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Abstract

Tracing algorithmsvisit reachable nodes in a graph and are central
to activities such as garbage collection, marshalittgTraditional
sequential algorithms use a worklist, replacing a nodeb thieir
unvisited children. Previous work on parallel tracingpiscessor-
orientedin associating one worklist per processor: worklist inser-
tion and removal requires no locking, and load balancingireg
only occasional locking. However, since multiple queuey o@n-
tain the same node, significant locking is necessary to axaid
current visits by competing processors.

This paper presentsmaemory-orientedolution: memory is par-
titioned into segments and easbgmenhas its own worklist con-
tainingonly nodes in that segment. At a given time at most one pro-
cessor owns a given worklist. By arranging separate siregéeer-
single-writer forwarding queues to pass nodes from prares®
processor we can process objects in an order that gives lock-free
mainline code and improved locality of reference. Thiscgfang
is analogous to the way in which a compiler changes an iterati
space to eliminate data dependencies.

While it is clear that our solution can be more effective on

NUMA systems, and even necessary when processor-local memory

may not be addressed from other processors, slightly simgly,
it often gives significantly better speed-up on modern radties
architectures too. Using caches to hide memory latency loseh
of its effectiveness when there is significant cross-premesiem-
ory contention or when locking is necessary.

Categories and Subject Descriptors D.3 [Programming Lan-
guage§ Processors—Memory Management; DPrggramming
Techniquel Concurrent Programming—Parallel Programming

General Terms Algorithms, Design, Performance

1. Introduction

The tracing of a graph of objects lies at the heart of many pro-
cesses in computing, from garbage collection to web-pageng.
Improvements in the ability to trace graphs efficiently chere-
fore have a significant impact across a number of areas. T$te co
of tracing with a single processor in a flat memory model isl wel
understood and has readily achieved lower bounds. Mattetsss
clear, however, in a more sophisticated model. Parallelviaare
and multi-level memory hierarchies are now the norm. Moegov
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we can expect both the degree of parallelism and the memcinyar
tecture complexity to grow over time. We are therefore iesézd
in how parallel tracing of a graph of objects can be perforinesl
scalable manner in multi-level or heterogeneous memory.

The cost of tracing a given graph depends on how the objeets ar
placed in memory, the order the objects are examined and lghwh
processor. We consider the tracing problem where the abjeste
already been placed in memory. While memory management s th
primary motivation of this work, we daot claim immediate sig-
nificant improvements to state-of-the-art garbage callscivhose
optimization depends on a number of factors. We rather tage t
view that tracing of some form or another is a problem in alt co
lectors and understanding its scalability is importanttfier future.

We have nevertheless evaluated our tracing strategy incfiext
of an existing, mature semi-space copying collector on codity
hardware and have seen good scalability.

To frame our approach, we find it useful to start with an alsstra
definition of tracing:

e mark andprocess any unmarkeahild of a marked node
e repeat until no further marking is possible.

Themark, process, andchild are generic functions that operate
on exactly one node at a time, and we assume that an initialisa
tion phase has already marked and processed some root Dedes.
scending one step on the abstraction scale, without logngrgl-

ity, one can implement the above implied fix-point wigrklists:

o take a node from an arbitramprklist; if unmarked themark
it, process it, and add any unmarkechild to one or more
arbitraryworklists, where arbitrary stands for not yet fixed to
a particular implementation rather than random

e repeat until allvorklists are empty.

The next step in refining the algorithm binds the worklisésmn-
tics. We identify an importandivergencepoint, related at a high-
level to code-data duality, in which only one direction sseim
have been satisfactorily explored. Should worklists mquighar-
ily processing or data-placement, and are the two dual ictioe?
The classical approachssigns to worklists the natural process-

ing semantics: since they hold to-be-processed nodes tweyds
relate to the computational/processor space. It folloves ¢hse-
quential algorithm employs one worklist. Parallelising talgo-
rithm in a straightforward manner implements the worklistaa
shared data structure that can be safely accessed, viadpdky
different processors. Optimising this shared access lyslezds
to assigning one worklist per processor, while load batznds
achieved by allowing processors to steal nodes from neigisbo
worklists — for example, the double-ended queue of Areta
al. (1) or the idempotent “work tealing” mechanism exhibitm-
imal locking of Michaelet al. (22) The problematic synchronisa-
tion, which cannot be optimised, is the one that may appesiaeén



theprocess function: for example a parallel copy-collector needs
to ensure that an object is not concurrently copied twicés $yn-
chronisation is particularly frustrating since, althougitessary for
safety reasons, such sharing conflicts arise very rarelyaictise.

The main contribution of this paper is to investigate in the-p
allel contextthe other directionin which worklists are associated
with the memory rather than processing space. More pregcisel
der a convenient memory partitioning, a worklist storestthbe-
processed elements belonging to exactly one partitiom é%0).
Now objects are processed in a different order that impfiek-
ploits data locality. We impose the invariant that one tiartimay
be processed by at most one processor, its owner, at anytgiven
although ownership may dynamically change to enhance lakd b
ancing. With this refinement alone, our direction seems tube
the dual of the classical approach: we obviate the need fartsp-
nisation insideprocess — since data is not shared, but only at the
similarly expensive cost of locking concurrent access toklist®.
We are not truly stuck, however: we merely need to allow nodes
to be effectively forwarded among processors — worklisésraw
non-shared. To our knowledge, only Chicha and Watt (10), &em
et al. (11) and Shukt al. (24) have explored this direction, but in
the simplersequentiakase, where load-balancing is not an issue.

Before summing up and comparing at a high-level the two ap-
proaches, we make the observation that, as hardware caiyplex
increases, the cost of executing an instruction is less esgluni-
form. For example, in practice the cost of inter-processonmu-
nication — cache conflicts, locking, memory fences — comtino
grow with respect to raw instruction speed (i.e. speed times-
ber of processors times instruction level parallelism)this con-
text, we argue that binding worklists to memory-space seicgn
gains the upper hand, since it translates into a hardwameely
behaviour as it naturally exploits locality of referencel abviates
the need for locking. We thus trade-off instructional ot for
the likeliness that these execute at arithmetic speed.

As detailed in Sections 3.3 and 4.3, the mechanism for fatwar
ing remote nodes between processors expresses a usefof lave
straction, is efficient (free of locks and expensive memences),
is amenable to dynamic optimisations, and can adapt to ixplo
hardware support. For example, intensive forwarding betwa
source and a target worklists is optimised by transferriwger-
ship of the target to the owner of the source.

The classical processing semantics of the worklist has dhe a
vantage of better load balancing — at the object as oppogeattie
tion level, but compromises algorithm robustness: lockingache
conflicts are left unoptimised. Fix-up strategies, suchsaslun the
Hertz et al bookmarking collector (16), which relies on an exten-
sion to the virtual memory manager to reduce page-thraskeem
unlikely to solve the mentioned concerns. In comparisofgreing
locality of reference does not generate page thrashingio éth.

To evaluate the effectiveness of our parallel tracing sehene
have analysed how it improves the performance of a maturé sem
space copying collector. This is described in Section 5otighout
the paper we use copying collectors as an example of a gdéaaral
of tracing; mark-and-sweep collectors will benefit lessrfrour
approach since the idempotent mark operation requiresakmig.
The empirical results support our high-level characteiora Not
only does our tracing method usually show better absolatgrtg
time than the classical method on most examples with sixgitei
processors, it almost always shows significantly bettdabdiy.

