
Acceleration of Lattice Models for Pricing Portfolios
of Fixed-Income Derivatives

WojciechMichal Pawlak

SimCorp

University of Copenhagen

Copenhagen, Denmark

wmp@di.ku.dk

Marek Hlava

University of Copenhagen

Copenhagen, Denmark

marek.hlava@outlook.com

Martin Metaksov

University of Copenhagen

Copenhagen, Denmark

metaksov@gmail.com

Cosmin Eugen Oancea

University of Copenhagen

Copenhagen, Denmark

cosmin.oancea@diku.dk

Abstract
This paper reports on the acceleration of a standard, lattice-

based numerical algorithm that is widely used in finance for

pricing a class of fixed-income vanilla derivatives. We start

with a high-level algorithmic specification, exhibiting irregu-

lar nested parallelism, which is challenging to map efficiently

to GPU hardware. From it we systematically derive and op-

timize two CUDA implementations, which utilize only the

outer or all levels of parallelism, respectively. A detailed eval-

uation demonstrates (i) the high impact of the proposed opti-

mizations, (ii) the complementary strength and weaknesses

of the two GPU versions, and that (iii) they are on average

2.4× faster than our well-tuned CPU-parallel implementa-

tion (OpenMP+AVX2) running on 104 hardware threads, and

by 3-to-4 order of magnitude faster than an OpenMP-parallel

implementation using the popular QuantLib library.

CCS Concepts: • Computing methodologies → Shared
memory algorithms;Massively parallel algorithms;Mas-
sively parallel andhighper-formance simulations; Par-
allel programming languages; • Applied computing →

Economics.

Keywords: GPGPU (Parallel) Programming, Compilers, Com-

putational Finance, Derivative Pricing

ACM Reference Format:
Wojciech Michal Pawlak, Marek Hlava, Martin Metaksov, and Cos-

min Eugen Oancea. 2021. Acceleration of Lattice Models for Pricing

Portfolios of Fixed-Income Derivatives. In Proceedings of the 8th
ACM SIGPLAN International Workshop on Libraries, Languages and
Compilers for Array Programming (ARRAY ’21), June 21, 2021, Vir-
tual, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3460944.3464309

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ARRAY ’21, June 21, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8466-7/21/06. . . $15.00

https://doi.org/10.1145/3460944.3464309

1 Introduction
Pricing is a fundamental component for the risk management
of any investment portfolio. It applies mathematical mod-

elling and compute-intensive algorithms to approximate the

value of financial-derivative instruments. A derivative is a

contract that derives its value from other, more basic instru-

ments like fixed-income bonds. Modern derivative portfolios,

managed by large institutional investors, usually consist of

a large number of such contracts, which differ significantly

in their characteristics and cash flows. This diversity has a

severe impact on the required computational effort. In recent

years, market participants are obliged to track their portfolio

risks and report them accurately on a regular and frequent

basis. Standard risk analysis combines stress testing against

historical data and a simulation of possible future market sce-

narios, resulting in a big-compute problem, which presents

a compelling case for GPU acceleration.

This paper reports on the GPU (and CPU) parallelization

of an algorithm that solves a standard pricing model, which

is commonly used in practice. Hull-White One-Factor Short-

Rate (HW1F) model [23] defines the value of an instrument

bymeans of a stochastic differential equation, that represents

the random changes in the interest rate over time. The algo-

rithm used to discretise and solve them is a Trinomial Tree
lattice-based numerical method [24]. Pricing one instrument
is performed in two main stages: The forward stage builds a

tree of bounded width that represents a propagation of the

interest rate, which cannot rise indefinitely and reverts to a

mean over time, until the maturity of the underlying bond is

reached. The backward stage then performs the instrument

valuation from maturity back to the current time.

The computational structure comprises two sequential

time-series loops that iterate over the height of the tree.

Each loop iteration performs several semantically-parallel

operations that have the same length as the bounded width

of the tree (e.g., the forward step computes each node at

the current time step from several neighboring nodes at the

previous time step in the tree). Practical use cases require

pricing a large portfolio of instruments, which gives raise to

an outer level of parallelism.

The main challenge, however, is that in realistic scenar-

ios the width and height of the trees is highly variant across
the portfolio instruments. This gives raise to a case of irreg-

ular nested parallelism that is difficult to map efficiently to

https://orcid.org/0000-0001-9373-8757
https://orcid.org/0000-0001-5421-6876
https://doi.org/10.1145/3460944.3464309
https://doi.org/10.1145/3460944.3464309
https://doi.org/10.1145/3460944.3464309

ARRAY ’21, June 21, 2021, Virtual, Canada Wojciech Michal Pawlak, Marek Hlava, Martin Metaksov, and Cosmin Eugen Oancea

GPU hardware. In particular, related approaches, surveyed

in detailed in Section 7, either assume the homogeneous

case [15, 20] in which all trees have the same height and

width, or acknowledge the problem, but without offering a

solution [17]. This paper studies this challenging case of a

heterogeneous portfolio, and reports on two parallelization

strategies and their subsequent optimizations.

The first strategy follows the common wisdom that states

that outer levels of parallelism are more profitable to exploit

than inner ones. Section 4 presents such an implementation,

named gpu-outer, that processes one instrument using one

thread, together with a set of optimizations aimed at im-

proving memory footprint and spatial locality. In particular,

the high variance of widths and heights across a portfolio

introduces two levels of thread divergence on GPU. These

levels correspond (i) to the sequential time loop of variant

height and (ii) to the inner width-parallel operations, which

are sequentialized. gpu-outer allows to optimize one level of
divergence, but not both, e.g., by precomputing the heights of

the trees and sorting the portfolio in their decreasing order.

The second strategy is to optimize (i) the height-level of

divergence by sorting as before, and (ii) the width level by

efficiently exploiting the (irregular) inner level of parallelism

at CUDA block (of threads) level, which also allows to main-

tain most of the data in the fast (shared+register) memory.

The idea, described in Section 5, is (i) to pack instruments
into bins, such that their summed widths fits the size of the

CUDA block (bin), and then (ii) to “flatten” (merge) the avail-

able two-level parallelism. The flattening procedure is highly

non-trivial and is a key contribution of this work. In this

paper, due to space constraints, we only demonstrate its ap-

plication to the current pricing method, starting from the

nested parallel specification presented in Section 3.
1

Finally, an evaluation on two Nvidia GPUs shows that:

• The proposed optimizations (data reordering, padding,

coalescing global-memory accesses) have high impact:

for gpu-outer as high as 6.0× and on average 4.1×
and for gpu-flat as high as 5.8× and on average 2.7×.

