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Abstract
This paper presents a real-world pricing kernel for financial deriva-
tives and evaluates the language and compiler tool chain that would
allow expressive, hardware-neutral algorithm implementation and
efficient execution on graphics-processing units (GPU). The lan-
guage issues refer to preserving algorithmic invariants, e.g., inher-
ent parallelism made explicit by map-reduce-scan functional com-
binators. Efficient execution is achieved by manually applying a
series of generally-applicable compiler transformations that allows
the generated-OpenCL code to yield speedups as high as 70× and
540× on a commodity mobile and desktop GPU, respectively.

Apart from the concrete speed-ups attained, our contributions
are twofold: First, from a language perspective, we illustrate that
even state-of-the-art auto-parallelization techniques are incapable
of discovering all the requisite data parallelism when rendering the
functional code in Fortran-style imperative array processing form.
Second, from a performance perspective, we study which compiler
transformations are necessary to map the high-level functional code
to hand-optimized OpenCL code for GPU execution. We discover a
rich optimization space with nontrivial trade-offs and cost models.
Memory reuse in map-reduce patterns, strength reduction, branch
divergence optimization, and memory access coalescing, exhibit
significant impact individually. When combined, they enable es-
sentially full utilization of all GPU cores.

Functional programming has played a crucial double role in our
case study: Capturing the naturally data-parallel structure of the
pricing algorithm in a transparent, reusable and entirely hardware-
independent fashion; and supporting the correctness of the subse-
quent compiler transformations to a hardware-oriented target lan-
guage by a rich class of universally valid equational properties.
Given the observed difficulty of automatically parallelizing imper-
ative sequential code and the inherent labor of porting hardware-
oriented and -optimized programs, our case study suggests that
functional programming technology can facilitate high-level ex-
pression of leading-edge performant portable high-performance
systems for massively parallel hardware architectures.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; D.3.4 [Processors]: Compiler

General Terms Performance, Design, Algorithms

Keywords autoparallelization, tiling, memory coalescing, strength
reduction, functional language
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1. Introduction
The financial system is facing fundamental challenges because of
their complexity, interconnectedness and speed of interaction. In-
ternational banking and insurance regulations increasingly focus on
analyzing and reducing the systemic effects of financial institutions
on the financial system as a whole. For this reason, such institutions
are asked to evaluate their reliability and stability in a large number
of economic scenarios, with some of the scenarios presenting criti-
cal conditions that require large scale modeling efforts. In this con-
text, Monte Carlo simulations, originally developed by physicists
to efficiently investigate the stochastic behavior of complex, mul-
tidimensional spaces, have emerged as tools of choice in critical
applications like risk modeling and pricing of financial contracts.
These simulations are paradigmatic Big Compute problems that
transcend the domain of embarrassingly parallel problems. From
a hardware architecture perspective, they require employing and
effectively exploiting massive parallelism. Interesting results have
been achieved by efficient management of processes on grid farms
and expert use of specialized hardware such as graphic processing
units (GPUs) [26]. In particular, the latter unite the advantages of
parallelization, low power consumption, and low latency in data
transfer to efficiently execute a large number of single instructions
on multiple data (SIMD). This kind of massively parallel hardware
requires programming practices that differ from conventional im-
perative von-Neumann-machine-style programming, however.

The desirability of a programming model that supports high-
level description of large-scale data transformations for modeling
purposes, coupled with the need to target rapidly evolving mas-
sively parallel hardware architectures without letting these infiltrate
the programs themselves has led us to concentrate on the well-
established practices of functional programming. Functional lan-
guages are renowned for their good modularity, testability and code
reuse [24], which drastically improves maintainability and trans-
parency – crucial properties in areas where the success of a com-
pany depends on the correctness and reliability of its software. Fur-
thermore, the purity of functional languages largely facilitates rea-
soning about the inherent parallelism of an algorithm, and effective
parallelizations exist for common higher-order functions [22].

Functional languages are increasingly employed in financial
institutions for modeling and high-productivity programming pur-
poses, for instance DSLs for finance [4, 40]. Additionally, func-
tional solutions have demonstrated their ability to exploit novel
hardware, such as GPUs and FPGAs, without letting hardware
specifics encroach on the programming model [12, 32]. It is the
double match of functional programming with modeling in quan-
titative finance and with naturally expressing data parallelism that
motivates our research into architecture-independent paralleliza-
tion of financial code using a functional approach.

In the remainder of this section we provide a rationale for our
case study and an overview of the optimization techniques eval-
uated. In the following sections we present the functional formu-
lation of the pricing algorithm (Section 2), the optimizations for



compiling it to OpenCL (Section 3), the empirical evaluation of the
optimizations’ impact (Section 4), a review of related work on im-
perative and functional parallelization (Section 5), and finally our
conclusions as to what has been accomplished so far and which
future work this suggests (Section 6).

1.1 Notations
Throughout the paper, we denote by � a binary-associative opera-
tor with neutral element e�, fold� e� [a1, .., an] ≡ a1�..�an,
scan� e� [a1, .., an] ≡ [e�, a1, a1�a2, ..., a1�a2� ..�an],
and map f [a1, .., an] ≡ [f a1, .., f an]. We also write (red �)
as a shortcut for (fold � e�). We use common-helper functions
(i) distp::[a]→[[a]] to split the input list into a list of p lists
of nearly equal lengths, and (ii) tilet::[a]→[[a]] to chunk the
list into a list of lists containing each roughly t elements.

1.2 Bird’s Eye View
While speeding up the runtime of financial software by hand-
parallelizing the code for GPU execution is in itself of pragmatic
importance, this paper takes a broader view, in which we use the
gained insights to evaluate the language and compiler infrastructure
needed to automate the process. The main objectives are twofold:
Language. We take the perspective that the language should pro-
vide what is necessary for the user (i) to express algorithmic in-
variants explicitly in the language, and, in general, (ii) to write an
implementation that comes as close as possible to the “pure” algo-
rithmic form. If the algorithm is inherently parallel, then we expect
the implementation to preserve this property. In this sense, with-
out having parallelism in mind, we have written a sequential, func-
tional (Haskell) version of the generic-pricing algorithm to provide
a baseline for comparison against the original imperative (C) code.

Not surprisingly, we find that the functional style, with better
support for mathematical abstraction, makes parallelism (almost)
explicit by means of higher-order functions such as map, fold
and scan (i.e., do-all, reduction and prefix sum). On the other
hand, imperative, production code is often optimized for sequential
execution but obfuscates the inherent algorithmic parallelism to an
extent that makes it difficult to recognize for both programmer and
compiler. The latter was observed not only on our case study, but
also on benchmarks in PERFECT-CLUB and SPEC suites [21, 39].

We demonstrate this perspective throughout the paper by pre-
senting side-by-side examples of imperative vs. functional code and
surveying the vast literature of autoparallelizing techniques. Sec-
tion 1.3 highlights the programming-style differences via a con-
trived, but still illustrative, example.
Performance. While we have argued that algorithmic clarity
should come first, we also take the view that this should not be
achieved by compromising performance. The second objective of
this paper, outlined in Section 1.4, is to explore the compiler op-
timizations that have proved most effective for our case study, al-
though they have been implemented by hand: First, we present
evidence of how user-specified invariants can drive powerful high-
level optimizations (e.g. strength reduction). Second, we reveal a
rich optimization space that exhibits non-trivial cost models, which
are best left in the care of the compiler. Third, we discuss several
lower-level, GPU-related optimizations that have to be the com-
piler’s responsibility if we require hardware transparency (i.e. write
once - run anywhere ).

1.3 Language Perspective
Figure 1 presents two semantically-equivalent functions, written

in Fortran77 and Haskell, which are our instances of imperative
and functional languages, respectively. The example is telling in
that it combines several interesting coding patterns that appear

CC FORTRAN CODE
1 SUBROUTINE example ( D, N, M, dirVs, ret )
2 INTEGER i, j, k, D, N, M, len
3 INTEGER ia(M), ret(D,N), dirVs(M,D)
4 DO i = 1, N
5 len = 0
6 DO k = 1, M
7 IF( test(i,k) ) THEN
8 len = len + 1
9 ia(len) = k
10 ENDIF ENDDO
11 DO j = 1, D
12 ret(j, i) = 0
13 DO k = 1, len
14 ret(j,i) = ret(j,i) XOR dirVs(ia(k), j)
15 ENDDO
16 IF(i .GT. 1)
17 ret(j,i) = ret(j,i) XOR ret(j,i-1)
18 ENDDO
19 ENDDO END

-- HASKELL CODE
20 example :: Int -> Int -> Int -> [[Int]] -> [[Int]]
21 example n m dirVs = -- d × m n × d
22 let lbody:: Int -> [Int]
23 lbody i =
24 let ia = filter (test i) [0..m-1]
25 xorV v = fold xor 0 [v!j | j<-ia]
26 in map xorV dirVs
27 ret = map lbody [1..n]
28 e = replicate (length dirVs) 0
29 in tail (scan (zipWith xor) e ret)

Figure 1. Contrived, but illustrative example: Fortran77 vs Haskell

in implementations of Sobol quasi-random sequences [10], and
contrived in that it does not produce random numbers.
Haskell Code. Let us examine first the lbody function at lines
22 − 26: Indexes in 0..m − 1 are filtered based on the test
predicate, e.g., testing whether index k ∈ [0..m − 1] in the bit-
representation of i is set. Next, (i) the xorV function reduces the
elements corresponding to the filtered indexes of a dirVs’s row
with the xor operator (i.e., fold at line 25), and (ii) this is applied
to each row of dirVs, i.e., the map at line 26. The result of lbody
is thus a list of the same length (denoted d) as dirVs.