We summarise the important contributions of this paper:

e We explore and demonstrate the effectiveness of a memory-
centric approach to parallel tracing.

1 Multiple processors may need to insert in the same workiistesa node
and its children do not necessarily belong to the same ijpartiand this
synchronisation cannot be optimised via doubled-endedeagi€l).

e We introduce a high-level mechanism for forwarding remote
nodes between processors that is efficient and free of both
locks and expensive memory barriers (enflence on X86).

This mechanism can be applied directly under global cache
coherency and can be adapted to work on a hierarchy of caches.
This step is essential in eliminating locking from the hatpa

We present high-level optimisations to reduce forwardamy
the worklist size. The former may prove important as we move
towards more heterogeneous platforms.

Finally, we test both approaches on a range of benchmarks to
demonstrate our robustness claim: our algorithm scalelsinvel
both data-size and number of processors. On the tests exhibi
ing scalable speed-up, our algorithm runs on avedagiex and

as high a$.9x faster than the synchronisation-free sequential
MMT k algorithm, on eight processors. This is comparable to av-
erage and maximal speed-ups2of and3.2x on four proces-
sors by Marlowet al. (21), and with an average speed-uptef

on eight processors by Floa al (14), albeit the comparison
suffers due to different benchmarks and hardware.

The rest of the paper is organised as follows: Section 2wevie
the classical parallel semi-space collection at a highl eaen our
point of view, and discusses related work. Section 3 presestm-
plified view of our algorithm. Section 4 enhances the basgigie
with a few dynamic high-level optimisations, describes lienpen-
tation details, evaluates the design trade-offs, and disufurther
considerations. Section 5 gives an empirical comparisaupfl-
gorithm with that ofuMTk, and Section 6 concludes.

2. Background and Related Work
2.1 Parallel Copying Collector at a High-Level

A semi-space copying garbage collector (4) partitions {hece
into two halves: memory is allocated out of the from-space] a
when this becomes full, collectors copy the live objectefftom-
space to the to-space, and then flips the roles of the two space
Some solutions employ a partitioning of the to-space intckd
and implement the to/from space separation at a higher+gena
level, to the effect of a much reduced space overhead. Weysimp
call all of these copying collectors.

The common technique for parallelising copying collectst®
use a sharedqueue and worker threads running identical code:

while (!queue.isEmpty()) {
int ind = O;
Object from_child,to_child,to_obj = queue.deqRand();
foreach (from_child in to_obj.fields()) {
ind++;
atomic{ if( from_child.isForwarded() ) continue;
to_child = copy(from_child);
setForwardingPtr (from_child,to_child); }
to_obj.setField(to_child, ind-1);
queue.enqueue(to_child) ;

}}

A to-space object is randomly taken from the queue, andsif it
fields have not already been copied, the children are copidukt
to-space, the to-space object’s fields are updated, andethiy n
copied objects are enqueued.

This code hides two layers of synchronisation. The queuesacc
synchronisation has been shown to be amenable to impletizenta
with small overhead: Arorat al. (1) apply a double-ended queue
data-structure, while Marlovet al. (21) and Imai and Tick (18)
amortise the locking cost by dividing the to-space into kéthat
are processed in parallel.

The more problematic synchronisation is that of the fine-
grained, per-object locking needed when copying an objedth-
out theatomic block the same objeai; may be copied to two



to-space locations with the initial references split between the
two. Marlow et al. (21) estimate this sequential-case overhead to
be around5% of the collection run time.

2.2 Related Work

We consider parallel copying collectors that implemenpreeplo-
ration by reachability from root references (20). We studgying
over mark-and-sweep collection because the latter is asiropse
of tracing that does not fully highlight locking issues.

Halstead (15), in the context of Multilisp, was one of thetfics
employ a parallel semi-space copying collector. His deaiggigns
each processor its own to/from spaces and allows an inciteien
per-processor, object copying phase, while the semi-spaeap is
coordinated among all processors. We observe that thi@apipis
perhaps the closest one to ours in spirit, since it impli@dsumes
that each processor traces mostly local data: there is ondisto
per processor, with worklists’ semantics related to the orgm
space. However the dual space is left unoptimised: as Halste
acknowledges, this approach may lead to work imbalance; als
fine-grained locking is needed to synchronise from-spacesaes,
although contention is rare.

It is widely accepted that methods aimed at avoiding work
imbalance have been a significant challenge due to the fatt th
in general it is impossible to determine which roots leachtaléor
large data structures. Dynamic re-balancing is implententith
two main techniques. One employs work stealing at a perebbje
granularity in conjunction with data-structures exhiitismall-
locking overhead per access. The other groups work intokbjoc
and thus amortises the locking overhead by copying sevbjatts
for every synchronisation. These batching schemes miglkema
termination criteria easier and, as Siegwart and Hirzednles may
provide flexibility in expressing traversal policies (25).

The object-granularity stealingvas explored by Arorat al
who propose a one-to-one association between processdrs an
worklists, which are implemented via the double-ended quizta-
structure (1). The double-ended queue interface exhliiégtmain
operationsPushBottom andPopBottom are usually local and do
not require synchronisation, whilopTop is used to steal work
from other processors, when processor’s own worklist istgmp

Flood et al. (14) present a parallel semi-space collector and
a mark-compact copying collector that statically parakelroot
scanning by over-partitioning the root set and employ dyingrar-
object work stealing via double-ended queues. To gragehah-
dle worklist overflow, they propose a mechanism that explait
class pointer header word present in all objects under timgile-
mentation. The allocation synchronisation overhead isiced by
atomically over-allocating per-processor “local allacatbuffers”
(LAB); each processor then allocates locally ingides.

Endoet al. (13) propose a parallel mark-and-sweep collector, in
which work stealing is implemented by making processor$ wit
work copy some work to auxiliary queues. Processors without
work lock one auxiliary queue and steal half of its elememtss
approach makes the transition to batch-based systems, Isirge
objects are sub-divided into 512-byte chunks.

The firstblock-based approads Imai and Tick’s parallel copy-
ing collector (18).Their approach divides the to-space bibcks,
where the block’s size gives the trade-off between loadruéhg
and synchronisation overhead. Each processor scans dleckn-
(from-space) to a copy-block (to-space). If the copy-blisckiled,
it is added to a shared pool and a new one is allocated; if tue-sc
block is completed a fresh one is grabbed from the shared pool

Attanasioet al. (2) propose a copying collector for Java server
application running on large symmetric multiprocessottfptans
that reportedly scales as well as that of Flebél. Load balancing

is implemented by maintaining a global list of work buffexmne
taining multiple pointers to objects, from which work isIsto.

Cheng and Blelloch’s parallel copying collector (9) regsir
processors to push periodically part of their work onto aretha
stack, which is used for work stealing. A gated-synchrdiisa
mechanism ensures the atomicity of push and pop operations.

Barabastet al. employ “work packets” (5), similar at a high-
level to Imai and Tick’s blocks, that makes it easy to detect
termination and provides flexibility in adding/removingppessors
from the system. Their design differs in that packets areesha
between processors at a higher, “whole-packet” granylartl the
scan-packet and copy-packet remain distinct.

Marlow et al. developed a parallel copying collector (21) for
Haskell that, similar to Imai and Tick’s work, implementse@iey’s
elegant technique (8) of representing the to-be-processiedts as
an area in the to-space. This eliminates the overhead, fauhd
at least8%, of maintaining a different structure (queue). To further
reduce the work-distribution latency, they allow incontglblocks
to be added to worklists, if there are idle processors.