• GPU performance is sensitive to both dataset and hard-

ware characteristics.
2
On an older-generation GPU,

gpu-outer is (moderately) faster than gpu-flat by a

factor as high as 2.3× and on average 1.8× on large

portfolioswith constant or randomly-distributed heights

and widths. gpu-flat is faster in all the other cases: on

small portfolios (3.4× on average), or when the distri-

bution of widths/heights is skewed (5.9× on average)

or even random on newer GPU hardware (1.8×).3

1
A formalization of the proposed flattening transformation based on re-

write rules is sketched at http://hiperfit.dk/pdf/flat_rwr_hull_white.pdf
2
In particular, we observe that performance is not portable across different

GPU hardware generations on multiple datasets.

3
To demonstrate that current compiler technology does not support the

proposed optimizations/flattening, we also compare with a “matching” GPU

implementation written in Futhark [19], which is on average 6.3× slower.

• The best GPU version is faster by a factor as high

as 6.7× and on average 2.9× than our tuned multi-

threaded and vectorized CPU implementation (OpenMP

+ AVX2), which at its turn is three-to-four orders of

magnitude faster than a parallel OpenMP implementa-

tion built on top of the popular QuantLib library [2].

2 Financial Background
Fixed-income instruments like bonds. In this work, we

deal with a specific class of bond instruments, that are heavily

traded in fixed income markets. Bonds are characterized by a

cash flow during their lifetime. We consider a bond paying a

(fixed) coupon rate on specified dates up until bond maturity.

The value of coupons is most often fixed for fixed-rate bonds,

but varies for floating rate notes (FRNs). The payment dates

are usually periodic, but we assume they can occur on any

future date. However, the market value of a fixed-rate bond

is susceptible to fluctuations in interest rates, and carries a

significant amount of risk.

Derivative instruments like Options. A derivative (a

contract) derives its own value from the value of the underly-

ing asset. A call or put vanilla bond option gives an investor

the right, but not the obligation, to buy or sell the underlying
bond for a predetermined strike price at a future exercise

date before maturity. Options are typically used for hedging

of portfolio risks or market speculation. However, exercise

time determines the style of a vanilla options: European can

be exercised on one particular date, while Bermudan, on

many specific, usually periodical, dates, and American, on

any date up until the last exercise date. Analytical formulas

exist for an exact valuation of European options, but the

other two can only be approximated by numerical methods.

Instrument assumptions. In this work, we deal with a

multi-callable or puttable bond with a fixed or floating coupon.
We focus on Bermudan or American optionality, but capture

any bond cash flow. Moreover, we assume that bonds have

only one underlying factor, an interest rate of the currency

they are traded in. More detailed descriptions can be found

in standard literature [10, 21].

Hull-White One-Factor Short Rate Model. One of the
most popular short-rate models for interest rate derivative

pricing is Hull and White (1990, 1994a) [22, 23], further ab-

breviated HW1F. In this model there is a single source of risk

or uncertainty, a short (interest) rate, which is applicable at

instantaneous or very short periods of time. The model is

based on a stochastic process, which describes a probabilis-

tic evolution of the random short rate over future time. The

process also assumes the future interest rates are a function

of the initial rates and that their movement is reverting to the
mean. In this work, we consider a simplified version of the

Hull-White extension of the Vasicek model, where volatility

σ and mean reversion rate a parameters are constant.

http://hiperfit.dk/pdf/flat_rwr_hull_white.pdf

Acceleration of Lattice Models for Pricing Portfolios of Fixed-Income Derivatives ARRAY ’21, June 21, 2021, Virtual, Canada

The dynamics of HW1F is expressed mathematically by a

Stochastic Differential Equation:

dr = [θ (t) − ar]dt + σdW (1)

The drift (first) part of the equation includes a constant

short rate value r , which follows a mean-reverting Ornstein–

Uhlenbeck process, i.e. it is pulled back toward a central

value with a rate a. θ (t) is a deterministic function of time

chosen to fit the theoretical bond prices to the yield curve

observed in the market; it defines the average direction that

r moves with rate a at time t . The diffusion (second) part

comprises of σ and the stochastic variable dW . In addition,

σ determines the absolute level of short rate volatility, while

a determines the relative volatilities of long and short rate.

A high value a causes short-term rate movements to damp

out quickly, so long-term volatility is reduced.

2.1 Hull-White Trinomial Tree
Hull and White (1994a,1996) [23, 24] outline a trinomial tree

construction procedure for solving the HW1F model. We

summarize the main algorithmic steps in this section.

Forward Propagation: Tree Construction. The tree is
constructed in a breadth-first manner—the root correspond-

ing to the current time, and the leaves to the bond maturity

time—where the nodes at a certain (time) tree level denote

possible values for the short rate at that time step. The tree

height is defined by the remaining time to the maturity of

the bond, specified in units denoting a fraction of a year. The

tree width is determined by a mean reversion rate (the lower

the rate the wider the tree), specified as a basis point. The

height varies across bonds, while the width is determined

by a calibration of a to market data. Both dimensions also

depend on how often we monitor the changes in interest

rate. Every bond depends on a term structure (yield curve),
a relationship between interest rates and maturity terms,

representing the expectation of market evolution.

Thefirst stage constructs a preliminary tree, whereθ (t) =
0 and initial value r = 0. We define r as a continuously com-

pounded ∆t-period rate.We denote the expected value across

a ∆t-period r (t + ∆t) − r (t) as −ar (t)∆t and the variance of

r (t+∆t)−r (t) as σ 2∆t . The time step size is ∆t = T /n, where
T is the bond maturity and n is the number of desired time

steps. The interest rate step size is then ∆r = σ
√
3∆t , which

is a theoretical choice. ∆t progresses along height, while ∆r
are distributed along the width. We denote by (i, j) the tree
node for which t = i∆t and r = j∆r , where i denotes the
time step along the height, and j the rate step along the width
(the middle node has index j = 0).

A trinomial tree represents a random propagation of the

interest rate in time. In our case, the value of node (i, j) is
the Arrow-Debreu state price Qi, j , which corresponds to

the value of a security that pays 1 if node (i, j) is reached
and 0 otherwise. Any derivative depends on an underlying

asset, so its value that is uncertain at exercise time can be

Figure 1. Trinomial-tree construction for a stochastic vari-

able S , as in Boyle (1986) [9].

Figure 2.Trinomial treewith a boundedwidth incorporating

the mean reversion phenomenon, i.e., a HW1F Tree.

decomposed at each time step as a linear combination of its

Arrow-Debreu securities, and thus as a weighted sum of its

state prices. In Figure 1, the weights on the edges represent

the probabilities of transitions from one value to the other.