The rest of example’s implementation is straightforward: (i) at
line 27 lbody is mapped to each integer in [1..n], resulting in a list
representation of a n×dmatrix, named ret, and finally (ii) prefix-
sum with operator xor is applied to aggregate the elements in the
same position in each row of ret, i.e., the scan at line 29.

One can observe that parallelism is made (almost) explicit in
the implementation by the sequence of map and scan at lines 27
and 29. The latter has depth log(n), while the former is embarrass-
ingly parallel and exhibits nested1 parallelism that could be further
optimized via flattening [8, 11].
Fortran Code. Examining the Fortran code, an experienced imper-
ative programmer might recognize that (i) the do k loop at lines
6− 10 implements the filtering of indexes based on the test pred-
icate, and (ii) the do k loop at lines 13 − 15 corresponds to the
fold at line 25. (Note that Fortran uses column-major arrays). The
outermost loop and the do j loop at lines 11− 18 (minus line 17)
correspond to the Haskell maps at lines 27 and 26, which compute
the result array ret. The code is arguably less obvious than the
one in Haskell, due to the lack of higher-order functions such as
filter,fold, and due to the explicit array indexing.

However, even the experienced programmer might have diffi-
culties understanding that in fact, line 17 implements a prefix-sum
computation, i.e., the scan at line 29. While the destructive update

1 Since lbody is in itself a map, line 27 exhibits the composition of two map,
which, if merged, would improve the parallelism degree from n to n× d.



to ret(j,i) optimizes2 the sequential execution time, we note
that, at least to some degree, it affects readability.

There are two main impediments to proving parallelism for the
outermost loop do i. The first issue refers to array ia: the al-
gorithm’s logic is that each iteration i works with its own (inde-
pendent) set of filtered indexes, i.e., ia should be logically de-
clared/allocated inside the loop. The implementation optimizes the
sequential case by promoting ia’s declaration outside the loop.

However, this results in bogus cross-iteration read-after-write
(RAW), write-after-read (WAR) and write-after-write (WAW) depen-
dencies. To enable parallelism, one has to prove the validity of the
reverse transformation, known as privatization, which reduces to
proving that every read from ia is covered by a write to ia from
the same iteration. A programmer might observe that loop do k
at line 13 iterates precisely on the set of values computed by loop
do k at line 6. However, most compiler solutions [21, 42] cannot
establish this property, as their dependency analysis is restricted to
cases where the array subscript can be expressed as a closed-form,
typically affine, formula in the loop indexes. In our case, the condi-
tional increment of len at line 8 does not satisfy this requirement.

The second issue is even more discouraging: the prefix-sum pat-
tern of line 17 appears as a cross-iteration dependency of constant
distance 1, which forms a dependency cycle that cannot be easily
broken. Furthermore, prefix-sum can be written imperatively in a
number of ways, and we are not aware of compiler technique that
would effectively parallelize this pattern. In contrast, parallel reduc-
tion is effectively supported by pattern-matching techniques [31].

1.4 Performance Perspective
The previous section hinted that it is significantly more difficult
to uncover parallelism from an imperative program than it is to
optimize a nearly-parallel functional version via imperative-like
optimizations. This section outlines several such optimizations.
Space-Reuse of Map-Reduce Functions. It is well known that
(red �) . (map f) can be formally transformed, via list homo-
morphism (LH) promotion lemma [6], to its equivalent form:

(red �).(map f) ≡ (red �).(map ((red �).(map f))).distp (1)

i.e., the input list is split into number-of-processor lists, on which
each processor performs the original computation (sequentially),
and finally, the local results are reduced in parallel across proces-
sors. Note that the map-reduce in the middle does not need to in-
stantiate the list result of map, i.e., destructive updates can be used
to accumulate each output of f to the local result. This requires a to-
tal memory space proportional to p, rather than N (the list’s length).

The latter form is typically preferred on massively parallel sys-
tems to optimize the communication cost, while the former is pre-
ferred on SIMD (vector) systems, which typically exhibit a rather
uniform memory and very limited per-processor resources. GPUs
are, in a sense, a mix of both: a GPU is pseudo-SIMD, but features a
non-homogeneous memory, in which the local memory close to the
core is several orders of magnitude faster than the global one. We
identify an interesting trade-off: if the result of applying f fits in the
fast (local) memory, then the application becomes compute-bound
rather than memory-bound. The downside is that increasing the per-
core resources decreases the parallelism degree of the system, and,
as such, its effectiveness at hiding various kinds of latencies. Sec-
tion 3.2 explores this trade-off in detail.
Strength Reduction is a transformation that replaces an expensive
operation (*) with a recurrence that uses a cheaper operation (+).
In the code snippet below, k0+2*(i-1) has been replaced with the
cheaper recurrence k=k+2. The inverse transformation, induction

2 ret(j,i) is locally computed at lines 12-15; line 17 xor-aggregates,
across same-row-position elements, the local contribution of iteration i to
the “sum” of the previous i-1 iterations, available in ret(j,i-1).

variable substitution, replaces the recurrence with a closed-form
formula in the loop index, and thereby enables parallelism extrac-
tion: (i) it eliminates the cross-iteration RAW dependency on k and
allows the compiler to disprove cross-iteration WAW dependences
on array A, i.e., k0+2*(i1-1) = k0+2*(i2-1) ⇒ i1 = i2.

k = k0 k = k0
do i = 1,N Strength Red. doall i = 1,N

A[k] = .. <------------ A[k0+2*(i-1)]=..
k = k + 2 ------------> enddo

enddo Ind.Var.Subst. k = k0 +MAX(2*N,0)

Compilers typically support simple algebras that, for example,
allow replacing multiplication/exponentiation with recurrent addi-
tion/multiplication formulas in the sequential case, and the reverse
for the parallel case. Section 2.2 shows a more complex example
of strength reduction and advocates that such invariants should be
captured at language level, since they reveal a nontrivial and im-
pactful optimization space, which is explored in Section 3.3.
Branch Divergence. Consider the target code map fun, where
fun i = if(test i) then (f1 i) else (f2 i). When eval-
uating the parallel application of fun to all elements of an array on
a symmetric multiprocessor (SMP), an asymptotic worst-case time-
cost estimate is C(map fun) = C(test) +MAX(C(f1), C(f2)).

In contrast, when the code runs on a SIMD machine, in case
the if branch diverges for at least one core (one element of the
array), the runtime effectively corresponds to all cores executing
both branches, i.e., C(map fun) = C(test) + C(f1) + C(f2).

Our solution is to tile the computation via LH promotion lemma:

map fun ≡ (red++) . (map (map fun) ) . tilet (2)

where map fun in the middle is intended to be executed sequen-
tially, and to replace it (map fun) with a semantics-preserving, ef-
ficient, imperative code that permutes map’s iteration space 1..t
such that the elements for which test succeeds are computed via
f1 before the ones for which test fails (via f2).

To see how this approach optimizes divergence, consider the
case in which two GPU cores process tiled lists [1, 2, 2] and [4, 5, 5],
where test = odd. Without the transformation, the two cores
execute different branches for each pair of elements. With the
transformation, the lists are processed in the orders [2, 2, 1] and
[4, 5, 5], and only the middle elements cause branch divergence.

This technique, described in detail in Section 3.4, is comple-
mented by copying-in and out the tiled lists to and from fast mem-
ory in order to not introduce un-coalesced accesses.
Memory Coalescing is achieved on GPU when a group of neigh-
boring cores (e.g., 16) access, in the same instruction, a contiguous
chunk of memory (e.g. 64 bytes). Since the virtual memory is im-
plemented interleaved on different memory banks, the whole chunk
is brought to registers in one memory transfer (and in parallel with
the accesses of all such groups of neighboring cores).

As explained in Section 3.5, one can transparently restructure
arrays and indexes to enable coalesced accesses. For example,
consider the code map (red �)::[[Int]]->[Int], where the
input list represents a N × 32 matrix and map is parallelized. In
each instruction, each group of 16 cores accesses addresses 128
bytes apart from each other, which requires 16 memory transfers,
resulting in inefficient bandwidth utilization. For example, if 16
divides N , the layout can be changed to a three-dimensional array
N/16×32×16, and an access to row x and column y is mapped to
index (x ‘div‘ 16, y, x ‘mod‘ 16), achieving coalesced accesses.