We observe that all the above collectors associate the isbidl
the processor space, with the result that the problematichsg-
nisation cannot be eliminated. The only success in thictime
was achieved in the context of functional languages, byaitpd
the fact that most data is immutable: Doligez and Leroy (12) a
low multiple threads to collect in parallel their privatedps, which
contain only immutable objects, while the concurrent atie of
Huelsbergen and Larus (17) allows immutable data to be dopie
concurrently with mutators’ accesses. They do not addrsdlimg
the other negative memory effects, such as page thrashing.

Several solutions come close, at least in spirit, to our @gogh
of binding the worklist semantics to the memory space they all
treat the simpler, sequential case. Chicha and Watt (10pantkrs
et al. (11) both optimise memory hierarchy issues by partitignin
the heap into regions and enforcing localised tracing e&dch
region. The first approach stores pending remote pointersdie
to the currently scanned region) into the “localised trgajneue”
of the region the pointer addresses. The second approach, in
generational context, achieves locality of reference imjting the
tracing activity to one card of the remembered set at a time.

The work of Shufet al. (24), although focused on the sequen-
tial case, also discusses the design of a memory-centniallgla
collector. The difference with respect to our approach safrper-
spective: Shukt al. rely on a placement technique to reduce the
number of remote objects; our method does not require thidae
placement. Our tests show, on average, that one object inofou
five is remote, hence locking overhead corresponding tolhend
remote objects in Shugt al. may still be significant.In contrast our
forwarding queues eliminate locking from the hot executaith.
Furthermore, ifP and N denote the number of processors and par-
titions, we keep exactly one worklist per partition aRdx P for-
warding queues, as opposedito< N worklists in Shufet al. Since
effective load balancing usually requir@é > P our approach
seems to save metadata space. Finally, as opposed to tge dési
Shufet althat allows exactly one worklist to be owned by a certain
thread, our approach encourages threads to own many qastiti
a producer-consumer relation. This allows us to (i) redocedrd-
ing, since remote objects belonging to owned partitionslasstly
inserted — without locking — in their associated worklistad (ii)
to copy co-referenced objects together via Cheney’s taskde-
scribed in Section 4.4.

Attardi and Flagella also partition the heap into regionsiith
the intent to provide flexibility in choosing the most suiamem-
ory management scheme for each region (3). Other solutians p
pose fix-up strategies to reduce the cost of negative menfiegts
Hertzet al (16) developed the bookmarking collector that records



Memory Partitions:

Partition  Partition Partition  Partition Partition
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Address a belongsto partition (a quo L) rem N

Figure 1. Partitioning memory intaV regions of local sizd..

summary information about outgoing pointers from to-bited
pages to reduce the probability of that page being reloadatha
Their implementation relies on modifications of the lowdkelayer
to gain control over the paging system. Boehm (7), in theexdnt
of a mark-and-sweep collector, optimises (i) cache belaviy
exploiting hardware support to pre-fetch object’s chifdia the
cache, and (ii) paging behaviour during the sweep phaseibg as
bit per page to encode whether the page contains any livetsbje

While distributed garbage collectors come close in spoit t
our approach in that the memory is implicitly partitionedveeen
remote computers, a survey study by Plainfosse and Sh&8jo (
indicates a different focus. The approach is to employ alaegu
collector to do the local work and a special one to handle temo
references. The focus is on how to represent remote refesesuch
that their local representations are not garbage collebiethe
“regular” collector and to study mechanisms for garbagéectihg
remote references that are scalable, efficient and falaitabat. In
some ways, the attention to communication costs in thigngeit
similar to our memory access considerations.

Finally, we briefly recall here the Memory Management Taplki

MMTk (6), since Section 5 compares our approach against their
semi-space collectommTk is a research-oriented, composable,

extensible and portable framework for building garbagéectdrs
for Java in Java, that has been found to give comparableesftigi
to those of monolithic solutions. Its tracing scheme, artaimse
of the classical approach, employs (i) work stealing at gagel
granularity in which worklists are implemented by the daubl
ended queue data structure of Araral. (1), (ii) the LAB (14)
of Flood et al. to reduce the locking overhead at allocation, an
(iii) the special treatment of large objects (13) by Erdal.

3. Simplified, High-Level Design

Our survey of parallel copying collectors shows that all are
stances of the classical approach that binds the worklisaetcs

more awkward, name would be “local size” since the partgioh
an infinite heap have infinite size.

At this point we need to clarifyvhat do our worklists stofe
Section 2.1 shows that the classical worklists store taespiae
objects. In our approach, a worklist stosdsts where a slot is a to-
space address that holds a pointer to a live object in the-&ppace.
For example, for a to-space objegt having only one field, the
slot s; to be enqueued when tracing children is the address of
o1’s field £1, which stores a pointer to a from-space object. Our
collection algorithms dequeues at a later time from a worklist,
then the from-space object pointed by is copied in the to-space
object o2, ands; is updated to point ab> — thus semantically
performingo: .f1 = o2. Finally the addresses of the's fields
are added as slots to their corresponding worklists, angatep

Worklists store slots because our algorithms uses a ooedo-
association between worklists and partitions, and the itapd
invariant to be preserved is that any ségtin worklist : stores an
address; that belongs to partitiof i.e. (a1 quo L) rem M = i.

Having defined slots, we make the observation that while the
classical algorithm may result in worklists of smaller sizban
ours, in the worst case both approaches exhila &;) worklists’
combined size, wher§; denotes the number of non-null slots in
live objects. To see this, it is enough to observe that: (astsS;
slots are going to be processed, and thus enqueued in sy kligl
(ii) when only one worklist is used to collect a balanced bjrtece
containing@ non-aliased objects, the worklist will reach sig¢2
in both cases.

Due to their one-to-one relation, we freely interchangertbe
tions of collector and processor. Our design enforces thatost
one collectorc may access a worklist at any time. We calthe
owner of that worklist and of its associated partition. Wil
the case of a partition not being owned. We daliwardedslots
of collector c, the slots storing addresses belonging to partitions
owned byc, but that were reached by other collectors when tracing
their partitions. We make several simplifying assumptjombich
we treat at length later, in Section 4: worklists are repreest as

d unbounded queues, no dynamic load-balancing mechanisst is a

sumed, and roots have been already placed in their worldigis
all non-empty worklists have been distributed among ctdiec

3.2 Handling Localised Tracing

Figure 2 shows a simplified version of the tracing algoritfithe
run function, which implements one collector tracing, repdbte

to theprocessorspace. We present now the basic design of our al- performs the following operation sequence: First, its famted ob-

gorithm that explores the dual direction — tiemoryspace. This

jects are placed in their corresponding worklists. Thiscisieved

section first introduces some notations and makes someisimpl Yy the call toprocessForwardedSlots function, whose imple-

fying assumptions, then presents the core of the algoritiow,
inter-processor communication is handled, and the tettinima
condition. Representing inter-processor communicatiquliatly
removes locking from the execution’s hot path; alternatiseve
equally expensive locking from one place to another. Varigigh-
level optimisations are left to Section 4.

