { // sequential

forall (jj=jjj; jj<min(jjj+T*T,N); jj+=T) { // block.y

forall (j=jj; j<min(jj+T,N); j++) { // block.x

float b = B[k,j]; // hoisted out

for (i = ii; i < min(ii+T,M); i++) { // sequential

// please modify here to read from shared

// memory Ash and to scalarize cs

cs[(jj-jjj)/T][j-jj][i-ii] += A[i,k] * b;

} } } } }

forall (jj=jjj; jj<min(jjj+T*T,N); jj+=T) { // block.y

forall (j=jj; j<min(jj+T,N); j++) { // block.x

for (i = ii; i < min(ii+T, M); i++) { // sequential

C[i,j] = cs[(jj-jjj)/T][j-jj][i-ii];

} } }

} }

Fig. 33. C-like pseudocode for block+register tiled matrix matrix multiplication

• the parallel loops of indices jj and j correspond to the CUDA block, which, as before, has
size T×T;
• the loop of index i is sequentially executed (part of the kernel code);
• we have explicitly distributed the loops of indices jj, j and i across the intialization of c=0.0,
the computation of c and the update of result matrix C. This has required to expand scalar
c with three array dimensions all equal with T. This step was not shown in the block-tiled
matrix matrix multiplication because there the distributed loops were only the ones forming
the CUDA block. These two dimensions of size T can be ignored as well in the CUDA code
for the same reason. However, c needs to be expanded with a dimension of size T in the
CUDA code due to the distribution of the loop of index i, which is sequentialized in the
block+register tiled version of the code;
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• please notice that the read from global memory B[k,j] has been hoisted outside the innermost
loop of index i since it is invariant to it;
• each thread now computes T elements on a column of the result array: the local thread of block
index threadIdx.y = (jj-jjj)/T and threadIdx.y = j-jj in some block blockIdx.y =
ii and blockIdx.x = jjj] computes the elements C[ii:ii+T,j] by sequentially iterating
at most T times through the loop of index i in the last loop nest.

Your task is to implement the CUDA code for the block+register tiledmatrixmatrixmultiplication—
including the CPU orchestration code and the kernel code—specialized for the case when T=16.
The following details are probably important:
• make the threads of the block to collectively copy the slice A[ii:ii+T, kk:kk+T] into shared
memory just inside the loop of index kk;
• Insert the necessary synchronization and replace the read from A[i,k] in the innermost loop
body with a read access from shared memory;
• semantically, each thread should work with its own (private) array cs of size T; you do not
necessarily need to scalarize this array since the CUDA compiler might do it for you. However,
if in doubt you may scalarized the cs array for T=16—please consult section 5.7 and fig. 29
for inspiration.
• please make sure that all the loops of indices i and k are normalized—i.e., they go from 0
to T with a stride of 1—and the loop of index i is unrolled (specified with #pragma unroll
before it), but the loop of index k is not unrolled!

Please report the GFlops per second achieved by your implementation, and compare the perfor-
mance with the provided block-tiled version. Please also answer what is the degree of temporal
reuse for the matrix A and for the matrix B in your implementation, i.e., “A read from A and B stored
in global memory is amortized by how many shared-memory or register accesses?”
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7 SUGGESTIONS FOR THE GROUP PROJECT
The PMPH course concludes with a group project that is:

• conducted in groups of three or four students,
• planned to take about one month of collaborative work, and
• contributing with a significant percentage (60%) to the final grade.

It is encouraged that the students propose their own project — because it is assumed that in this
case they have a vested interest in it — but please consult with the teacher of the course to make
sure the project is relevant to the taught material. Just in case the students lack inspiration, here
are couple of project suggestions that have proven to be popular choices over the years:

(1) developing and efficient Futhark or Cuda implementation for a batch of rank-k search
problems: The rank-k search problem consists of finding the k-smallest element of an array,
and, for example, is commonly use to find the median value. The project would aim to solve
a batch of such problems, by flattening the two-level parallelism: the trivial parallelism of the
batch and the inner parallelism, which essentially consists of partitioning each (sub-)array
three-ways: into segments whose values are less-than, equal-to and greater-than the randomly
chosen pivot. An additional challenge to flattening is that the two levels of parallelism are
separated by a while loop, which implements the recursive calls that continues the search
into one of the three segments. A trivial solution to the rank-k search is to radix sort the
array and then to select the k-th element; as such your baseline for evaluating performance
will be the radix-sort implementation offered by the Cub library [43].

(2) developing an efficient Cuda implementation of the single-pass scan (prefix sum) algorithm
proposed byMerrill [44], which performs two global-memory accesses for each array element,
and as such it can reach up to about 80% of the memcpy performance—i.e., copying an array
also requires one read and one write access for each element of the array. This technique
has been already implemented in Futhark [14, 51], hence you can use both Futhark and Cub
library [43] as baselines for comparing performance.

(3) developing an efficient Cuda implementation for sorting: for example one can use this
paper [71] for a first solution and then try to optimize it based on this NVIDIA presentation [2].
While it is not expected that you will beat the state-of-the-art radix sort implementation of
the Cub library [43], try to see how close you can get to its performance.

(4) developing an efficient Cuda implementation for fusing highly-dimensional tensor contrac-
tions, i.e., try to implement the technique from [39] and to replicate the reported performance
results.

(5) developing an efficient Cuda implementation for a financial algorithm, for example option
pricing [52] or stochastic volatility calibration [3]; sequential-C and parallel Futhark versions
are available and can be used as baselines;

(6) developing an efficient Cuda implementation for a remote-sensing algorithm [23] that detects
changes in landscape by analyzing time-series of satellite images. A parallel Futhark version
is available as baseline; the optimizations are discussed in the above paper.

(7) developing an efficient Cuda implementation for exact or approximate nearest-neighbor
search [59], e.g., based on parallel query propagation through kd-trees. Similarly, parallel
Futhark versions are available.

(8) translating some of the benchmarks from Minpack-2 [4], which represent practical appli-
cations of automatic differentiation (AD). The emphasis is in developing efficient Cuda
implementations that compute the Jacobian or Hessian of the target objective function,
while also documenting the sparsity structure of the Jacobians or Hessians. The performance
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can be compared with a baseline implemented in a framework that supports AD, such as
Tensorflow [1], PyTorch [64], JAX [21] or Futhark [12, 72].

The projects above refers to efficient Cuda or Futhark implementations of some big-compute
kernels that are key (computational) components of algorithms used in various domains, such as
remote sensing, finance, etc. Since the end user of such algorithms are the domain experts — who
do not necessarily master the Cuda or Futhark programming models — it is custom that ultimately,
the algorithm is made available in a mainstream, productivity-oriented language, such as Python
or C++. This is typically achieved through the use of foreign-function interface APIs that provide
a low-level interface for OpenCL, Cuda or Futhark entry points to be called from Python [27]. A
demonstration of how this is achieved in practice is presented in the github repositories associated
with the papers from items (6) and (7) [23, 59]. Finally, a related direction of study is to promote
the interoperability of automatic differentiation across popular ML languages [62, 63], which bears
some similarities to prior work on supporting generics across computer algebra systems [13, 61].
For the purpose of the group project, it is typically not required to integrate your accelerated
computational kernels in a productivity oriented environment such as Python.
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