The tree is considered “trinomial”, because the computation

of each node value at a current time step i depends on three

node values from the previous time step i − 1. Essentially,

at each node there is a choice u,m and d to branch upward,

horizontally and downwards, with probabilities pu , pm , and
pd , respectively, where pm + pu + pd = 1. A HW1F tree is
obtained by bounding the tree width to 2 ∗ jmax + 1, where

jmax = −0.184/M andM = e(−a∆t) − 1. This is motivated by

the empirical observation that the short rate reverts to the

mean over time. The current node (i, j) contributes to the

computation of three nodes of the next time step (i + 1):

• if j = −jmax then horizontally to node j, and upwards

to nodes j + 1, and j + 2;
• if j = jmax then horizontally to node j, downwards to
nodes j − 1, and j − 2;

• otherwise horizontally, upwards and downwards to

nodes j, j + 1 and j − 1, respectively.

Figure 2 shows an example, where jmax = 2, width is 5,

height is 6, i ∈ [0, 5] and j ∈ [−2, 2].
The second stage adjusts the constructed tree from the

first stage to match the initial term structure observed in

the market. This is achieved by displacing the nodes (i.e.,

the Arrow-Debreu state prices Q) at time i∆t by an amount

αi , i.e., the new value of Qi, j in the displaced tree is then

equal to Qi, j + αi . The value of αi is determined from a sum

ARRAY ’21, June 21, 2021, Virtual, Canada Wojciech Michal Pawlak, Marek Hlava, Martin Metaksov, and Cosmin Eugen Oancea

i o ta : in t → [n] in t io ta n = [0 , . . . , n−1]

r ep l i c a t e : (n : in t)→ α → [n]α r ep l i c a t e n v = [v , . . . , v]

map :∀n.(α → γ) → [n]α → [n]γ
map f [a1 , . . . , an] = [f a1 , . . . , f an]

map2 :∀n.(α → β → γ) → [n]α → [n]β → [n]γ
map2 g [a1 , . . , an] [b1 , . . , bn] = [g a1 b1 , . . . , g an bn]

reduce :∀ n. (α → α → α) → α → [n]α → α
reduce ⊙ e⊙ [a1 , . . . , an] = a1 ⊙ . . . ⊙ an

scan : ∀ n. (α → α → α) → α → [n]α → [n]α
scaninc ⊙ e⊙ [a1 , . . . , an] = [a1 , a1⊙a2 , . . , a1 ⊙ . . . ⊙an]

scanexc ⊙ e⊙ [a1 , . . . , an] = [e⊙ , a1 , . . , a1 ⊙ . . . ⊙an−1]

sgmscan :∀ n. (α → α → α) → α → [n]int → [n]α → [n]α
sgmscaninc ⊙ e⊙ [. . , 1 , 0 , . . , 0 , 1 , . .]

[. . , a
k
1
, a
k
2
, . . , a

k
n , a

k+1
1

, . .] =

[. . , a
k
1

, . . , Σ⊙
i=1. .na

k
i , a

k+1
1

, . .]

s c a t t e r : ∀ n, m.[n]α → [m] in t → [m]α → [n]α
s c a t t e r [a0 , a1 , a2 , a3 , . . , an−1]

[2 , −1 , 0 , 3]

[b0 , b1 , b2 , b3] =

[b2 , a1 , b0 , b3 , . . , an−1]

Listing 1. Parallel Operators of the Functional Notation

of state prices Q across all nodes at the previous time step

(i − 1) and the bond price P(0, i) with maturity in the current

time step i . Our implementation combines the two stages

by performing them one after another at each time step to

avoid traversing the tree twice.

BackwardPropagation:OptionPricing.Once the com-

plete term structure has been calculated at each node, the

tree can be used to value a wide range of derivatives. We use

a backward propagation to value a bond with embedded op-

tions from the maturity back to the current time at the root.

At each step we adjust for the cash flows, accrued interest or

the eventual option exercise and discount the bond price. We

end up with the estimated bond price as of the calculation

day at the root of the tree. This computation (re)uses the α
values computed during forward propagation.

3 Notation & Parallel Specification
Functional Notation. In this paper we use a functional

notation, which allows (i) to concisely specify all available

parallelism in terms of well known operators, and (ii) to

demonstrate at a high level how gpu-flat was derived.

We use [n]α to denote the type of an array of length n
and element type α , [a1,. . .,an] to denote an array literal,

and we use (a,b) to denote a tuple (record) value. Applying
function f on two arguments a and b is written as (f a b).
The notation supports the usual unary/binary operators and

normalized let bindings, which have the form:

let a = e1 let b = e2. . . in en and are similar to a block

of statements followed by a return denoted by keyword in.
In-place updates to array elements are allowed and de-

noted by let arr[i] = x. The notation supports if branches

if c then e1 else e2, of similar semantics with the C

ternary operator c? e1 : e2, and loop expressions:
loop (x1, . . ., xm) = (x1

0
, . . ., xm

0
) for i<n do e.

Here, x1...m are loop-variant variables that are initialized for

the first iteration with in-scope variables x1...m
0

. The loop

iterates i from 0 to n-1, and the result of the loop-body ex-

pression e provides the values of x1...m for the next iteration.

The initialization may be syntactically omitted if in-scope

variables x1...m exist; these will provide the initial values.

The notation supports several key parallel operators, whose
types and semantics are shown in Listing 1: iota n creates

an integral array with elements from 0 to n-1. replicate n
v creates an array of length n whose elements are all v. map
applies its function argument f to each element of the input

array, resulting in an array of the same length. The function

can be declared in the program or can be an anonymous (λ)
function—e.g., map (λx->x+1) arr adds one to each element

of arr. reduce successively applies an associative operator
⊙ to all elements of its input array, where e⊙ denotes the

neutral element of ⊙. scan [5], a.k.a., prefix sum, is similar to

reduce, except that it produces an array of the same length

(n) containing all prefix sums of its input array. The inclu-
sive scan (scaninc) starts with the first element of the array,

and the exclusive scan (scanexc) with the neutral element.

Segmented scan (sgmscan) has the semantics of a scan ap-

plied to each subarray of an irregular array of subarrays. The

latter has a flat representation consisting of (i) a flag array

made of 0s and 1s, where 1 denotes the start position of a

subarray, and (ii) a flat array containing all elements of all

subarrays in order. E.g., flag = [1,0,1,0,0,0,1] would

denote an array with 3 rows, having 2, 4 and 1 elements,

respectively. sgmscaninc (+) 0 flag [1,2,3,4,5,6,7]
results in [1,3,3,7,12,18,7].
Finally, scatter x is vs, updates in place the array x

at indices contained in is with the values of vs, except that
out-of-bounds indices, such as -1 are omitted (not updated).