3.1 Notations, Invariants and Simplifying Assumptions

We consider a heap of arbitrary size withdisjoint partitions, each
containing contiguous intervals of siZze The distance between
two consecutive intervals belonging to the same partitoh N

so partitioni contains addresses in the s§8fen[iL + kLN, (i +
1)L+ EkLN), as illustrated in Figure 1. It follows that an address
belongs to partitior{a; quo L) rem N. A condition to have good
load balancing is fotV to be significantly greater than the number
of processorsP; this is known as over-partitioning the heap. As
discussed in Section 4.4 the valuelohaturally leads to a trade-off
between the algorithm’s locality of reference and load heilag.
We improperly callL the “partition size” — a perhaps better, but

mentation we defer to Section 3.3. Second, objects belgnigin
one of the partitions owned by the current collector areelaloy
theprocessOwnedWorklists function. This section explains this
aspect. Finally, if the current collector does not have amyédiate
work to do, either because it owns no queues or all owned gueue
are emptytest_termination checks whether there is still work
globally. If not, the collector is allowed to end. The teraiion
condition is explained in Section 3.4.

Our simplified implementation oprocessOwnedWorklists
assumes that each collector holds a list of owned worklists a
getWorkList simply returns the current, non-empty worklist.
When this becomes empty, it is removed from the owned listedd
to a to-be-released list and the next non-empty worklishissen.
To-be-released worklists are freedpfiocessForwardedSlots.

To trace a worklist, we repeatedly remove and process its
slots. If the slot refers to an object that has been already copied
to the to-spaceifForwarded(obj)==true) then we just update
the slot reference to the to-space object. Otherwise, tfecols
copied to the to-spacen¢w_obj), its slot's reference is updated



void run() {
boolean is_work_left = true;
while(is_work_left) {
processForwardedSlots();
is_work_left = processOwnedWorklists();
if (lis_work_left) is_work_left = !test_termination();
}r
boolean processOwnedWorklists() { return trace( getWorklist() ); }

boolean trace(Worklist wq) {
if (wq == null) return false;
int counter = 0;
while(counter < wq.quantum && 'wq.isEmpty()) {

Address  slot = wq.dequeue();
Reference obj = slot.loadRef(), new_obj;
if (isForwarded(obj))

{ slot.storeRef (obj.getForwardingPtr()); continue; }
new_obj = copy(obj);
slot.storeRef (new_obj);

setForwardingPtr(obj, new_obj);

for_each(Address child in new_obj.children())
{ dispatch_enq(child); counter++; }
}

return true; }

Figure 2. High-level, simplified tracing algorithm
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(storeRef), the forwarding pointer is installed to the old object
(setForwardingPtr), and finally the new object’s fields are dis-
patched to their corresponding worklists épatch_enq). Figure 3
depicts the dispatch mechanism: the object correspondirtbet
slot just dequeued from worklist is copied to the to-space. Its
fields point to objects in partitionk, 2 and3. Since each worklist
knows its owner and partitions and2 are owned by collectot,
the corresponding slots are inserted directly in worklistnd 2.
Since the third object field belongs to a partition owned byfa d
ferent collector, itis inserted in the forwarding queuehs bwner.
If partition 3 were not owned at that moment, collectowould at-
tempt to acquire ownership, using partition-level lockiAguseful
optimisation is to check whether the object’s children halveady
been copied to to-space; if so just discard them after upglatieir
(object’s field) slot, thus reducing redundant inserts.

Important Remark. Consider an objeai, already in to-space,
that has a field that points to the from-space objestd_f. Let
cp-f be the to-space copy eofild_f. The slot update.f = cp_f
is still safe in our concurrent context because:o(i¥ is updated
exactly once during the entire garbage collection, difas been
already copied to to-space prior to dispatching its fields to
worklists, and (iii) field locations are word-aligned andishup-
dated atomically on Intel architectures starting Wit (19). Sec-
tion 4.4 discusses how to update the slot intlua1A case.

volatile int tail=0,head=0, buff[F]; next : k -> (k+1)JF;

bool enq(Address slot) { bool is_empty()
int new_tl=next(tail); { return head == tail; ¥
if (new_tl == head) Address deq() {
return false; // while(buff [head]==null)
// while(buff[tail] !=null) // isync;
// isync; Address slot= buff[head];
buff[tail]l = slot; // buff[head] = null; lwsync;

tail = new_tl;
return true;

head = next(head);
return slot;

Figure 4. Forwarding queue implementation for X86.
The commented lines are required for PowerPC.

3.3

Given P processors, & x P matrix of forwarding queueds
used so that the;j entry holds items enqueued by processto

be dequeued by processprDiagonal entries are unused. We call
processoi the producer and processpthe owner or consumer of
queueij. We consider forwarding queues to be circular, of fixed-
size F'. Associating one queue with exactly one producer and one
consumer permits the free-of-locks and wait-free impletaigon
shown in Figure 4, which complies with tlieva Memory Model:

all shared data is declareeblatile. However, this algorithm
requires only a weaker notion of volatilty, closer to the+®ne;
writing this code in assembly would be more efficient.

For Intel/AMD X86 architectures (19) the only problematic
memory re-ordering pattern arises when initialb=0 and, con-
currently, processot writes a=1 then readso and processog
writesb=1 then reads. Then processors and2 might findb==0
anda==0, respectively. Our code exhibits this pattern between two
enq calls executed concurrently with twis_empty followed by
deq calls:

// Processor i
1. buff[taill
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// Processor j
head = next(head);
2. tail = .. if ( head != tail)
3. if(new_tl == head) slot = buffl[head];

A Jvm fixes this by inserting a potentially expensiigence
instruction after the writes teail andhead. We observe however
that the algorithm is still correct withoutfences. First, a prob-
lematic memory re-ordering betwe@rad and tail may result
in processot finding the queue full when it is not, and procesgor
finding the queue empty when itis not. This does not affeaemdr
ness, just delays the forwarding or processing of obje@so&d,
the problematic pattern cannot appeartaff. Assuming that it
does then, in order for both processband; to access the same el-
ement inbuff, we havetail==next (head) before executing line
1. There are two cases: (i) if procesgoreads the value ofail
updated by processomt line2 then, since two writes of processor
1 cannot be observed re-ordered by procegs@rocessor; must
read the updated value bfiff [head], (ii) otherwise processof
finds at line2 head==tail andbuff [head] is not read.

On platforms that do not enforce “total store order” (26) enéh
two writes to different locations of the same processor caolpy
served in reverse order by another processor, the commimésd
in Figure 4 providepart of the fix-up. With the originakng/deq
code, it is possible that a processor performirtggempty then
deq sees the queue non-empty before another one perforeniqg
writes the only element of the queue. The result isdkatreturns a
garbage value and one slot might not be processed (copiedk-b
ing the algorithm correctness. The partial fix-up enforded all
non-valid slots irbuff arenull. Under this weaker memory con-
sistency, a consumer waits for valid slots to appear in aeued



they will appear because the queue is not empty, and signidarl
consumer waits for invalid slots to disappear from a queue.

The other part of the fixup requires that architecture speiifi
structions are added so that (i) writes become eventuaiplei to
other threads and (i) the read framff [head] has completed be-
fore the write tohead goes through. For example, as remarked by
an anonymous reviewer, the PowerPfsync andisync instruc-
tions achieve this behaviour.

Forwarded slots are dispatched to their correspondinglistsk
by their consumer collector (owner) fitocessForwardedSlots.
The dispatch manner has already been discussed and isadkipict

a new execution gprocessForwardedSlots. If condition (ii) is
false, then more work will be unveiled firocessForwardedSlots.