1.5 Main Contributions
We consider the following main contributions of this paper:

• A side-by-side comparison of functional vs imperative code pat-
terns that provides evidence that parallelism is easier to recog-



nize in the former style, while the latter style often requires the
compiler to reverse-engineer sequentially-optimized code,

• Four optimizations that (i) take advantage of the map-reduce
functional style to derive simple yet powerful imperative-style
program transformations, and (ii) seem well-suited for integra-
tion into the repertoire of a GPU-optimizing compiler,

• An empirical evaluation on a real-world financial kernel that
demonstrates (hints) that (i) the proposed optimizations have
significant impact, and that (ii) the rich trade-off space is effec-
tively exploited by the simple (proposed) cost models,

• From a pragmatic perspective, we show speedups as high as
70× and on average 43× against the sequential CPU execution
on a mobile GPGPU, and ∼ 8× that on a mid-range GPGPU.

2. Generic Pricing Algorithm and Invariants
Section 2.1 provides the algorithmic background of our generic-
pricing software, outlining the Monte Carlo method used and its
salient configuration data. We then illustrate how the computational
steps in the algorithm translate to a composition of functional
basic blocks that expose the inherent parallelism of the algorithm
as instances of well-known higher-order functions. We refer the
interested reader to Hull (2009) [25] and Glasserman (2004) [18]
for a more detailed description of the financial model and the
employment of Monte Carlo methods in finance, respectively.

Section 2.2 advocates the need to express high-level invariants
at language level: In the context of the Sobol quasi-random-number
generator, we identify a strength-reduction pattern and demonstrate
that (i) its specification can trigger important performance gains,
but (ii) the latter should be compiler’s responsibility.

2.1 A Generic Pricing Kernel for Liquid Markets
Financial Semantics. Financial institutions play a major role in
providing stability to economic activities by reallocating capital
across economic sectors. Such crucial function is performed by
insuring and re-balancing risks deriving from foreseeable future
scenarios, quantified by means of (i) a probabilistic description
of these (yet unknown) scenarios, and (ii) a method to evaluate
at present time their economic impact. Risk management is then
performed by allocating capital according to the foreseen value of
the available opportunities for investment, while at the same time
insuring against outcomes that would invalidate the strategy itself.

Option contracts are among the most common instruments ex-
changed between two financial actors in this respect. They are typ-
ically formulated in terms of trigger conditions on market events,
mathematical dependences over a set of assets (underlyings of the
contract), and a set of exercise dates, at which the insuring actor
will reward the option holder with a payoff depending on the tem-
poral evolution of the underlyings. A vanilla European call option
is an example of contract with one exercise date, where the payoff
will be the difference, if positive, between the value of the single
underlying at exercise date and a threshold (strike) set at contract
issuing. Options with multiple exercise dates may also force the
holder to exercise the contract before maturity, in case the underly-
ings crossed specific barrier levels before one of the exercise dates.

Three option contracts have been used to test our pricing engine:
a European vanilla option over a market index, a discrete barrier op-
tion over multiple underlyings where a fixed payoff is function of
the trigger date, and a barrier option monitored daily with payoff
conditioned on the barrier event and the market values of the un-
derlyings at exercise time. The underlyings of the latter contracts
are the area indexes Dj Euro Stoxx 50, Nikkei 225, and S&P 500,
while the European option is based on the sole Dj Euro Stoxx 50.

mc_pricing n = sum gains / fromIntegral n
where c = init_pricing n

gains = map ( payoff c -- Ru×d → R
. black_scholes c -- Ru×d → Ru×d

. brownian_bridge c -- Ru·d → Ru×d

. gaussian -- [0, 1)u·d → Ru·d

. sobolInd c -- Int → [0, 1)u·d

) [0..n-1]

Figure 2. Functional Basic Blocks and Types

The number of monitored dates is one for the European case, and 5
and 367 for the two barrier contracts, respectively.

Two key components are necessary for the appreciation at cur-
rent time of the future value of these contracts: (i) a stochastic
description of the underlyings, allowing to explore the space of
possible trigger events and payoff values, and (ii) a technique to
efficiently estimate the expected payoff by aggregating over the
stochastic exploration. The kernel studied here uses the quasi-
random population Monte Carlo method [18] for the latter. Samples
are initially drawn from an equi-probable, homogeneous distribu-
tion, and are later mapped to the probability distributions chosen
to model the underlyings. Since these exhibit very good liquidity
and present no discontinuities, with good approximation they can
be independently modeled as continuous stochastic processes fol-
lowing Normal distributions (Brownian motions) [7]. Further, these
stochastic processes express an intrinsic regular behavior that can
allow sampling of the value of the underlyings at the sole exercise
dates. As a final step, correlation between the underlyings is im-
posed via Cholesky composition, by means of a positive-definite
correlation matrix L provided as input parameter.

The stochastic exploration proceeds as following: first, the
Sobol multidimensional quasi-random generator [10] draws sam-
ples from a homogeneous coverage of the sampling space. Then,
these samples are mapped to Normally distributed values (by quan-
tile probability inversion [48]), which model the value of each
underlying at the exercise dates. A Browian Bridge scales these
samples to ensure conservation of the properties of the stochastic
processes also in non-observed dates, preserving modeling con-
sistency [25]. These samples, once again scaled to express the
expected correlations among the underlyings, now mimic a mar-
ket scenario. They can therefore be provided as input to the payoff
function, which returns the future gain from the contract given this
particular scenario. This procedure is repeated for a large number
of initial random samples, and an average gain calculated, which
estimates the future payoff in its first order statistics. Finally, the
impact of this aggregated future payoff at present time is estimated
using a suitable discount model [25].

Functional Composition. Figure 2 shows how these algorithmic
steps directly translate into composition of essential functions. The
first step (given last in the function composition) is to generate inde-
pendent pseudo-random numbers for all underlyings, u, and dates,
d, by means of the Sobol’s quasi-random number algorithm (func-
tion sobolInd). This method is known to provide homogeneous
coverage of the sampling space, and thus to a stochastically effi-
cient exploration of such space with a relatively low number of
samples [18]. Additionally, it exhibits a strength-reduction invari-
ant that enables an efficient parallel implementation providing iden-
tical semantics to its sequential algorithm. The uniform samples are
then mapped to Normally distributed values by quantile probability
inversion (function gaussian).

The next step, brownian bridge, maps the list of random
numbers to Brownian bridge samples of dimension u · d. This
step induces a dependency between the columns of the samples
matrix, i.e. in the date dimension d. In the following function,
black scholes, the underlyings, stored in the rows of the matrix,



are mapped to their individual stochastic process and correlated by
Cholesky composition, inducing a dependency in the row dimen-
sion. Finally, the payoff function computes the payoff from the
monitored values of the underlyings.

The outer Monte Carlo level, expressed by the map function,
repeats this procedure for each of the input samples, and first-order
statistics are collected by averaging over the payoff values.

From a developer perspective, this functional outline allows to
fully appreciate the composition possibilities and the reusability of
this solution. In fact, the only function strictly dependent on the
contract type is the payoff function, while all the other modules
can be freely employed to price options having underlyings mod-
eled with similar stochastic processes. Furthermore, Figure 2 evi-
dences the inherent possibilities for parallelism: distribution (map)
and reduction (sum) are immediately evident, and the functional
purity allows to easily reason about partitioning work and depen-
dencies. The Haskell code shown here has in fact been written as
a prototype for reasoning about potential parallelization strategies
for a C+GPU version; while at the same time providing the basis for
an optimized Haskell version for multicore platforms.

2.2 Algorithmic Invariants: Sobol sequences
Algorithm. A Sobol sequence [10] is an example of a quasi-
random3 or low-discrepancy sequence of values [x0, x1, . . . , xn, . . .]
from the unit hypercube [0, 1)s. Intuitively this means that any pre-
fix of the sequence is guaranteed to contain a representative number
of values from any hyperbox

∏s
j=1[aj , bj), so the prefixes of the

sequence can be used as successively better representative uniform
samples of the unit hypercube. Sobol sequences achieve a discrep-
ancy of O( log

s n
n

), which means that there is a constant c (which
may depend on s, but not n) such that, for all 0 ≤ aj < bj ≤ 1:

|#{xi | xi ∈
s∏

j=1

[aj , bj) ∧ i < n} − n
s∏

j=1

(bj − aj)| ≤ c logs n

Let us denote the canonical bit representation of non-negative
integer n by B(n), with B−1 mapping bit sequences back to
numbers. The algorithm for computing a Sobol sequence for s = 1
starts by choosing a primitive polynomial P =

∑d
i=0 aiX

i of
some degree d over the Galois Field GF (2), with a0 6= 0, ad 6= 0.
The second step is to compute a number of direction vectors mk

via a recurrent formula that uses P ’s coefficients:

mk = (
d⊕

i=1

ad−imk−i)⊕ 2dmk−d

for k ≥ d, where m ⊕ n = B−1(B(m) xor B(n)) and xor
denotes the exclusive-or on bit sequences. The values of mi for
0 ≤ i < d can be chosen freely such that 2i ≤ mi < 2i+1. In
the third step, we compute Sobol proxies via the independent (as
opposed to recurrent) formula

x′i =
⊕
j≥0

B(i)jmj

where B(i)j denotes the j-th bit of B(i). (The 0-th bit is the least
significant bit.) Finally, reading the binary representation of Sobol
proxies as a fixed point number yields the Sobol number xi:

xi =
∑
j≥0

B(x′i)j2
−j−1.