Nested Data-Parallel Specification. Listing 2 sketches

the simplified implementation of the algorithm, but still accu-

rately captures the nested-parallel structure. The main func-

tion (at the bottom) receives a portfolio of instruments and

performs a valuation of each by an embarrassingly-parallel

map operation, that can be easily distributed across threads,

GPUs or nodes. Function valuate receives an instrument

data and computes its price approximation. As in Section 2.1,

we denote by arrays Qs andαs the Arrow-Debreu state prices
and their displacements, which are computed during forward

propagation, and by Cs the bond prices with an embedded

optionality computed during backward propagation.

At the start, computation determines the width w and

height h of the trinomial tree (assumed to be performed by

the call to function f1 at line 2), as well as initializes arrays

Qs of size w (f2, lines 3-4) and αs of size h (f3, lines 5-7). The
two loops of indices i and ii implement the forward and

backward tree propagation, which are sequential in nature.

Acceleration of Lattice Models for Pricing Portfolios of Fixed-Income Derivatives ARRAY ’21, June 21, 2021, Virtual, Canada

1 l e t v a l u a t e (i n s : I n s t rumen t) : rea l =

2 l e t (w, h) = f 1 i n s

3 l e t Qs = r ep l i c a t e w 0 . 0

4 l e t Qs [w/ 2+1] = f 2 i n s

5 l e t α s = r ep l i c a t e h 0 . 0

6 l e t α _ i = f 3 (i n s)

7 l e t α s [0] = α _ i

8 l e t (_ , α s) =

9 loop (Qs , α _i , α s) for i < h−1 do
10 l e t Qs ' =

11 map (λ j −>

12 l e t q0 = Qs [j]

13 l e t q1 = i f j > 0 then Qs [j −1] e l se 1 .

14 l e t q2 = i f j <w−1 then Qs [j +1] e l se 1 .

15 in g1 (i , j , α _i , q0 , q1 , q2)

16) (i o ta w)

17 l e t α _v = reduce (+) 0 . 0 Qs '

18 l e t α _i ' = g2 α _v i n s

19 l e t α s [i +1] = α _i '

20 in (Qs ' , α _i ' , α s)

21 l e t Cs = r ep l i c a t e w 10 0 . 0

22 l e t Cs =

23 loop (Cs) for i i < h−1 do
24 l e t i = h − 2 − i i

25 l e t α _ i = α s [i]

26 in map (λ j −>

27 l e t c0 = Cs [j]

28 l e t c1 = i f j > 0 then Cs [j −1] e l se 1 .

29 l e t c2 = i f j <w−1 then Cs [j +1] e l se 1 .

30 in g3 (i , j , α _i , c0 , c1 , c2)

31) (i o ta w)

32 in Cs [w/ 2+1]

33

34 l e t main (p o r t f o l i o : [] I n s t rumen t)=map v a l u a t e p o r t f o l i o

Listing 2. Nested-Parallel Implementation.

The first loop fills in the values of array αs: First, the map
operation of length w (lines 11-16) computes each element at

the current breadth level in the tree (time step), i.e., Qs’[j],
by aggregating the three different values from the previous

breadth level, i.e., Qs[j-1], Qs[j], Qs[j+1]. (Notice that

only the current and previous breadth levels, rather than

the entire tree, are manifested in memory using arrays Qs’
and Qs.) The newly created array Qs’ is then summed up,

using reduce (line 17), and provides the value of αs[i+1].
The two parallel operators occur inside the outer map that
is applied to the whole portfolio, thus giving raise to nested

parallelism. Finally, the end values of Qs’, α_i’ and αs are
bound to the loop-variant variables Qs, α_i and αs for the
next iteration. The second loop (lines 23- 31) traverses the

tree backwards, from the maturity to the present date, and

at each step computes the prices using a map. The result is
at the tree root Cs[w/2+1].

4 GPU-OUTER and Optimizations
gpu-outer is derived by mapping each instrument to one

thread, thus sequentializing the inner parallelism available

in the valuate function. While most of our CUDA imple-

mentation is straightforward, one non-trivial issue refers to

the fact that arrays such as Qs and αs need to be expanded

across all valuations in the portfolio and to be stored in global

memory. This section discusses two performance critical op-

timizations. The first refers to finding a good layout for the

expanded arrays, named Qsexp and αsexp , that enables coa-
lesced access to global memory, while minimizing memory

pressure. The second refers to diminishing the overhead of

one of the two levels of thread divergence.

Naive Expanded-Array Layout.Assuming the portfolio

consists of n instruments, a naive layout can be determined

by pre-computing (via a map) the width and height of each of

the n trees into two arrays ws and hs. Summing these arrays

produces the total length of Qsexp and αsexp . Next, one can
compute the starting offsets into Qsexp of the logically-local

arrays Qs—one for each iteration of the outer map—by apply-

ing an exclusive scan operation on ws, which results in an

array named Qs_offs. For example, the Qs corresponding

to iteration (thread) i of the outer map is represented by the

slice Qsexp[Qs_offs[i]:Qs_offs[i+1]] of length ws[i].
Similar thoughts apply to αsexp . The inspector code is pre-
sented below, where unzip transforms an array-of-tuples to

a tuple-of-arrays:

l e t (ws , hs) = unz ip (map f 1 p o r t f o l i o)

l e t Qs_o f f s = scanexc (+) 0 ws

l e t l en_Qs
exp

= Qs_o f f s [n−1] + ws [n−1]

The problem is that this layout results in poor spatial

locality, because consecutive threads access global memory

with a large stride (equal to the values of w or h), and such

uncoalesced access may be prohibitively expensive on GPUs.

Global Padding Enables Coalesced Access. Matters

can be improved by computing the maximal width wm and

height hm across all n trees and padding each (local) subarray
to this size, i.e., Qsexp and αsexp are now two-dimensional

arrays of sizes n×wm and n×hm , respectively. Modulo thread

divergence (imbalanced) issues, fully coalesced access to

global memory is achieved by working with the transposed
versions of Qsexp and αsexp : the inner array dimension of

size n is indexed by the thread (instrument) number, hence

consecutive threads would now access consecutive memory

locations. The downside is a potential memory-footprint ex-

plosion, e.g., under skewed distributions of widths/heights.