If condition (iii) does not hold, then a collector might have
exited andc has subsequently forwarded slots to it. If this is true,
then ¢ dispatches those slots as explained in Section 3.2; mutual
exclusion to those slots is ensured since the forwardingigue
owner has exited. It follows that forwarded slots cannoseaiter
both their producer and intended consumer collectors heitede

Condition (iv), rarely tested, is necessary under a loddrzing
mechanism in which non-empty worklists may be released (see
Section 4.2). If a non-empty, unowned worklist is found,nthee

Figure 3. Since we have considered bounded queues, we employtries to acquire it. With the simplified version, it is an opisation

for simplicity, an unbounded per-collector buffer to stetets for
which forwarding failed because the corresponding quessfuth
This buffer is also visited at this stage and its slots arealaiiym
dispatched. FinallyprocessForwardedSlots releases ownership
of non-empty worklists in the to-be-released list. It isessary that
these non-empty worklists contain forwarded slots. Theeet&o
possible strategies: either retain ownership and pusle thosklists
back to the owned list, or transfer the worklist's ownersioippne
of the forwarding collectors (see Section 4.3).

We have seen in Figure 2 that theace function processes
slots from the current worklist untjuantum local or remote slots
have been produced. So howjisantum chosen? Empirical results
suggests that effective parallelisation is achieved wherratio of
forwarded to local slots is less thayi4. We chose thuguantum =
P x F x 4. On the one hand this amortises well the overhead
of processing forwarded slots. On the other hand this allog/s
to easily identify consumer-producer relations betweemnkiigis
owned by different threads: a forwarding queue is found. fiull
this case, Section 4.3 shows that forwarding can be optihrtise
transferring a worklist's ownership to the producer cdlbec

We conclude this section with three important observations
First, the use of forwarding queues is essential. The alternafive
allowing collectors to concurrently insert slots into oneriist
cannot be optimised — the double-ended queue does not agraly h
because it requires one writer and multiple readers. Alslitting
worklists in the manner of forwarding queues may waste Bt
space since we have many more partitions than processors.

Secondour design enforces (i) data separation — synchronisa-
tion is necessary only when acquiring ownership, and (ggaliby
of reference — processing is localised at partition-leiehce for
example page thrashing is unlikely to appear wihes large (10).
Note that although batching-approaches (18) rely on a mgmor
segmentation, they are fundamentally different in thay tthe not
fully exploit neither data separation, as two concurreptlycessed
blocks may point inside the same block, nor data localityhag
blocks @ — 32K range) are smaller than our partitions §2K).

And third the forwarding mechanism does not apply more

that does not allow to exit while work might still be available.

We observe that, if a thread is not delayed forever, cobhecti
terminates: our approach differs at a high-level from tlassical
one in that it changes the traversal ordering by delayinggss-
ing of remote slots (to enhance locality), but not indefigitso.
Indeed, all reachable objects are inserted into their spmeding
worklists, which are eagerly acquired, and all non-emptykiigts
are processed. This process terminates: (i) marking actdigéore
copying it breaks cyclic references, and (ii) there aredigitmany
pointers to a live object, directly gives (iii) there are fialy many
live objects inserted in worklists.

Finally, even under a load-balancing mechanism the alyarit
is livelock-free once we enforce the invariant that trangf@, non-
empty, worklists need to be processed at least once by the new
owner. This ensures that the system is making progress,ehenc
worklists cannot be indefinitely switched between collestd@he
invariant above also guarantees that objects are not irigdfin
forwarded between forwarding queues: a worklist will evatiy
become empty, and hence not owned, and thus one collector tha
attempts to forward the slot will succeed in doing so by adqgi
the partition — thus progress is always made.

4. High-Level Optimisations

This section refines the basic design of the previous seetioh
presents how (i) non-empty worklists are initially distribd to
collectors, (ii) dynamic load-balancing is achieved) fidirwarding
is optimised, and (iv) worklist size is reduced. We finallgaliss
other potential lower-level optimisation and future workegdtions.

4.1 Optimising Initial Granularity

As presented in the next section, our dynamic load-balancin
scheme is applied at partition-level and is thus less éffethan
classical approaches that steal work at object or blocK.|&\e
consequence is a significant start-up overhead — corresuptal
the time by which all collectors perform useful work coneuntly.

To optimise this start-up overhead we employ an initialsat

cache-pressure than needed since the common case is that onghase that: (i) processes in parallel a numi@0(0) of objects

processor communicates mostly with one other, rather thigm w
arbitrarily many, in a time window. Furthermore, the buifgr
technique of processing forwarded slots reduces the plitgsdf
cache-lines being invalidated due to concurrent accesses.

3.4 Termination Condition

A collectorc is allowed to exit theun method’sshile loop when:
(i) it does not own any worklist — owned and to-be-releasstd kre
empty, and (i) all the forwarding queuesmay consume from are
empty, and (iii) all the forwarding queuesmay produce to are
empty, and (iv) all worklists are empty. Upon exitingmakes its
exit status visible by setting the globally-readakiei ted field.
If condition (i) is false then either there is more work, ot at

worklists have been released; the latter case will be rezdelly

under the classical algorithm, then (ii) places in paratfe re-
sulted grey objects to their corresponding worklists vigipan-
level locking, and (iii) distributes worklists among prassers by it-
eratively assigning several consecutive hon-empty watkto each
processor. The last step is similar to the static rootstparing of
Flood et al. (14). With this refinement, our load balancing works
reasonably well on medium memory partitions 612K) since it

is a rare event that usually occurs to one collector at a tirhes
optimisation is unlikely to be effective on small memorytgans.

4.2 Dynamic Load Balancing Mechanism

We have already said that our dynamic load-balancing mésiman
is employed at the partition level. We make the trivial buthaes
not obvious observation that work stealing is not compatikith
our design. To see this assume colleetphas been preempted just



before copying an objeet; belonging to its owned partitiop, and
collector co stealsp. Observe that, may acquire and copy the
same objecb;, and that without aAS instructions,c; cannot be
prevented, upon being rescheduled, to also ecapy

Our scheme requires; to releases ownership beforec; can
acquire ownership of. More precisely, ifcs is out of work then
it indicates to the neighbour collectors the worklists ituleblike
to acquire. The helper collectors, suchas decide whether the
requested worklistr is expandable. If so and is not empty,c:
releases ownership @fand places’s head slot in the correspond-
ing forwarding queue o€2; c2 may acquire ownership af when
it processes its forwarded slots. In our simple implemémat
requires fromc; any worklistw that is not the one; currently
processes, and releases it under the same condition.

We recall from Section 3.1 that a memory partition consists
of a union of equidistant intervals of size. It is important to
remark that for small values af, say less thari28K, dynamic
load balancing might not be needed because grey objectsewill
to be rather randomly distributed amon§ consecutive intervals
of small size. However, for each grey object we still expect t
find at least several of its children in the same intervalentlise
the forwarding overhead will seriously impact performan®eir
empirical results confirm that in many cases sniadl give good
speed-up with static assignment of partitions to collextor

As the interval sizel. grows the probability that grey objects
are randomly distributed among partitions decreaseshkeubtal-
ity of reference increases, in that it is more likely thatrstag an
object will result in grey objects in the same partition. t&g ob-
jects are concentrated in sufficiently many partitions, dymamic
mechanism attempts to fairly distribute partitions witreygrob-
jects among collectors. Otherwise, collectors will staiweai and
Tick (18) demonstrate that the block size of batching sohginat-
urally defines the trade-off between locking overhead amaohjc
load-balancing effectiveness. In our case the partitiva siediates
between effective load balancing and locality of referesgee by
design locking was eliminated from the hot execution path.