Instead of using B(n) in the definition of Sobol proxies we can
use the reflected binary Gray code G(n), which can be computed
by taking the exclusive or of nwith itself shifted one bit to the right:

3 The nomenclature is misleading since a quasi-random sequence is neither
random nor pseudo-random: It makes no claim of being hard to predict.

-- Independent Formula
sobolInd :: Config -> Int -> [ Int ]
sobolInd c i = map xorVs (sobol_dirs c)

where
inds = filter (bitSet (grayCode i)) [0 .. numbits-1]
xorVs vs = fold xor 0 [ vs!i | i <- inds ]

-- Generating the first n numbers using the independent formula:
-- map (sobolInd c) [1..n]

-- Recurrent Formula INVAR: i ≥ 0 ⇒
-- sobolInd (i + 1) ≡ sobolRec (sobolInd i) i
sobolRec :: Config -> [Int] -> Int -> [Int]
sobolRec c prev i = zipWith xor prev dirVs

where dirVs = [ vs!bit | vs <- sobol_dirs c]
bit = least_sig_0bit i

-- Generating the first n numbers using the recurrent formula:
-- scan (sobolRec c) (sobolInd c 0) [1..n-1]

Figure 3. Sobol Generator: Independent vs Recurrent Formulas.

REAL zd(u,d), wf(u,d)
DO i = 1, N ...

DO m = 1, u
wf( m, bb_bi(0)-1 ) = bb_sd(1) * zd(m, 1);
DO j = 2, d

wk = wf( m, bb_ri(j) - 1 );
zi = zd( m, j );
wf( m, bb_bi(j) - 1 ) = bb_rw(j) * wk + bb_sd(j) * zi
IF (bb_li(j) - 1 .NE. -1)

wf( m, bb_bi(j) - 1 ) += bb_lw(j) * wf( m, bb_li(j) - 1)
ENDDO

ENDDO
... res = res + wf(..,..) ...

ENDDO

Figure 4. Brownian-Bridge Code Snippet

G(n)j = B(n)j ⊕ B(n)j+1. This changes the sequence of num-
bers produced, but does not affect their asymptotic discrepancy. It
enables the following recurrence formula for Sobol proxies:

x′n+1 = x′n ⊕mc

where c is the position of the least significant zero bit in B(n).
A Sobol sequence for s-dimensional values can be constructed

by s-ary zipping of Sobol sequences for 1-dimensional values.

Invariants. Figure 3 shows the essential parts of our Haskell
implementation for s-dimensional quasi-random Sobol proxies.4

The function sobolInd implements the independent formula with
the optimization that n’s bits set to one are filtered and the re-
sult is reduced via xor. The recurrent formula is implemented by
sobolRec: the least significant zero bit is used to select the set of
direction vectors (dirVs) that are xored with the corresponding
entries of the previous vector (zipWith xor prev).

Section 1.4 has outlined an example of strength reduction, in
which a repeated multiplication was replaced via a computationally
cheaper, plus-recurrence formula. We observe that sobolInd and
sobolRec match the strength reduction pattern: Computing the
first n vectors via sobolInd is embarrassingly parallel, i.e., the map
in Figure 3, while the strength-reduced sobolRec is significantly
cheaper but requires a logn-depth algorithm (scan).

The imperative Sobol code, not presented here, exhibits the pat-
terns discussed in Section 1.3 that would preclude parallelism dis-
covery. Another illustrative example corresponds to the Brownian-
bridge implementation, shown in Figure 4: each iteration i reuses
the space of array wf and accumulates the result in res. This space-
saving technique, together with the indirect indexing makes it very
difficult to prove that each read from wf in iteration i is covered
by a corresponding read to wf in the same iteration i, i.e., the loop
do i can be parallelized by privatizing array wf. The functional

4 Our code actually computes the integers corresponding to the reverse bit
representation of Sobol proxies. functions involved in pricing.



style would likely expand array wf with an outermost dimension of
size N, and express the loop as an easily-parallelizable map-reduce
pattern, in which map’s function is given by the do m loop.

Discussion. This paper takes the perspective that the compiler
should be the depositary of the knowledge of how best to optimize
a program, while the user should primarily focus on the algorith-
mic invariants that (i) are typically beyond the compiler’s analyti-
cal abilities and (ii) would enable the application of such optimiza-
tions. There are several reasons that support this view:

First, specifying such invariants requires minimal effort, e.g.,
sobolInd (i+1) c ≡ sobolRec c (sobolInd c i) i
documents the strength reduction invariant: the independent for-
mula can be described via a recurrence.

Second, the optimization strategy is often hardware-dependent,
hence it is impossible for the user to write an optimal hardware-
agnostic program. For instance, scan sobolRec is well suited
to the sequential case, while map sobolInd can be better on a
massively parallel machine that exhibits high communication costs.

Finally, program-level transformations are often nontrivial, and
at least tedious even for the experienced user to do by hand: e.g.,
Section 3.3 presents how to optimize both the parallelism depth and
time overhead: the computation is tiled via a factor t, where the tile
amortizes the cost of one sobolInd over t− 1 (fast) executions of
sobolRec. Another good example is flattening [8].

3. Optimizations
This section describes in detail several compiler optimizations
that had a strong impact on the pricing algorithm, and that we
believe are likely to prove effective in a general context. Sec-
tions 3.2 and 3.3 describe optimizations and trade-offs related to
exploiting coarse-grained parallelism and strength-reduction in-
variants. These are high-level transformations demonstrated using
functional code snippets. Sections 3.4 and 3.5 present lower-level
optimizations, related to branch divergence and memory coalesc-
ing, that are demonstrated on a Fortran intermediate representation.

3.1 Language Assumptions
Throughout the paper, we use Haskell to illustrate the functional
programming style, but disregard laziness issues and use lists in-
stead of performance-oriented special types like vectors or arrays
for the sake of clarity.

When discussing the imperative programming model, we use
Fortran77 uniformly, because: (i) it accurately illustrates the orig-
inal C code of the pricing algorithm, and, if anything, (ii) it elimi-
nates the maybe-aliasing issue, which is a major hindrance to au-
tomatic parallelization. Furthermore, (iii) a vast amount of work in
autoparallelization targets Fortran77. As a fourth point, Fortran77
code resembles the GPU API OpenCL which we use, in that it sup-
ports neither recurrence nor dynamic allocation (static arrays only).

Another aspect to be taken into account when discussing op-
timizations is data locality and thread grouping on GPUs. A GPU
operates in thread blocks, and threads are grouped to SIMD groups
(so-called warps) executed on one SIMD unit comprising multiple
cores. To simplify our argument, we consider that each SIMD unit
comprises 32 hardware cores. Technically this is not correct, as a
warp resides on only 8 cores, which execute four-cycle instructions
and need four threads to amortize the cost, but the analogy is valid
for the points we are making. A block of size B yields B/32 hard-
ware threads per core, which we call “virtual cores”.

3.2 Vectorized vs Coarse-Grained parallelism
Section 1.4 has outlined the tradeoff related to selecting one of

(at least) two possible implementations of a map-reduce compu-

-- vt1, vt2 ∈ Rn×(u·d) CC t1, t2 ∈ Ru·d

-- vt3, vt4 ∈ Rn×u×d, vt5 ∈ Rn CC t3, t4 ∈ Ru×d, t5 ∈ R
let do i = 0, n-1

vt1 = map sobolInd c [0..n-1] t1 = sobolInd c i
vt2 = map gaussian vt1 t2 = gaussian t1
vt3 = map brownian_bridge c vt2 t3 = brownian_bridge c t2
vt4 = map black_scholes c vt3 t4 = black_scholes c t3
vt5 = map payoff c vt4 t5 = payoff c t4

in res = res + t5
sum vt5 enddo

-- Memory Complexity: O(n · u · d) CC O(P · u · d),P = core num

Figure 5. Vectorized (Haskell) vs Coarse parallelism (Fortran)

tation. Figure 5 illustrates these two choices in the context of the
generic-pricing algorithm shown in Figure 2.
The vectorized version distributes the outer map across each of the
basic-block kernels, and reduces the result vector in parallel via the
plus operator. (This transformation is the inverse of fusion and is
known as loop distribution in the imperative context.)