Block/Warp-Level Padding.Thememory explosion can

be remedied by padding at finer granularity, for example, at

CUDA thread-block or warp level. Denoting the block (warp)

size by B, padding is accomplished (i) by finding the maximal

width (and height) for each group of B instruments, (ii) fol-

lowed by padding to the maximal size within the group, (iii)

by computing the start offset of each group via a scan, and
(iv) by working with the transposed version of the arrays.

l e t wbs ' = re shape (n /B , B) ws

l e t wbmax = map (reduce max 0) wbs '

l e t pad_ l en s = map (λ w −> w∗B) wbmax

l e t b l k _ o f f s = scanexc (+) 0 pad_ l en s

ARRAY ’21, June 21, 2021, Virtual, Canada Wojciech Michal Pawlak, Marek Hlava, Martin Metaksov, and Cosmin Eugen Oancea

For example, the expanded array for block b is the slice

Qs
exp
b = Qsexp[blk_offs[b] : blk_offs[b+1]], which is

seen as a 2D array of shape B×wbmax[b], i.e., the start-index
of logically-local array Qs corresponding to local thread i
is (blk_offs[b]+i*wbmax[b]). To obtain coalesced access,

we transpose Qs
exp
b of shape wbmax[b]×B.

Data Reordering. The code in Listing 2 exhibits two lev-

els of divergence. This is because the body of the valuate
function is executed (sequentially) by each thread. The re-

currences appearing inside valuate are (i) the two forward-

and backward-traversal loops of count h, and (ii) the en-

closed (inner) map-reduce computations of length w. Since
both the height h and width w of the tree varies signifi-

cantly across instruments, it follows that both parameters

are sources of thread divergence and their combination exac-

erbates it. For example, if two threads executing in lockstep

have (w1,h1)=(1,m) and (w2,h2)=(m,1), then their execu-

tion takes O(m2) time, rather than the expected O(m) time.

With gpu-outer, one of the levels of divergence (but not

both) can be optimized by a pre-processing step that sorts

the portfolio of instruments after the heights or widths of

their corresponding trees. In practice, sorting in the decreas-

ing order of the widths (rather than heights) is more bene-

ficial because it improves the degree of coalesced access to

frequently-accessed arrays such as Qs and Cs, especially for

the version that pads at block/warp level. We report that all

pre-processing (inspector) overheads sum up to under 2% of

total parallel runtime (on GPU).

5 GPU-FLAT Flattening Nested Parallelism
This section demonstrates how gpu-flat, which utilizes both

levels of parallelism, was derived from the nested-parallel

code of Listing 2, in a way that simultaneously optimizes

(i) both levels of divergence and (ii) temporal locality. We

keep the discussion here intuitive and specific to the pricing

algorithm, but we have sketched a re-write rule based for-

malization at http://hiperfit.dk/pdf/flat_rwr_hull_white.pdf.
The idea is to first sort the instruments in decreasing order

of their heights—thus optimizing the divergence of the time

series loops—and then to (bin-)pack them into bins, such

that the summed widths of their trees does not exceed the

CUDA block size (chosen B=1024) which is thought as the

capacity of the bin. The two parallel levels—of the instru-

ments in a bin, and of the inner parallelism inside valuate
function—are then flattened and mapped to the CUDA-block

level, while the parallelism across bins is mapped on the

CUDA grid. On the one hand, this implicitly optimizes the

width-level of thread divergence, because the flattened par-

allelism has roughly the size of the CUDA block (B). On the

other hand, temporal locality is also improved because most

intermediate data, such as the arrays Qs and Cs (but not
αs 4

), are maintained in fast scratchpad (shared) memory.

Listing 3 shows the flattened code: the bin array corre-

sponds to a batch of q instruments—whose summed widths

is less than B—and the result array contains their expected

prices at current time. The flat code is obtained by distribut-

ing the (outer) map operation (applied on the bin) around each
let statement of the valuate function shown in Listing 2.

In essence, distributing the map (i) across a scalar statement

results in a map of size q, and (ii) across a parallel opera-

tion (necessarily of size width) results in a parallel operation

of size Σ
q−1
k=0widthk , which is padded to B. For brevity and

clarity, the discussion ignores the complications related to

padding parallel arrays and to offsets corresponding to the

current block; these are tedious but straightforward to add.

Listing 3 starts by computing the widths and heights of

the trees of the q instruments (line 2)—in practice these are

precomputed by an inspector. For demonstration, we as-

sume that q=2, and the widths and heights are ws=[2,4]
and hs=[4,3]. Lines 3-12 compute four helper arrays (Bw ,
flag, outinds and inninds) that are fundamental to the code

transformation. Array flag is the flag component in the

representation of an irregular array of shape ws, such as

Qss. With our example, we expect flag=[1,0,1,0,0,0],
i.e., we have two segments of lengths 2 and 4, where a one

records the start point of a segment. We first compute the

start offset of each segment in array Bw=[0,2] by exclu-

sively scanning ws. Then we compute the total number of

elements lenf lat=2+4=6, and finally, the scatter operation

at line 6 writes ones at the indices in Bw=[0,2] into an array

of lenf lat=6 zeroes; hence flag=[1,0,1,0,0,0].
Array outinds is intended to record, for each of the width

entries associated with an instrument, the index of that in-

strument in the current bin. As such, we expect outinds =
[0,0,1,1,1,1]. This is achieved by inclusive scanning the

flag array, which results in [1,1,2,2,2,2], and by subtract-

ing 1 from each element (line 8-9).

Helper array inninds is the expansion of iota w across the
q widths, hence we expect inninds = [0,1,0,1,2,3]. This
is achieved at lines 11-12 by negating the flag array, resulting

in [0,1,0,1,1,1], and by applying a segmented scan on

the result, i.e., scanning independently the two logical rows

of two and four elements, respectively.

Lines 13-18 in Listing 3 are the flattening across q instru-
ments of lines 3-4 in Listing 2—which initializes Qs elements

to zeroes and sets index w/2+1 to value f2(ins). The zero-
initialization of Qs is translated to a replicate of length

lenf lat . The update at index w/2+1 is translated to a scatter
on the expanded Qss in which (i) the updated indices are

computed at line 16 by summing the offset in Qss of each

4
The size of αs is not proportional with the Cuda block size, and thus it is

not guaranteed to fit in shared memory. As before, αs is padded and trans-

posed at block level to optimize coalescing and global-memory footprint.

http://hiperfit.dk/pdf/flat_rwr_hull_white.pdf

Acceleration of Lattice Models for Pricing Portfolios of Fixed-Income Derivatives ARRAY ’21, June 21, 2021, Virtual, Canada

1 l e t v a l u a t e
bin

(q : int , b in : [q] In s t rumen t) : [q] rea l =

2 l e t (ws , hs) = map f 1 b in

3 l e t Bw = scanexc (+) 0 ws

4 l e t l e n f lat = Bw [q−1] + ws [q−1]