Although left as future work, a simple strategy to dynamical
adaptL to graph-heap tracing would be to start with a “large” value,
in the megabyte range, thus exploiting data locality, anddoitor
the forwarding ratioFR, and the load balancing,B, computed
as the standard deviation of the number of slots processeheby
threads in a small time interval. If poor load balancing iserved
thenL is decreased. R > FR,,, or L < L.,, for empiricalFR,,
andL,,, then we can switch back to an instance of the classical
approach. Our experiments fouh@4 and32K to be good values.

Comparing our memory-centric load balancing against the
processor-centric one at a high level, we observe that tirerboth
favourable and less favourable cases. For example in tiesofas
array holding the starting pointers of eight lists, the sieal block-
based approach will uncover no parallelism since the nurober
grey objects at all times is eight, hence all grey objectsfivinto
one block and there would be no possibility to steal a blodie T
classical solutions that steals work at object level williaee good
speed-up on up to eight processors. Our memory centric apipro
would likely give some speed-up.

4.3 Optimising Forwarding

Excessive forwarding is usually a result of partitions od/bg dif-
ferent collectors being in a circular producer-consuméatian.
Figure 5 presents two such cases: the fields of objects iitipast
1, 2 and3 arbitrarily point to objects in partitions, 2 or 3; while
partitions4 and 5 exhibit a more structured topology that corre-
sponds to a list (partitiod) whose values are placed in partition
Remember that our design tolerates a certain ratio of fatedr
to produced slotsi(/4). If this ratio is significantly exceeded, as
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Figure 5. Producer-Consumer Relations Between Partitions.
Circles depict objects; arrows depict object’s fields.

is likely with the memory configuration in Figure 5, at leasteo
collectorc, fills the forwarding queue of another collectarwith
slots belonging to partitios. Now c, may transfes’s ownership
tocy if: (i) c2 has not acquired during the current step ownership of
a partition fromc; — this breaks a potential transfer cycle, and (ii)
the ownership transfer does not significantly affect loatibcing.

Our simple implementation assume$o be the partition of the
forwarded tail slot and, as already stated, condition @Giph when
w does not correspond to the current worklistef Thus, partitions
in a producer-consumer relation are eventually owned bgdnee
collector, if this does not result in immediately starvingother
collector. Under small partitions this optimisation witigbably not
prove effective because of the random distribution of grigigacts
to partitions (see Section 4.2), and because a contigutersah of
a partition will contain relatively few live objects that wial have
likely already been forwarded by the time the producer-oorer
relation is discovered. We predict that optimising forwagdwill
be important when larger partitions do not restrict loacabeing
(and onNuMA). Encouraging evidence in this sense is that, on a
multi-core, we have found cases when this optimisation @tz
for 15% speed-up o6 processors, underfd 2K partition size.

The consumer-producer inter-partition relation can aks@x-
ploited when partitions have the same owner. The goal is to de
crease the worklist size by encouraging the processingeoptb-
ducer worklist to keep pace with the processing of the corsum

4.4 Discussion and Future Work

We have assumed our data-structures (queues, buffers)logibe
cally unbounded. Our implementation undewiTk reserves in ad-
vance aboutM for our algorithm’s metadata, and increases this
size dynamically if needed. To our knowledge Tk also logically
represents their worklists unbounded. A safety mechartistyper-
mits bounded worklists is proposed by Floeidal. (14) at the cost
of one extra word per object.

An architectural issue that affects our algorithm is thiatTk
does not provide an inter-collectgteld facility—since the clas-
sical approach employs a more collaborative algorithm ighaot
sensitive to this feature. With our approach, preemptingleec-
tor that owns many worklists will result in a significant slalewn,
since transferring those worklists to starving collectwoils be de-
layed. Thus, allowing a collector to yield in favor of any ettcol-
lector is fundamental to having effective load-balancing,

While we have restricted ourselves to exploring high-leytl-
misations applicable to the most general form of tracing spe-
cialised technique warrant further attention: it seemssiades to
implement Cheney’s trick of representing grey objects aaraa
in to-space without affecting load-balancing. Since tshtsw that
generally one in four-to-six objects is forwarded, if a ector is
starving, there will be enough slots in forwarding queuemtt-
cate which partitions are non-empty and can be requested.

While, as a future direction, we intend to examine in more de-
tail garbage collection fokumA systems, the rest of this section
provides some rationale into why we believe our algorithrsuii-
able and how to adapt it fakuma platforms.First, we observe



that re-ordering object processing to improve localityeference
is essential in this context since concurrent accessesetgsdaime
memory segment is at best inefficient (and at worst not stpgor

Secondforwarding queues give an elegant way to abstract and
make explicit inter-processor communication. Rather thssum-
ing that hardware can efficiently handle any memory configura
tions, we use caches where they are most needed — for irteesy
communications. A small shared cache, or even a hierarchy of
small caches still allows the forwarding queues applicatio

Third, we have observed at the end of Section 3.2 that it is safe
for collectorc to update an object field £ with its corresponding
to-space object cp(o.f=cp_f), wherec has createdp_f. How-
ever, this “in-place” update is quite inneficient awmMA wheno
has not been also processeddyAn elegant solution is to use a
similar forwarding mechanism to send these updates bacheto t
collector that has written, which now accesses its local space.

Fourth, the high-level optimisation to reduce forwarding makes
our algorithm less dependent on the existence of efficianitee
support. Furthermore, the same optimisation also redumeot-
warding introduced in the previous paragraph.

Finally, NUMA would probably require a relatively large parti-
tion sizeL to reasonably amortise the copy-in and copy-out mem-
ory overhead. It follows that the heap graphs that can betafédy
traced are those for which still allows satisfactory load balancing.

5. Evaluation

We have implemented our tracing scheme in the form of a semi-
space copying collector within the mature, research cegbplat-
form offered by Jikes RVM (version 3.0.0), which includesiTk.

This section compares our algorithm against the originatise
space collector ofiMTk on two platforms. The first has two quad-
core AMD Opteron processors—model 2347 HE, and 16Gb of

TESTS Sheap| PARAM| LR Ngc L Nobj IFR MD m/IC
Antlr 120 | def. 5.1 13 64 1.3 56 | 45| 18
Bloat 150 | def. 49 | 22 64 4.3 49 [ 50| 9
Pmd 200| def. 4.4 1 10 64 2.8 36 60 14
Xalan 150 | def. 5.0 | 17 64 3.6 31| 48] 15
Fop 120| large | 25 | 3 64 0.5 54| 49| 14
Jython 200 | def. 5.6 18 64 3.6 30| 64| 15
luindex 120 | def. 2.6 13 64 0.5 46 | 29 | 22
lusearch | 150 def. 43 | 40 64 1.2 341 31]3
Eclipse, 400 | small| 4.7 7 64 1.3 32| 56| 32
Eclipse 400 def. 47 | 29 512 | 11 26 | 12 15
Hsqldbs 500 small| 1.1 | 6 64 1.0 67 46 ] 3
Hsqldh 500[ large | 1.5 | 9 128 | 22 56 [ 59 ] 5
GCbench| 200 9 4 128 | 0.3 68 45 ] 21
GCbench| 999 43 | 44 128 | 81 42 | 15 5
oronoi 500 -na3a109 2.1 | 3 128 | 6.7 3.7 | 21 9
TreeAdd | 2004 -124 1 4 128 | 14 11 10 3
TSP 2004 3108 1.2 | 3 128 | 45 12 6.1 | 23
MST 2004 wvssoo| 1.1 | 4 128 | 19 36 | 41 4
Perimet | 2004 -117 1 3 128 | 5.7 11 72| 4
BH 850 | -baa0f 14 11 128 | 1.9 41| 47| 33

Table 1. Testbed Propertig8enchmarksdacapo, GCBench, andJ01den).