On GPU, vectorization exhibits the advantage that each kernel
requires fewer resources per virtual core than the fused version.
This potentially increases the parallelism degree, which can be used
for hiding latencies. In addition, vectorization enables each kernel
to be further optimized, e.g. the gaussian kernel applies function
map gaussian elem, hence map gaussian exhibits nested par-
allelism that can be flattened to increase the degree of parallelism.

The downside is that the memory complexity is nonoptimal,
i.e., proportional to n, because all intermediate vectors need to be
instantiated. It follows that vt1..5 have to be allocated in global
storage, which is several order of magnitude slower than the local
memory. (The superior parallelism degree hides to a certain level,
but typically does not eliminate memory latency, i.e., spawning
more computation may stress too much the memory system.)
The coarse-grained version is obtained via the transformation:
(red �).(map f) ≡ (red �).(map ((red �).(map f))).distp
that distributes the input list among processors, performs the orig-
inal computation (red �).(map f) sequentially on all processors
and post-reduces the local results in parallel. Space consumption
is optimized via privatization: t1..t5 are allocated per virtual-
core, and memory is reused via destructive updates for both the
privatized variables and the (accumulated) result res. Note that (i)
res needs to be replicated for each sub-list before a final (parallel)
reduction, and (ii) the iteration scheduling policy, i.e., the list dis-
tribution, is omitted in Figure 5, since it is handled automatically
by GPU’s programming interface (OpenCL compiler).

The main advantage of the coarse-grained version is that the
memory consumption is (asymptotically) optimal: its size is pro-
portional to the number of virtual cores rather than to the data
size. When all local variables fit in the fast memory this leads to a
computational, rather than memory-bound behavior (our example
eliminates global-memory latency by encoding the input list via an
affine formula on the loop index; this is not always possible). The
downside is that (i) it requires more per-virtual-core resources than
vectorization, hence exhibits a lower parallelism degree, and (ii) it
is not applicable when the local resources do not fit in fast memory.

The Cost Model must be able to compute a maximum size of per-
virtual-core resources, as an upper limit from which on the benefits
of using local memory are eliminated by the reduced parallelism
degree failing to optimize other kinds of latency (e.g., cache and
instruction latencies, register dependencies). An accurate model is
difficult to implement because latencies are in general both pro-
gram and data sensitive, e.g., global-memory latency depends on
whether memory accesses are coalesced. In principle, this could be
addressed via machine-learning and/or profile-guided techniques,
but that study is beyond the scope of this paper.



-- USER SPECIFICATION
sobolInd :: Config -> Int -> [ Int ]

-- Recurrent Formula INVAR: i ≥ 0 ⇒
-- sobolInd c (i + 1) ≡ sobolRec c (sobolInd c i) i
sobolRec :: Config -> [Int] -> Int -> [Int]
sobolRec Config{..} prev i = ...

-- COMPILER GENERATED CODE
sobolRecMap conf (l,u) = scanl (sobolRec conf) fst [l..u-1]

where fst = sobolInd conf l

tile_segm :: ((Int,Int)->[a]) -> Int -> Int -> Int -> [a]
tile_segm fun l u t = red (++) [] (map fun iv)

where divides = (u-l+1) ‘mod‘ t == 0
last = if (divides) then [] else [u]
iv = zip [l,l+t..] ([l+t-1, l+2*t-1 .. u] ++ last)

-- COMPILER TRANSFORMS map (SobolInd conf) [n..m] TO:
sobolGen conf n m = case (cost_model conf) of

1 -> tile_segm (sobolRecMap conf) n m tile
2 -> map (sobolInd conf) [n..m]
3 -> sobolRecMap conf (n,m)

Figure 6. Sobol Generator: Independent vs Recurrent Formulas.

A simple heuristic is to define the cutoff point by computing the
per-virtual-core resources associated to a reasonably-minimal con-
currency ratio CRmin. Since the technique eliminates the global-
memory latency, CRmin is related to arithmetic latency, which, on
our GPU hardware requires a ratio of virtual to hardware cores be-
tween 9 and 18, depending on the existence of register dependen-
cies. We choose CRmin = (9+18)/2 = 14, and compute the asso-
ciated per-virtual-core resources asRth =Msm

fast/(CRmin · 32),
where Msm

fast and the denominator denote the fast-memory size
and the number of virtual cores per multiprocessor, respectively.

Our hardware exhibitsMsm
fast = 112kB, thusRth= 256 bytes.

In our example, each virtual core (iteration) requires storage for
three vectors, each of (flattened) size u · d: the first two are nec-
essary because some kernels cannot do the computation in-place
and the third is necessary to record the previous quasi-random vec-
tor required by the strength-reduction optimization. In addition we
need about 16 integers to store various scalars, such as loop vectors.
It follows that the cutoff point is u · d = 16, which is close to the
optimal in our case, but warrants a systematic validation. The cost
model is implemented via a runtime test, and we observe speedups
as high as 2× when the coarse-grained version is selected.

3.3 Strength Reduction
This section demonstrates how strength reduction can trigger a
code transformation that combines the advantages of both indepen-
dent and recurrent formula. In essence, the user-specified invariant:
sobolInd c (i+1) ≡ sobolRec c (sobolInd c i) i,

allows one to derive that the (i+k)th random number, sobolInd
c (i+k), can be written as a reduction of the previous k-1 num-
bers: fold (sobolRec c) (sobolInd c i) [i..i+k-1], and
similarly, the ith..(i+k)th random numbers can be computed as a
prefix sum: scan (sobolRec c) (sobolInd c i) [i..i+k-1].
This is synthesized in Figure 6 by the sobolRecMap function that
computes the (consecutive) samples indexed from l to u.

The idea is that tiling a map computation would allow to
use sobolRecMap to efficiently (sequentially) compute tile-size
consecutive random numbers, where tiles are computed in par-
allel. More formally, on the domain of lists holding consecu-
tive numbers, one can derive that map (sobolInd c) is equiv-
alent to (red++).(map (map (sobolInd c))).tilet. The last
step is to replace map (sobolInd c) with the more efficient
sobolRecMap, i.e., (red++).(map (sobolRecMap c)).tilet.

In Figure 6 we use tile segm to implement tiling, with the
difference that we encode a list of consecutive numbers via a

pair (l, u) denoting the lower and upper bound of the set, hence
tile segm returns a list of such lower-upper bound pairs. Finally,
sobolGen selects, based on a cost model, one of the (at least) three
ways to compute the nth to mth random numbers.

The Cost Model needs to select between the independent If ,
recurrent Rf and tiled T f formulas. For the sequential execution,
Rf is the most efficient. For the parallel case, we first compare If

and Rf . Computing N elements with If and Rf exhibits depths
(i.e., asymptotic runtime) CIf and log(N) · CRf , where CIf

and CRf are the (average) costs of one execution of If and Rf ,
respectively. It follows that If prevails when log(N) > CIf /CRf .
On GPU, this means that If is superior in most cases of practical
interest, because N is typically large.

Finally, to compare T f and If in the parallel case, one has
to model the tradeoff between the cheaper computational cost of
T f and the negative impact various tile sizes may have on the
parallelism degree, and thus on the effectiveness with which latency
is hidden. (A detailed exploration is beyond the scope of this paper.)

A simple model that works well on our case study and may
prove effective in practice is to compute a maximal tiling size tmax

such that it still allows for a (fixed) parallelism degree CRfix, high
enough to hide all latencies. For example, we pick the virtual-to-
hardware-core ratio between extreme values 18 and 64 for compute
and memory bound kernels, respectively.

For a input size N , we compute tmax ≥ 1 as the closest power
of two less or equal to N/CRfix, and bound it from above via a
convenient value, e.g., 128. In essence, we have circumvented the
difficult problem of modeling the relation between tile sizes and
latency hiding, by computing the maximal tile size that would not
negatively impact on T f . One can observe now that T f is always
superior to If (i.e., in terms of the work to compute N elements):
N ∗ CIf ≥ (CIf + (T − 1) · CRf ) ·N/T ⇔ CIf ≥ CRf .

Strength reduction exhibits speed-ups as high as 4×, and allows
an efficient Sobol implementation that computes the same result as
the sequential version, modulo float associativity issues.

3.4 Branch-Divergence Optimization
Intuition. On SIMD hardware, branches that are not taken in the
same direction by all cores exhibit a runtime equivalent to each
core executing both targets of the branch. This section proposes an
inspector-executor approach to alleviate this overhead: (i) the (par-
allel) loop is tiled, then (ii) the inspector computes a permutation of
the iteration space of a tile that groups iterations corresponding to
the true (false) branches together, and, finally, (iii) the executor
processes the tile in the new (permuted) order. As outlined in intro-
ductory Section 1.4, organizing the (sequential) execution of a tile
in this way minimizes the branch divergence across different tiles,
which are processed in parallel (SIMD).