5 l e t tmp = map2 (λ s b→ i f s ==0 then −1 e l se b) ws Bw
6 l e t f l a g = s c a t t e r (r ep l i c a t e l e n f lat 0)

7 tmp (r ep l i c a t e q 1)

8 l e t tmp = scaninc (+) 0 f l a g

9 l e t out inds = map (λ x → x − 1) tmp

10 −− map (λ w → i o t a w) ws
11 l e t tmp = map (λ f → 1 − f) f l a g

12 l e t inn inds = sgmscaninc (+) 0 f l a g tmp

13 −− map (λw→ r e p l i c a t e w 0) ws
14 l e t Qss = r ep l i c a t e l e n f lat 0 . 0

15 −− map2 (λ Qs w → Qs [w/ 2 + 1] = f 2 i n s) Qss ws
16 l e t tmp_inds = map2 (λ b w → b + w/2 + 1) Bw ws

17 l e t tmp_va l s = map f 2 b in

18 l e t Qss = s c a t t e r Qss tmp_inds tmp_va l s

19 −− i n i t r e g u l a r (t r a n s p o s e d) hmax×q ma t r i x αssT

20 l e t hmax = reduce max 0 hs

21 l e t α _ i s = map f 3 b in

22 l e t αssT = s c a t t e r (r ep l i c a t e (hmax ∗ q) 0 . 0)

23 (i o ta q) α _ i s

24 −− map− l o o p i n t e r c h a n g e ; l o o p c oun t padded t o hmax −1
25 l e t (_ , _ , αssT) = loop (Qss , α _ i s , αssT)

26 for i < hmax −1 do
27 −− map2 (λ i s αi→map (. . .) i s) i nn inds α _ i s
28 l e t Qss ' =

29 map2 (λ j o i → l e t (b , h) = (Bw [o i] , hs [o i]) in
30 i f i ≥ h−1 then Qss [b+ j] e l se
31 l e t q0= Qss [b+ j]

32 l e t q1= i f j > 0 then Qss [b+ j −1] e l se 1 .

33 l e t q2= i f j <w−1 then Qss [b+ j +1] e l se 1 .

34 in g1 (i , j , α _ i s [o i] , q0 , q1 , q2)

35) inn inds out inds
36 −− map (r e d u c e (+) 0) Qss '
37 l e t scQs = sgmscaninc (+) 0 . 0 f l a g Qss '

38 l e t α _vs = map2 (λ b w→ scQs [b+w−1]) Bw ws

39 −− map (λα→α [i +1]= g2 (. .)) αss
40 l e t tmp_ i s = map2 (λ h k → i f i ≥h−1 then −1

41 e l se (i + 1) ∗ q+k

42) hs (i o ta q)

43 l e t α _ i s ' = map2 g2 α _vs b in

44 l e t αssT = s c a t t e r αssT tmp_ i s α _ i s '

45 in (Qss ' , α _ i s ' , αssT)

46 l e t Css= r ep l i c a t e l e n f lat 100 . . .−−2nd l o o p no t shown

Listing 3. Flat-Parallel Implementation.

instrument, denoted by b∈Bw , with w/2+1, where w∈ws, and
(ii) the updated values are the result of mapping f2 on the

bin at line 17.

The initialization of αss—the expansion of αs—is simply

obtained by padding each row to the maximal height hmax of

the q instruments—hence total length is q×hmax—and by us-

ing a scatter to overwrite the first entry in every row with

the result of f3. This is implemented in lines 20-23, except

that we use αssT , the transpose of αss , to achieve coalesced

access to global memory. Next, the forward loop is padded

to count hmax-1, the outer map of length q is interchanged
inside the loop (always safe), and the outer-map distribution

continues on the loop-body statements.

Lines 28-35 correspond to flattening the map that is applied
to iota w to compute array Qs’ in Listing 2, lines 11-16.

Since the flattened code corresponds to applying the original

map simultaneously to all entries of all q instruments, it was

translated to a map2 over inninds and outinds :

• inninds is the expansion of (iota w) across the q
instruments, hence j takes the same values as in List-

ing 2;

• outinds is used to access values that are the same

across the width threads assigned to the current in-

strument, but are needed by each thread. For example,

outinds is used to indirectly index into length-q ar-

rays Bw , hs and α_is in order to compute the start

offset b into array Qss, the height h and the α value

corresponding to the current instrument, respectively.

• The body of the mapped function is protected by an if
condition (i≥h-1) that checks that the tree traversal
has not already terminated for the current instrument,

which is possible since the count of the transformed

loop count was padded to maximal value hmax .

The code between lines 37-38 is the flattening across all q
instruments of the (original) reduce at line 17 in Listing 2,

which sums up the values of array Qs’. First, an inclusive

segmented scan is performed on the expanded array Qss’,
which inherently computes the q corresponding sums in the

last entry of each logical subarray of the result scQs. The last
entries are then extracted by a map operation of length q: the
index of the last entry of the ith subarray is Bw[i]+ws[i]-1,
because Bw and ws record the offset and size of each subarray.
Finally, lines 39-44 implement the expansion to update

αs[i+1] at line 19 in Listing 2. This is translated to a scatter
that updates αssT at the q flat-indices from row i+1 stored
in tmp_is5 with the values α_is’ obtained by applying g2
to all α_vs and corresponding instruments in the bin.

Similar ideas apply for the translation of the backward

loop, which is not shown. Our CUDA implementation of

gpu-flat aggressively fuses the inner-parallel operations

and reuses shared memory buffers whenever possible: e.g.,

Qss, Qss’, Css, Css’ use the same buffer. Arrays of size q
are typically stored in shared memory, while arrays outinds
and inninds in registers. The shortcomings of gpu-flat are

that (i) it introduces instructional overhead (more complex

code) and significant register pressure
6
and (ii) the parallel

operations of size q underutilize the block-level parallelism,

which is typically significantly larger than q.

6 Experimental Evaluation
Hardware. We present results on two Linux systems:

D1: (CPU1) 2×26-core 2-way HT Intel Xeon Platinum

8167M 2.00GHz, 754 GB RAM and NVIDIA V100 GPU

(2560 Volta FP64 cores) [26], on CUDA 10.1.

5
If i≥h-1 then the update is omitted (returns -1)—outside original loop.

6
Nvidia nvcc compiler reports that 74 − 76 registers are used by default

per thread and a speedup of up to 1.66× is achieved by limiting it to 32.

ARRAY ’21, June 21, 2021, Virtual, Canada Wojciech Michal Pawlak, Marek Hlava, Martin Metaksov, and Cosmin Eugen Oancea

D2: (CPU2) 2×8-core 2-way HT Intel Xeon E5-2650 v2

2.60GHz , 128 GB RAM and NVIDIA GTX 780Ti GPU
(2880 Kepler FP32 Cores), on CUDA 10.1.