Sheap = Max size of the heap (in Mb); Param = testbeds’ parameters;
LR = ratio of live objects;

Ngc = the number of collections; L = partition size (in Kb);

Nob; = the number of to-space copied objects (in millions);

IFR = inverse forwarding ratio = §; / num of forwarded slots.

MD = our metadata size; M/C = mutator time divided by GC time
The double line separates the small and large data-setatipiis.

sults for them on th@&ntel machine. Apart from that we use the
Intel machine to validate the behaviour of large live data-séts; a
though we do not show all the results, they are consistehttiviise

of AMD. We first introduce the testbeds and describe their charac-

memory. The second is a quad-core commodity machine, having teristics in Section 5.1, then compare the running timeseftwo

Intel QuadcpPus—model Q6600 running at 2.4GHz, and having
8Gb of memory. Both platforms run linux—Fedora Core 8.

The tests were aimed at demonstrating that our algorithm is
more effective than the classical one on applications étihip
large live data-sets, while still being competitive on tmes with
small data-sets. On large data-sets, we report speed-uglasas
5.9x and5x faster on8 and6 processors, and on averafjd4 x
respectively. With small data-sets, we are generally wigti% of
MMTk. ForDacapo tests, with the exception @fsqldb, even with
modification of the installation scripts, we have not sudegkin
increasing the live data-set. Increasing the heap sizerduiesffect
in these cases the size of the live data set and does not seéfecto
speed-up. Consequently we use tests feiBench and J01den,
since they allow one to easily vary the live data-size.

The MmMTk documentation acknowledges scalability problems,
but we did not expecumTK's lackluster parallel speed-up on the
Jolden, GCBench andHsqldb tests. The cause is likely a poor load
balancing mechanism. UnfortunatelymTk is our only candidate
for fair comparison. Although we still seem to get the upper hand,
albeit less dramatically, when compared against the esepiorted
in related work, the comparison suffers because of difteappli-
cations, or heap sizes or architectures. On tree based:atgpis,
Floodet al. report a4 x average speed-up against dutd x, when
compared against the classical sequential collector.

Results for severdlacapo tests were omitted on thevb plat-
form because of their inappropriateness (filesystem/@idmund
—‘lusearch’ and ‘luindex’), or unresolved installatiorpg@dencies
(‘chart’ and ‘eclipse’). With the exception of ‘chart’ wequride re-

2For example under the copy-in, process, copy-out-memasafesty. By
NUMA we mean here platforms in which cores primarily access mgutier
rectly viaDMA while communicating via message passing or small caches.

approaches in Section 5.2. Finally, Section 5.3 underlges®ral
trade-offs and discusses the impact of our high-level dpttions.

5.1 Benchmarks, Methodology and Trade-off Parameters

Table 1 introduces the programs on which we test our algarith
together with their characteristics. We usg applications: rows
2—13 belong toDacapo, rows14 and15 to GCBench, and rowsl 6—

21 to J01den benchmarks. The double line separates the large and
small data-set test€olumn2 shows the heap size, ib. We use

the default heap sizes suggested by JikesRVM#arapo; for the

rest we choose sizes that reduce the garbage collectioheaatr
but still exhibit at least a few collections. For the testhibiting

a live-object ratio close to one, we start with a heap of 8#@b

and allow it to increase dynamically.

Column3 shows programs’ parametebacapo supports three
workloads:small, default andlarge, but unfortunately the live
data-set size does not vary (exceptiiegldb andEclipse). We
testGCBench; on the original parameters§, 16, 4, 16), and then
we increase the data-set by modifying the tree-depth cbjzeam-
eters £3,21,4,23) —GCBench; . We also tesf01den applications on
increased data-sets — see their corresponding parameters.

Column4 shows the inverse of the live ratio: number of allo-
cated objects to number of live objects per collection. Maises
betweenl and14, the most common case being betwedesnd5.
TreeAdd, MST, TSP andPerimeter exhibits virtually no garbage.
We still test them since (i) our algorithm targets a geneoaif
of tracing (e.g. data-serialisation, graph-traversad} #xhibits this
pattern, and (ii) oftervms apply an incremental heap-size policy,
and hence these cases need to be collected at least once.

Column5 showsN,.:the number of collections per test run for
our algorithm. In some casesmTk performs fewer collections —



this is due to the fact that our metadata is bigger (partiabse we
use a naive worklist page-management strategy).

Columné6 showsL, the local size ik of our partitions. Since the
hardware platforms we use exhibit fast cache coherency,ivee g
small values td.. Our simple strategy selecédK for small data-
sets and 28K for large data-sets. Sinéeimplements the trade-off
between locality and load-balancingumA architectures that use
primarily DMA accesses would probably benefit from larger parti-
tions (in the megabyte range) to amortize the cost of copiyirgd
out memory segments. Section 5.3 shows that producer-ct@isu
related optimisation can be effective even on our hardware.

Column7 showsN,;—the total number of millions of objects
copied to the to-space, over all collections of a test ruris han
estimate since collections do not occur at identical execyoints.

Column8 shows the average inverse forwarding rati®. over
all collections of a test run on 6 processars;; divided to the total
number of inserts into the forwarding queues. Larfjer values
corresponds to less forwarding overhead, and hengedd speed-
up. IFR is influenced primarily byL: large partitions usually lead
to less forwarding but they may affect load-balancing. Ggeb
collection timing results in Tables 2 and 3 demonstrate that
forwarding ratio is a good indicator of the parallel spe@d-@n
small data-set programsvalues betweerd and 4 correspond to
slowdowns betweei5% and20%, when compared witluMTk's
parallel version running o or 6 processors. Values undér
correspond to more significant slowdowrist% and 43%. On
large data-set programseven values betweeh’5 and4 generate
acceptable speed-ups.

Column9 shows the size of our metadatalib, andcolumn10
shows the ratio between the mutator time — i.e. total apipdica
time minus GC time, and the collection time. Both colurrend
10 correspond to the maximal tested parallelism; the mutétue t
differences between our approach am@hTk's are insignificant
(+-5%). Finally, we point out that we compare against an out-
of-the-box installation of JikesRVM wittumTk. Our semi-space
collector usesnMTK’s infrastructure — only the tracing scheme was
modified. Both collectors are run under thestAdaptive default
configuration, with no replay compilation.