Consider the Haskell code map f ginp, where f is defined as:

f a =if (cond a) then (fun1 a)
else let m = a * a

in if(cond m) then (fun2 m) else (fun3 m)

The top-left part of Figure 7 shows the Fortran version of this
code, where the outer loop has been tiled, and, for simplicity we
assume that TILE divides N. The bottom-right part of Figure 7
shows the inspector, itPerm, associated to one branch target. The
inspector executes the slice of the original code, i.e., cloned code,
that is necessary to find the direction taken by the original branch,
and replaces the bodies of the branch with code that aligns the
indexes of true/false iterations contiguously in the first/last part
of σ, respectively. Finally, the split index is returned. Note that the
input σ is not required to be ordered, any input permutation of the
iteration space will be transformed in a permutation that groups the



CC Tiled Code; TILE | N
DO i = 1, N, TILE

DO j = i, i+TILE-1
IF (cond(ginp(j))) THEN

gout(j) = fun1(ginp(j))
ELSE

m = ginp(j) * ginp(j)
IF ( cond(m) ) THEN

gout(j) = fun2(m)
ELSE

gout(j) = fun3(m)
ENDIF ENDIF ENDDO ENDDO

CC Inspector-Executor Code
CC initially σ=[1..TILE]
PRIVATE i,s1,s2,inp,out,σ
DO i = 1, N, TILE

inp[1:TILE]=ginp[i:i+TILE-1]
s1 = itPerm(id,σ,inp,TILE)
DO j = 1, s1

out(σ(j))=fun1(inp(σ(j)))
ENDDO
s2 = itPerm( sq, σ(s1+1),

inp, TILE-s1 )
DO j = s1+1, s1+s2

m = inp(σ(j)) * inp(σ(j))
out(σ(j)) = fun2( m )

ENDDO
DO j = s1+s2+1, TILE

m = inp(σ(j)) * inp(σ(j))
out(σ(j)) = fun3( m )

ENDDO
gout[i:i+TILE-1]=out[1:TILE]

ENDDO

CC Clone: identity (no cloning)
FUNCTION id(x)

id = x
END
CC Clone: square
FUNCTION sq(x)

sq = x * x
END

CC Inspector Code: computes
CC an iter-space permutation
CC that groups the true and
CC false iterations together
FUNCTION itPerm(σ, inp, size,

cloned_code)
INTEGER beg,end,size,σ(size)
beg = 1
end = size
DO j = 1, size-1

m = cloned_code( inp(σ(j)) )
IF( cond( m ) ) THEN

beg = beg + 1
ELSE

tmp = σ(beg)
σ(beg) = σ(end)
σ(end) = tmp
end = end - 1

ENDIF
ENDDO
if( cond( inp(size) ) )

beg = beg + 1
itPerm = beg - 1

END

Figure 7. Branch Divergence Example

true and false iterations contiguously, hence σ, once initialized,
does not need to be reset in the program.

The bottom-left part of Figure 7 shows the transformed code:
The global-memory input associated to the tile is first copied to
private space inp. Then, inspector itPerm is called to compute the
permutation of the iteration space. Loop DO j = 1, s1 executes
the true iterations of the outer if, and a similar loop was inter-
mediary generated for the false iterations. The latter loop was
recursively transformed to disambiguate its (inner) if branch.

This corresponds to the second call to itPerm on the remaining
indexes σ(s1+1..TILE), in which the cloned code refers to the
square-root computation of m in the original code that is used in
branch condition cond(m). Finally, the loop is distributed across
the true and false iterations of the inner if, and the result
is copied out to global memory. (Without the copy-in/out to and
from private storage, the permutation of the iteration-space may
introduce non-coalesced, global-memory accesses).

Implementation. We observe that the transformation is valid only
on independent loops (i.e., parallel, no cross-iteration dependen-
cies), otherwise the iteration-space permutation is not guaranteed
to preserve the original program semantics.

Consider the case when an independent loop contains only one
outermost if branch. To apply the transformation: First, inline
the code after the if-then-else construct inside each branch, or
separate that code via loop-distribution to form another loop.

Second, extract the inspector by computing the transitive clo-
sure of loop statements necessary to compute the branch condition,
and by inserting the code that computes the permutation.

Third, generate the (distributed) loops corresponding to the
true/false iterations by cloning the loop, replacing the if con-
struct with the body of the true/false branch, substituting the
loop index j with σ(j), and simplifying, e.g., dead-code elimina-
tion. The procedure can be repeated to optimize inner branches in
the two formed loops, where each loop further refines its iteration
space recorded in its corresponding (contiguous) part of σ.

CC Uncoalesced Layout
DOALL i = 1, N

DO j = 1, M
... ARR(σ(j), i) ...

ENDDO
ENDDOALL

CC Coalesced Layout
DOALL i = 1, N/B

DOALL k = 1, B
DO j = 1, M

... ARR(i%B, σ(j), i/B)
ENDDO ENDDOALL ENDDOALL

01 M.. 2*M.... .......B*M−1

12 B.. 12 B.. 12 B.....

M1 2

INDEX:

PROC:

ARR:

01 M.. 2*M.... .......B*M−1

M M M

BB B..11 1.. 22 2.. ...

INDEX:

PROC:

ARR:

Coalesced (one) Memory TransferUncoalesced (B) Memory Transfers

Figure 8. Memory-Coalescing Code Example

If the independent loop contains two branches at the same level,
then one can distribute the loop around the two branches and apply
the procedure for each branch, i.e., map (f1.f2) can be rewritten
as (map f1).(map f2), and the if branches of f1 and f2 can
be treated individually. Furthermore, the transformation can be
applied uniformly via a top-down traversal of the control-flow (and
call) graph of the original loop, where each if-branch target is
transformed in the context of its enclosing loop.
Cost Model. One can observe that optimizing branch divergence
exhibits both fast-memory and instructional overhead: The memory
overhead is related to the size of the tile, which typically dictates
the size of the private input and output buffers, and the size of σ.
Splitting the computation into an inspector-executor fashion may
introduce instructional overhead because both the if condition and
the if body may be data-dependent on the same statements, e.g.,
the statement that computes m in Figure 7. Enabling transforma-
tions, such as loop distribution, may also require either statement
cloning or array expansion to fix potential data-dependencies be-
tween the two distributed loops.

To determine the profitability of this transformation, static anal-
ysis should first identify good branch candidates, i.e., if statements
that exhibit high computational granularity for at least one of their
true and false branches (fun1 and fun2). Then, similar to Sec-
tion 6, the maximal tile size can be computed so that the associated
fast-memory overhead does not significantly affect latency hiding.

To improve precision, runtime profiling can be used to measure
the divergence ratio and to what degree the transformation would
reduce divergence. Finally, the instructional overhead should be
taken into account to determine whether this optimization is prof-
itable for the target branch. With our case study, this optimization
exhibits speedups (slowdowns) as high (low) as 1.3× (0.95×).

3.5 Memory-Coalescing Optimization
This section presents a transformation that fixes potential un-

coalesced accesses of a map construct, such as map fun inp,
where the elements of inp are arrays of similar dimensionality.

One can observe that since map hides the iteration space, any
array indexing inside fun would likely be invariant to the loop that
implements map. For example, in the left side of Figure 8, DOALL
i corresponds to the original map, and the DO j loop implements
fun, which processes an inner array of dimension M, indexed by
σ(j). Executing the i loop on GPU leads to the access pattern
depicted in the left-bottom part of Figure 8, in which B cores in
a SIMD-group access in one instruction elements that are 4*M bytes
apart from each other, where we assumed for simplicity σ ≡ id.

We fix this behavior by reshaping uniformly such arrays via
transformation T([x,y]) = [x/B,y,x%B], in which x and y cor-
respond to the row and column index in the original matrix (since
Fortran uses column order, we would write ARR(y,x)). Since B is
a power of two the new index is computed using fast arithmetic.

In essence, we have trimmed the outermost dimension and
added an innermost (row) dimension of size B, the size of the SIMD



group, such that one SIMD instruction exhibits coalesced access.
The top-right part of Figure 8 shows the transformed code, where
we made explicit the SIMD grouping via the DOALL k loop, while
the outer DOALL i loop expresses the parallelism among SIMD
groups. The bottom-right part of Figure 8 demonstrates that after
transformation B consecutive cores access contiguous locations.

We observe that this transformation is effective for arrays of any
dimensions, as long as the internal indexing is map-loop invariant.
For example, assuming that the Brownian-bridge code of Figure 4
is written in map-reduce style, i.e., array expansion is applied to wf
and zd, this transformation results in coalesced accesses for arrays
wf and zd, despite the indirect indexing exhibited on the dates
(d) dimension. Finally, assuming that all computational-intensive
kernels are executed on GPU, it is beneficial to reshape all relevant
arrays in this fashion, since the potential overheads of the CPU-
executed code are in this case negligible.