TheV100GPU of D1 is optimized for double-precision floats

(FP64), while the GTX 780Ti of D2 is not. We run experi-

ments with the real type instantiated to FP64 on theV100 and
with FP32 on theGTX 780Ti. Our goal is neither to compare

consumer vs. enterprise hardware, nor FP64 vs. FP32 perfor-
mance, but rather to highlight an interesting performance

portability issue across different GPU hardware generations,

i.e., on some datasets gpu-flat is faster than gpu-outer on

D1 but slower on D2.
7

Experimental Methodology. We measure total appli-

cation runtime, excluding host-device memory transfers
8
,

but including allocations, kernel execution, and all prepro-

cessing steps. Execution times are averaged across 10 runs

(standard deviation < 1.5%) and are reported in GFLOPSPEC/s,
which counts the number of floating-point operations as

they appear in the high level specification (gpu-outer).
9

Datasets. The evaluation uses 7 synthetic datasets that

(i) simulate a mix of Bermudan call/put options on top of a

bond and (ii) model the instrument distributions in real port-

folios used in practice,
10
and (iii) also demonstrate different

workload divergence properties and impact of optimizations.

All datasets consist of 100000 valuations, except for U1,
which uses 3000 and is intended to measure the impact of

under-utilizing hardware parallelism by gpu-outer. U1 and

U2 use constant width 259 and height 606 for all trees (no

divergence). They model the case of pricing a single instru-

ment against many different market scenarios, where one

class of the risk factor parameters varies, e.g. yield curves.

R1, R2, and R3 (R*) use random distributions of widths

and heights in intervals [7, 511] and [13, 1200], respectively.
R1 uses uniform distribution for both, R2 uses uniform for

widths and standard-normal distribution for heights, while

R3 does the opposite. R* model an instrument distribution

typical for an interest-rate derivative portfolio. The results

indicate that such datasets have similar performance.

Finally, S1 and S2 (S*) present skewed distributions. In

S1 1% of the dataset consists of widths and heights in the

interval [461−511] and [1082−1200], respectively, while the

rest has them uniformly distributed in [7−57] and [12−131].

7
Unfortunately, we did not have access to a K40 or K80 (older) GPU opti-

mized for FP64. We do not discuss the accuracy of FP32, because industry
would not use it regardless.

8
The memory-transfer time is less than 1% of total runtime in all tests.

9
We find GFLOPSPEC/s better suited to compare across different implemen-

tations of the same algorithm, because it represents normalized runtime.

10
The datasets were suggested by the experts of a leading company devel-

oping financial software used by large investment funds. The presented

pricing method is used in ∼ 70% of clients’ use cases. The datasets are

intended to have characteristics representative of clients’ use cases and also

to cover stress cases. Unfortunately, such companies do not share real-world

data due to privacy and competitive advantage concerns.

S2 uses the same figures, but separates skewness over dimen-

sions: 1% combines skewed widths with uniform heights and

another 1% the reverse. S*model a case often met in practice,

where a small set of bonds have much longer maturities or

much smaller volatilities than the remaining majority. The

maturity of the bond in years can be found by dividing the

height with 12. We use the maximal maturity to be 100 years

(height=1200), which is used in practice by some pension

funds. Regardless, more accurate simulations require a time

step smaller than a month, which would increase the height,

thus the evaluated scenarios are realistic.

6.1 Performance Results
To start with, we have implemented a multi-threaded version

using OpenMP and QuantLib library [2], in which different

instruments are priced in parallel. We obtain three-to-four

orders of magnitude speedups with both our CPU and GPU

implementations, hence we do not discuss it any further.

GPU optimizations. Table 1 and Figure 3 report the per-
formance measured in GFLOPSPEC/s on machines D1 and

D2 across 5 datasets, (R*) and (S*). gpu-outer (o) and gpu-

flat (f) use FP64 (
64
) on D1 and FP32 (

32
) on D2. Version

V1 corresponds to a version that does not optimize for coa-

lesced global memory accesses, while the remaining versions

achieve coalescing by padding and transposing at global (V2),
block (V3) or warp level (V4), respectively. Superscripts

ns
and

ws
correspond respectively to versions without and with data

reordering through sorting (in descending order). For gpu-

outer the trees are sorted by width first, while for gpu-flat

by height first. ColumnM64
reports the memory footprint in

GB for FP64 versions. FP32 versions use half of theM64
. The

uniform datasets U* are not reported in Table 1, because,

due to their constant width/height size, the impact of sorting

and block/warp level padding is insignificant.

Important observations for gpu-outer are:

• The impact of memory coalescing optimization varies

acrossU* and devices. OnD1 it results in a minor 1.1×
speedup on U1, but a large 20× speedup on U2. On
D2 it results in 2.7× for U1 and 14.1× for U2.

• Data reordering and coalescing by padding, have small

or even negative impact when applied in isolation, be-

cause they address independent sources of overhead

which “hide” each other. For example, on D1 and R1,
the unoptimized version V ns

o1 is actually 1.5× faster

than Vws
o1 . However, when combined they show high

impact: 4.6-5.96× on R* and 1.05-2.38× on S* datasets.
• Warp-level padding Vws

o4 achieves coalescing at the

cost of a modest 3% increase in memory footprint

(M64
) w.r.t. V ns

o1 . Moreover, it is the fastest version on

all datasets on both D1 and D2. In comparison, Vws
o2

increasesM64
by 1.9× and 12.3× onR* and S* datasets.

Important observations for gpu-flat are:

Acceleration of Lattice Models for Pricing Portfolios of Fixed-Income Derivatives ARRAY ’21, June 21, 2021, Virtual, Canada

Table 1. gpu-outer and gpu-flat performance P in GFLOPSPEC/s and global-memory footprintM64
for FP64 in GB. Speedup

and memory savings (∆ ×) are ratios between unoptimized (V ns
o1 /V

ns
f 1) and most optimized (Vws

o4 /Vws
f 3) code.