5.2 Empirical Results

Tables 2 and 3 show the total, per application run, garbalieceo
tion timings obtained with our andmTk’s tracing schemes, on the
AMD and Intel platforms, respectively. Timings are measured vi
-c MMTkCallback and-X:gc:verbose=1 options.P is the num-
ber of used processors. For each application/row, the girofrihe
sequential, free-of-locks version efuTk's semi-space collector
is considered to b&00. Table entries consist of:y pairs, where
the firstx and second number denote the normalised timings of
our andMMTk tracing, respectively. For example the padr: 108
means that we wergx (100/20) faster than the optimal sequen-
tial execution, whileMmTk was8% slower. We uséold fonts for
table entries for which our approach wins agaimstTk at a mar-
gin higher thenl0%. A double line separates the small and large
data-set applications. In addition to the normalized ctilb® times
for each test, Tables 2 and 3 have three lines, labelled |Miff.”,
“Avg || Eff.” and “Max || Eff.” that measure the parallel efficiency
in each test. The entries are also of the farmy, but in this case
the numbers measut&ne onn processors/ time on 1 processor
xn. Perfect parallelisation would give a valuelgfwhile no effec-
tive parallelisation would give a value af We see that our parallel
tracing method is much more effective as the number of peaees
increases. We run each t8simes and choose the best time result.
We make the observation that, in general, our tracing aehiev

Timing P=1 P=2 P=4 P=6 P=8
Antlr 130:112 | 93:83 63:58 52:51 n/a

Bloat 136:106 | 95:82 60:53 51:47 n/a

Pmd 141:108 | 92:74 62:48 50:43 n/a

xalan 142:110 | 93:77 58:54 46:45 n/a

Fop 157:128 | 93:76 64:57 56:61 n/a
Jython 145:108 | 102:70 64:58 53:44 n/a
Hsqldhs 127:110 | 79:79 48:52 39:50 36:46
Hsqldh 125:111 | 84:106 37:95 23:105 | 19:107
GCben 115:109 | 78:71 54:63 53:69 49:77
GCben 121:121| 87:123 42:123 | 28:124 | 23:122
\oronoi 118:110 | 74:107 41:109 | 28:113 | 24:114
TreeAdd 126:111 | 65:108 30:109 | 20:108 | 17:106
TSP 124:108 | 65:102 35:88 23:86 19:76
MST 172:107 | 92:50 46:49 28:35 21:70
Perimet 145:113 | 84:111 42:109 | 31:108 | 26:113
BH 117:109 | 77:68 51:58 40:63 36:57
Min || Eff. 1.03:0.93] 0.95:1.78 0.95:1.96 0.98:3.3b
Avg || Eff. 1.27:1.56 | 1.49:2.65 1.75:3.86 1.72:6.38
Max || Eff. 1.44:2.03| 1.94:4.0V 2.77:6.16 3.41:8.2p

Table 2. Timings for the 8-coreamb Machine.

P is the number of processors used. The optimal (no lockireg), s
quential execution time 500 for all rows.

Table entries are pairs of the formy, where x and y correspond
to the normalised collection times of ours an#hTk tracing algo-
rithm, respectively. Wher < .9y bold is used.

Timing P=1 P=2 P=3 P=24
Eclipses 138:112 | 89:73 76:63 66:53
Eclipse, 148:116 | 100:69 81:57 69:48
Luindex 150:115 | 106:96 83:79 72:76
Lusearch 153:116 | 115:97 86:69 79:66
Antlr 139:119 | 100:87 75:66 66:63
Bloat 151:114 | 105:90 77:66 64:56
Pmd 141:114 | 85:68 69:53 64:53
Xalan 147:122 | 105:78 80:58 66:54
Fop 130:112 | 84:74 68:66 59:59
Jython 155:113 | 110:84 80:62 72:62
Hsqldbs 131:116 | 83:95 63:72 58:60
Hsqldby, 119:122 | 85:118 45:117 38:113
GCbern, 110:111 | 78:115 45:117 40:115
\oronoi 135:118 | 85:85 58:111 52:115
TreeAdd 112:120 | 63:120 43:118 33:117
Min || Eff. 1.13:1.19| 1.13:1.39| 1.18:1.66
Avg || Eff. 1.35:1.55| 1.48:2.02| 1.72:2.55
Max | ET. 150:2.07| 1.69:3.16| 2.07:4.14

Table 3. Timings for the 4-core Intel Machine.

cution on eight and six processors. In most cases, on thetieap
tions,MMTk exhibits a rather mystifyingerial behaviour, in that it
narrowly fluctuates around the timing of its sequential exieo.

In contrast, the results show that our algorithm exhibits
bust scalability The inefficient sequential case and the big jump
in speed-up when passing fromto 2 processors are partly con-
sequences of the fact thétK partitions are too small for the se-
quential version to be effective. We run the tests with atdssed
optimisations on: although we do not expect them to be éffect
on small partition sizes, they incur small overhead. Furttoee,
we believe that the absence of an inter-collegto¥ld mechanism
also incurs a non-negligible slowdown.

MMTk gets the upper hand on small data-sets, however, in most
cases with a relatively small, unde2% margin with respect to

significantlybetter speed-ups on large data-set, tree-based applica-our approach. As already remarked in the previous sectierfor-

tions — up t05.9x and5x faster than the optimal sequential exe-

warding ratioIFR (see Table 1), accurately relates with collector’s



speed-up on small data-sets: large valgest result in compara-
ble speed-ups — withit0%; smallerIFR values — i.e. betwees
and4 — accentuate this difference to values betw&¥-to-24%
in MMTK’s favour.Eclipse;’s forwarding rate ionly 2.6 and ac-
cordingly our algorithm igl4% slower thanmmTk in this case.

To demonstrate the different algorithmic behaviour betwee
applications with small and large data-sets, we includeabld 2
two versions of botlisqldb andGCBench, that differ only in their
data-set size. While our algorithm wins in all four cases, gmall
data-sets provides the tighter race. We attribute the geedlts
to the fact that our algorithm exhibits neither locking nacke
conflicts on the hot execution paths.

5.3 Trade-off Parameters, High-Level Optimisations Impat

To demonstrate that the partition sizanediates between locality-
of-reference and load balancing we observe that (i) a todlsma
value, such agK incurs a73% overhead oiisqldb; when run on

8 processors oamMD and (i) a too big value, such &d 2K incurs
a50% slowdown onBloat when run or6 processors OAMD.

We bring two more arguments to underline the importance of
the forwarding ratio. FirstEclipse; usesL=512K because we
observed that its correspondin@R was at least.5 bigger than
the ones corresponding to other reasonable valuds @he next
best speed-up i57% slower than the one shown in rdy Table 3,
P=4. Second, we have observed tiiatonoi’s IFR also increases
by +1 for L=512K, without affecting load-balancing. On the1D
machine this leads to a new, better valuel®frather then24,
counting to &.26 x speed-up — see roWbronoi, P=8, in Table 2.

The high-level optimisations discussed in Sections 4.3nate
effective on small partitions3@ to 128K) — their impact is a negli-
gible —2% to +5%. However, on larger partitiond£512K) they
might prove useful even on our platform. For example the &rdwy
ing optimisation is accountable for 0% and 15% increase in
speed-up 016 processors, oRmd andVoronoi respectively.

6. Conclusions

Much previous work has explored parallel algorithms unterats-
sumption of fairly uniform memory access cost. Howeverhhel-
ware trend, particularly on commodity multicore processi that

memory accesses to an area of memory is cheap only in the cas

that only one processor is accessing that area. Now that #rehi-
tectures are mainstream, it is important to explore alter@algo-
rithms which are serially monogamous in that an area of mgmor
is used by one processor for a significant time.

In the context of parallel tracing algorithms, this papes ba-
hibited an alternative scheme which shows potential to beemo
effective on such architectures and has validated theskcioms
on current Intel and AMD multicore processors. More prdgjse
this paper has presented how to explicitly implement, akalod
optimise at a high level two abstractionecality of reference of
non-shared dataand the inter-collectocommunication The re-
sults demonstrate robust algorithm behaviour that scaédiswith
both the data-set size and the number of processors. Oumgrac
algorithm does seem to exhibit the desired parallel eff@ie®n
our experiments with standard consumer computers, usknansi
eight processors, our algorithm was five and six times fakan
the synchronization-sequential timing. Further experitasvill be
required to assess the upper limits of its scalability.
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