We conclude by observing that this technique (i) transparently
solves any uncoalesced accesses introduced by other compiler op-
timizations such as tiling, and (ii) yields speed-ups as high as 28×.

4. Experimental Results
Experimental Setup. We study the impact of our optimizations on
two heterogenous commodity systems: a desktop5 and an integrated
mobile6 solution. We compile (i) the sequential-CPU kernel with
the gcc compiler versions 4.6.1 and 4.4.3, respectively, with
compiler option -O3, and (ii) a very similar version of the CPU
code with NVIDIA’s nvcc compiler for OpenCL version 4.2 and
4.1, respectively, with default compiler options. Reported speed-
ups were averaged among 20 independent runs.

We estimate the three contracts described in Section 2.1: (i)
an European option, named Simple, (ii) a discrete barrier option,
named Medium, and (iii) a daily-monitored barrier option, named
Complex. These contracts are written in terms of a number of
underlyings, u, and dates, d: 1×1, 3×5 and 3×367, respectively.
This amounts to very different runtime behavior, since u and d
dictate (i) the amount of data processed per iteration and (ii) the
weight each basic-block kernel has in the overall computation.

In addition, we estimate the contracts with both single precision
(SimpleF) and double precision (SimpleD) floating points. From
a compute perspective this accentuates the different runtime be-
havior, as double are more expensive than float operations (and
require twice the space). From a financial perspective we note that
the results of our parallel versions are equal to the sequential one,
with precision higher than 0.001%. This is a consequence of the
Sobol quasi-random generator being modeled as described in Sec-
tion 2.2, where the parallel implementation preserves the modulo
associativity semantics exhibited by the sequential version.

Figures 9, 10 and 11 show the speed-up measurements for the
described contracts under different optimization conditions. Read-
ings for the gaming system are reported as vertical labels over
plain area bars, while readings for the mobile solution are reported
as horizontal, white labels over crossed regions. All histograms
present error bars indicating the standard deviation of the measure-
ments, which seem mostly affected by bus transfer delays between

5 A four-core Intel Core2 Quad@2.40GHz with 4 GB global memory,
and a NVIDIA GeForce GTX 680 GPU that exhibits 1536 CUDA cores
running at 706MHz, 2 GB global memory with a clock-rate of 3GHz, 48
kB fast (local) memory, 64 kB constant memory, and 65536 registers per
block. GPU and CPU are connected with a PCI EXPRESS V. 1.0 interface.
6 A four-core Intel i7-2820QM@2.30GHz with 8 GB global memory, and
a NVIDIA Quadro 2000M GPU that exhibits 192 CUDA cores running at
1100MHz, 2 GB global memory, 48 kB fast (local) memory, 64 kB con-
stant memory, and 32768 registers per block. GPU and CPU are connected
with a SANDY BRIDGE interface supporting PCI EXPRESS V. 2.0.
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Figure 9. Impact of Strength-Reduction Optimization.

host system and GPU. Missing histograms in the ComplexF and
ComplexD cases are due to the Complex contract model exceeding
the available fast memory. The remaining of this section discusses
the impact of the proposed optimizations.
Vectorization vs Coarse-Grained. One of the main optimization
choices the compiler has to make is whether to employ coarse-
grained parallelism over vectorization, as described in Section 3.2.
Figure 9, in which the reader should ignore for the moment the SR
OFF bars, demonstrates the tradeoff: The coarse-grained version on
Simple contract exhibits a small u · d value (1 float/double),
which results in (all) data fitting well in fast memory, while still al-
lowing a good parallelism degree. It follows that the coarse-grained
SimpleF/D is significantly faster than its vectorized analog.

As the per-core fast-memory consumption, i.e., u · d, increases,
latency is less efficiently hidden: (i) MediumF/D (u · d = 15) is
very close to the cutoff point between the two versions, and (ii)
ComplexF/D cannot run the coarse-grained version simply because
u · d = 3 · 365 does not fit in fast memory.

We remark that the cutoff point is (surprisingly) well estimated
by the simple cost model of Section 3.2, and that, albeit tested
(only) on the same application, it is consistent among the two
hardware. At large, the top-end hardware exhibits similar behavior
but superior speedups for coarse-grained and vectorized versions.
The rest of this section evaluates the impact of the other three
optimizations for both the coarse-grained and vectorized code.
Strength Reduction. The SR OFF bars in Figure 9 correspond to
the obtained speed-up when all but the strength-reduction optimiza-
tion were used. Comparing the SR OFF bars with their left neigh-
bor, which correspond to the fully-optimized code, one can observe
speed-ups as high as 3−4× for SimpleF’s coarse-grained and vec-
torized code, respectively. As u · d increases, i.e., in Medium and
Complex contracts, the optimization’s impact decreases because:
(i) the weight of the Sobol kernel in the overall computation de-
creases and (ii) the tile sizes computed by the cost model also de-
crease. The latter corresponds to how many times we apply the re-
currence formula to amortize the more expensive independent for-
mula, and also explains the smaller impact on the code version that
uses doubles. For ComplexF/D the ratio is four and two, respec-
tively, and the gain is smaller. We remark that the empirical data
seem to validate the cost model in that sequentializing some com-
putations via the recurrent formula never generates slowdowns.
Branch Divergence. The results shown in Figure 10 correspond
to optimizing the divergence of the only if branch, located in the
gaussian kernel, that exhibits enough computational-granularity
to trigger the branch-divergence (BD) optimization. Simple ex-



SimpleF MediumF ComplexF SimpleD MediumD ComplexD

GP
U 

Sp
ee

dU
p:

 g
am

in
g 

vs
. m

ob
ile

 s
ol

ut
io

n 54
1 56

2
27

2 28
7

23
6 27

0
21

4
21

8

17
4

17
5

14
2

14
3

10
7

10
9

51 42
61 48 54 42

7068
4850 34363331 2726 23231819 10 7 9 7 8 6

XX: nVidia Quadro 2000M

XX
X : nVidia GeForce GTX 680

Switching ON/OFF Branch-Divergence (BD) Optimization
Speedup w.r.t. Sequential CPU Runtime (-O3)

Coarse Grained All Opt ON
Coarse Grained BD OFF
Vectorized All Opt ON
Vectorized BD OFF
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hibits little divergence overhead, i.e., less than 2% of the gaussian
kernel runtime, and thus the optimization results in about 5%
slowdown due to the computational and memory overheads in-
troduced by BD. Medium and Complex exhibit roughly 61% diver-
gence overhead at the level of the gaussian kernel. Examining
MediumF we observe an interesting behavior: while the coarse-
grained version exhibits slowdown, the vectorized version exhibits
either no change, or a speedup. The reason is that the extra mem-
ory needed for the appliction of BD exacerbates the reduced degree
of parallelism of the coarse-grained version, which is already us-
ing a significant amount of fast memory. Finally, we note that the
use of double increases the computational granularity of the if
branch, and, as such, the double version exhibits significantly bet-
ter speedups (e.g., 1.3×), than the float-based one.

Memory Coalescing. Figure 11 demonstrates that achieving co-
alesced accesses is fundamental for extracting reasonable perfor-
mance from the GPU hardware, and that the proposed transforma-
tion is effective in enabling well-coalesced accesses. We observe
that in the case of SimpleF/D the uncoalesced accesses refer to the
ones introduced by the strength-reduction optimization.

Discussion. Figure 11 shows that Memory Coalescing has by far
the largest impact, enabling a factor 5×-28× speedup. This is
followed by Strenght Reduction, with a factor 1.3×-4×. Choosing
between Vectorized and Corse-Grained approaches delivers a speed
increase up to 2×. The simple cost models implemented here are
effective for this application; we would however like to proceed
to more extensive empirical evaluations to assess opportunities of
generalization. In particular, Branch Divergence seems to express

its potential in applications with larger computation granularity,
like the double case in the Medium and Complex contracts.

For a fixed set of optimizations, the ratio between the speedups
obtained on the two hardware platforms is at large in the inter-
val 5.7×-9×, which correlates well with the ratio of the number
of available cores in the GeForce GTX 680 and Quadro 2000M
GPUs (1536 and 192 respectively). Full utilization of these comput-
ing units is achieved by instanciating the entire algorithm on GPU,
with little data transfer between host system and GPU. As result of
this, the discussed hardwares allow to obtain speedups as high as
70× and 540× compared to the sequential CPU case.

5. Related Work
A considerable amount of work has been published on paralleliz-
ing financial computations on GPUs, reporting impressive speedups
(see Joshi [26] or Giles [27], for example), or focusing on produc-
tion integration in large banks’ IT infrastructure [36]. Our work dif-
fers in that we aim at systematizing and eventually automating low-
level implementation and optimization by taking a architecture-
independent functional language and compilation approach.

Imperative Auto-Parallelization. Classical static dependency
analysis [1, 16] examines an entire loop nest at a time and accu-
rately models both the memory dependencies and the flow of values
between every pair of read-write accesses, but the analysis is re-
stricted to the simpler affine domain. Dependencies are represented
via systems of linear (in)equations, disambiguated via Gaussian-
like elimination. These solutions drive powerful code transforma-
tions to extract and optimize parallelism [41], e.g., loop distribu-
tion, interchange, skewing, tiling, etc., but they are most effective
when applied to relatively small intra-procedural loop nests exhibit-
ing simple control flow and affine accesses.

Issues become more complicated with larger loops, where sym-
bolic constants, complex control flow, array-reshaping at call sites,
quadratic array indexing, induction variables with no closed-form
solutions hinder parallelism extraction [21, 39].

Various techniques have been proposed to partially address
these issues: Idiom-recognition techniques [29] disambiguate a
class of subscripted subscripts and push-back arrays, such as array
ia in Figure 1, which is indexed by the conditionally-incremented
variable len. The weakness of such techniques is that small code
perturbations may render the access pattern unrecognizable and
yield very conservative results. Another direction has been to re-
fine the dependency test to qualify some non-affine patterns: for
example Range Test [9] exploits the monotonicity of polynomial
indexing, and similarly, extensions of Presburger arithmetic [42]
may solve a class of irregular accesses and control flow.

The next step has been to extend analysis to program level by
using various set algebras to summarize array indexes interproce-
durally, where loop independence is modeled via an equation on
(set) summaries of shape S = ∅. The set representation has taken
the form of either (i) an array abstraction [21, 39], e.g., systems
of affine constraints, or (ii) a richer language [43] in which irre-
ducible set operations are represented via explicit ∩,−,∪N

i=1 con-
structors. Array abstractions have been refined further to exploit
(simple) control-flow predicates [34, 42] (i) to increase summary
precision or (ii) to predicate optimistic results for undecidable sum-
maries. The language-representation approach allows an accurate
classification of loop independence at runtime, e.g., it can prove
that array wf in Figure 4 is write first, hence privatizable, but the
runtime cost may be prohibitive in the general case. This issue has
been further addressed by a translation T to an equally-rich lan-
guage of predicates [37], i.e., T(S)⇒ S = ∅, where the extracted
predicates T(S) has been found to solve uniformly a number of
difficult cases under negligible runtime overhead. While these im-



portant techniques are successful in disambiguating a large num-
ber of imperative (Fortran) loops, there still remain enough parallel
benchmarks that are too difficult to solve statically [3]. In these
cases, techniques that track dependencies at runtime [14, 38] may
extract parallelism on multi-core systems, albeit at significant run-
time overhead, but they has not been validated (yet) on GPU.
Imperative GPGPU work follows two main directions. The first
one aims at ease of programming: CudaLite [47] abstracts over
the complex GPGPU memory hierarchy, Lime [15] extends the type
system of a subset of Java to express desirable invariants such
as isolation and immutability, and finally, the popular OpenMP-
annotated loops are translated [28] to CUDA, to mention only a few.

The second direction refers to GPGPU performance. Main prin-
ciples are [44]: (i) achieving memory-coalescing via block tiling,
where threads cooperatively copy-in/out the data block to/from on-
chip (fast) memory, (ii) optimizing register usage via loop unrolling
and (iii) prefetching data to hide memory latency at the expense of
register pressure. Implementation of these principles as compiler
optimizations ranges from (i) heuristics based on pattern-matching
of code or array indexes [15, 47, 49], to (ii) the more formal mod-
eling of affine transformations via the polyhedral model [2, 5], e.g.,
multi-level tiling code generation, or host-to-accelerator memory-
transfer optimizations, to (iii) aggressive techniques that may be
applicable even for irregular control-flow/accesses [28], e.g., loop
collapsing/interchange exploits a statically-assumed and runtime-
verified monotonicity of array values.

In comparison, we take the view that a (hardware-neutral) func-
tional language presents opportunities for both automatic GPU
translation and optimization, due to the better preservation of algo-
rithmic invariants. For example, all our optimizations rely on prop-
erties of the map-reduce constructs, which appear naturally in the
functional code and drive our higher-level (and perhaps simpler)
code transformations: Memory-coalescing exploits the fact that the
array-indexing used inside the mapped function is likely invariant
across the mapped elements. Our (novel) technique is complemen-
tary to the thread-cooperating block tiling, in that it requires neither
block-level synchronization nor the use of shared memory, but it
exhibits restructuring overhead when the same (nested) array is
traversed on different axes in different kernels.

Similarly, optimizing branch-divergence relies on map’s paral-
lelism to ensure the validity of the employed iteration-space per-
mutation. The closest related work is Strout’s inspector-executor
technique [45] that improves cache locality by permuting the array
layout to match the order in which elements are accesses at run-
time. We have not found stated elsewhere the trade-offs related to
the strength-reduction invariant and to the coarse-grained vs vec-
torized code, albeit they show significant impact in our case study.
Functional Parallelization. Functional languages and their mathe-
matical abstraction allow for more expressive algorithm implemen-
tations, in which data parallelism appears naturally by means of
higher-order functions like map, fold, and scan, for which effi-
cient parallel implementations are known. Consequently, research
work has focused less on completely automating the process, but
rather on studying in a formal manner what classes of algorithms
allow asymptotically efficient (parallel) implementations.

Previous research we draw upon here is the Bird-Meertens For-
malism (BMF) [6]. Functions f (x++y)=(f x) � (f y) are ho-
momorphisms between (i) the monoid of lists with concatenation
operator and empty list as neutral element, and (ii) the monoid of
the result type with operator � and neutral element f [], and can
be rewritten in the map-reduce form which provides an efficient
parallel implementation (at least when the reduction does not in-
volve concatenation). List invariants like the promotion lemmas
(map f).(red ++) ≡ (red ++).(map (map f)) and
(red �).(red ++) ≡ (red �).(map (red �)), can be used

to transform programs to a higher degree of parallelism and load
balancing (← direction), or to distribute computations to available
processors for reduced communication overhead (→ direction).

Other work follows this research strand and (i) studies how to
extend a class of functions [13] to become list-homomorphisms
(LH), or (ii) show how to use the third LH theorem [17] to formally
derive the LH definition from its associated (and simpler) leftwards
and rightwards forms [19, 35], or (iii) formulate a class of func-
tions [20], such as scan, for which an asymptotically-optimal hy-
percube implementation can be formally derived, despite the fact
that concatenation appears inside�, or (iv) extend the applicability
of BMF theory to cover programs of more general form [23].

All these techniques rely on a functional computation language,
where referential transparency and the absence of side-effects allow
for vast transformations and rewriting. Such program transforma-
tions (with known operators) play a major role in compilation of
functional programs, for example in the implementation of data-
parallel Haskell [11]. Other work targets GPU platforms [12] using
two-stage execution techniques and JIT compilation. All Haskell’s
data-parallel approaches rely heavily on fusion to adjust task gran-
ularities and to justify parallel overhead for the particular platform.

Our work is informed by the same reasoning for the high-
level optimization, e.g., coarse-grain vs. vectorised code, strength
reduction, but also addresses other important hardware-specific
optimizations, e.g., memory coalescing and branch divergence.

It is a general problem that functional approaches can lead to ex-
cess parallelism and too fine-grained tasks. More task-oriented par-
allelization techniques today follow a semi-explicit programming
model of annotations (GpH [46]), or make parallelism completely
explicit (Eden [30] and the Par monad [33]). Automatic parallelism
in these approaches relates mainly to runtime system management,
and to functional libraries that capture algorithmic patterns at a high
abstraction level. Our work is more narrow in the algorithmic se-
lection, and thereby allows for very specific optimizations.

6. Conclusions and Future Work
This paper (i) has shown evidence that real-world financial software
exhibits computationally-intensive kernels that can be expressed
in a list-homomorphic, map-reduce fashion, and (ii) has presented
and demonstrated four relatively-simple optimizations that allowed
substantial speedups to be extracted on commodity GPUs.

While functional languages have often been considered elegant
but slow, GPU’s enticing parallelism and this paper’s results moti-
vates a systematic investigation of what is necessary to transpar-
ently and efficiently extract parallelism from functional programs.

As future work we plan to implement and explore such imperative-
style optimizations and their cost models, in the context of an array-
calculus functional language, such as Single Assignment C.

We believe that code transformations can be guided by inter-
procedural analysis that summarizes array read/write accesses, in
which the trade-off (cost model) can be modeled as equations on
these summaries. When the trade-off cannot be answered stati-
cally, (higher-order) predicates (i) can be derived as sufficient-
satisfiability conditions of the corresponding equation, and (ii) can
be evaluated in parallel on GPU to select the most efficient off-
line-generated kernel. Such an approach has been validated for the
(more difficult) problem of classifying loop parallelism in the For-
tran context [37], and we believe it also suits our context well.
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