R1 R2 R3 S1 S2
gpu-outer P64D1

P32D2
M64 P64D1

P32D2
M64 P64D1

P32D2
M64 P64D1

P32D2
M64 P64D1

P32D2
M64

V ns
o1 103 29 3.42 84 27 3.42 85 26 3.42 56 13 0.52 92 32 0.52

Vws
o1 69 24 3.42 61 23 3.42 60 21 3.42 54 12 0.52 77 24 0.52

V ns
o2 97 33 6.55 103 35 6.55 114 44 6.55 48 21 6.40 101 41 6.40

Vws
o2 423 114 6.55 427 120 6.55 427 136 6.55 57 23 6.40 189 52 6.40

V ns
o3 103 45 6.47 109 49 6.28 120 53 5.98 49 23 0.82 111 52 0.82

Vws
o3 461 154 3.62 454 157 3.58 461 154 3.60 58 24 0.56 210 75 0.55

V ns
o4 108 45 6.38 114 49 6.14 126 53 5.77 49 23 0.82 115 53 0.82

Vws
o4 474 155 3.53 469 158 3.51 477 155 3.52 59 25 0.54 211 76 0.53

∆ × 4.60 5.34 1.03 5.58 5.85 1.03 5.61 5.96 1.03 1.05 1.92 1.04 2.29 2.38 1.02

gpu-flat P64D1
P32D2

M64 P64D1
P32D2

M64 P64D1
P32D2

M64 P64D1
P32D2

M64 P64D1
P32D2

M64

V ns
f 1 521 69 1.98 529 70 1.98 496 66 1.98 266 37 1.83 118 17 1.83

Vws
f 1 553 73 1.98 554 73 1.98 525 72 1.98 268 33 1.83 119 15 1.83

V ns
f 2 517 69 1.98 526 70 1.98 492 66 1.98 266 36 1.83 118 16 1.83

Vws
f 2 550 73 1.98 552 73 1.98 524 71 1.98 268 33 1.83 119 15 1.83

V ns
f 3 740 87 1.30 779 91 1.21 710 84 1.26 783 97 0.24 577 76 0.24

Vws
f 3 859 100 1.09 859 100 1.10 818 99 1.09 904 97 0.17 686 93 0.17

∆ × 1.65 1.45 0.55 1.62 1.43 0.56 1.65 1.50 0.55 3.40 2.62 0.09 5.81 5.47 0.09

U1 U2 R1 R2 R3 S1 S2
0

200

400

600

800

1000

Pe
rfo

rm
an

ce
 P

64 D
1 [

GF
LO

P/
s]

gpu-outer
Vws

o4
gpu-flat
Vws

f3

U1 U2 R1 R2 R3 S1 S2
0

50

100

150

200

250

Pe
rfo

rm
an

ce
 P

32 D
2 [

GF
LO

P/
s]

gpu-outer
Vws

o4
gpu-flat
Vws

f3

Figure 3. GFLOPSPEC/s FP64 performance on D1 (upper) and FP32 on D2 (lower) for all datasets. Vws
o4 /Vws

f 3 are most optimized.

• The impact of optimizations onR* is smaller than gpu-

outer: Vws
f 3 is about 1.6× faster and uses 55% of the

memory of the unoptimized version (V ns
f 1).

• The impact of reordering is positive but smallish, e.g.,

sorting alone produces a speedup as high as 1.2×.

• The impact of optimizations is higher on S*: Vws
f 3 re-

duces memory footprint by 11× (w.r.t.V ns
f 1), and on S2,

reordering and block-level coalescing (Vws
f 3) result in

speedup higher than 5.5× on D1 and D2.

ARRAY ’21, June 21, 2021, Virtual, Canada Wojciech Michal Pawlak, Marek Hlava, Martin Metaksov, and Cosmin Eugen Oancea

U1 (45.0 ms) U2 (1159.0 ms) R1 (1175.0 ms) R2 (1178.0 ms) R3 (1235.0 ms) S1 (58.0 ms) S2 (32.0 ms)
0

200

400

600

800

1000
Pe

rfo
rm

an
ce

 [G
FL

OP
/s

]

12
6

86
6

47
4

46
9 47

7

59
21

1

66
9 74

1
85

9
85

9
81

8 90
4

68
6

25
5

36
9 37

9
38

0
37

4
33

6
26

4

70

47
4

18
0 21

7
17

8

33 14

28
1 35

3

18
8

18
8

18
7

57 23

gpu-outer
gpu-flat
cpu-mt+vect
futhark-outer
futhark-flat

U1 (220.0 ms) U2 (3069.0 ms) R1 (4554.0 ms) R2 (4476.0 ms) R3 (4566.0 ms) S1 (377.0 ms) S2 (166.0 ms)
0

50

100

150

200

250

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

68

22
9

15
5 15

8
15

5

25

76
96 98 10

0
10

0
99 97 93

34 34
51 52 41

65
4252

11
7

59 66 59

22 9

71 77

41 41 41

13 5

gpu-outer
gpu-flat
cpu-mt+vect
futhark-outer
futhark-flat

Figure 4. GFLOPSPEC/s performance for FP64 on D1 (upper) and FP32 on D2 (lower) for all datasets. Runtimes are shown inms .

GPU-FLATvs. GPU-OUTER. Figure 4 compares the per-

formance of the best versions of gpu-flat (Vws
f 3) and gpu-

outer (Vws
o4):

• The performance of gpu-flat is relatively stable across

datasets (669 − 904 GFLOPSPEC/s on D1) while the per-
formance of gpu-outer is highly variant.

• On the R* datasets, gpu-flat is about 1.8× faster

than gpu-outer on the newer hardwareD1, but 1.55×
slower on D2.

• gpu-flat is significantly faster than gpu-outer (i) on

the skewed datasets S* because it better optimizes di-

vergence and locality of reference by the use of shared

memory, and (ii) on the small dataset U1 because the

outer parallelism of only 3000 valuations is insufficient

to utilize the hardware well.

• Newer hardware benefits gpu-flat, which outper-

forms gpu-outer on D1 on all datasets, except for

U2 where it is only 1.17× slower.
11
On S1, gpu-flat

is 15.3× faster on D1, but only 3.9× on D2.

GPGPU vs. CPU. Figure 4 also compares the best gpu-

outer and gpu-flat configurations with our multi-core im-

plementation using OpenMP multi-threading and AVX2 vec-

torization, named cpu-mt+vect. Even though we use pow-

erful CPUs with 104 (D1) and 32 (D2) hardware threads, the
best GPU version is faster than cpu-mt+vect, with speedups

as high as 6.7× on U2 and 3.8× on R3, and on average 2.4×
on D1 and 3.3× on D2. Notably, gpu-flat is in all cases

11
Using shared memory has higher impact on newer GPU generations

because the per-core shared-memory size and bandwidth has grown faster

than the global-memory bandwidth.

faster than cpu-mt+vect, which seems to indicate that GPU

hardware is the cost-effective solution for this application.

CUDA vs. Futhark. To demonstrate that current com-

piler technology does not effectively support the code trans-

formations presented in this work, we compare the perfor-

mance of gpu-outer and gpu-flat with a high-level imple-

mentation written in the data-parallel language Futhark [19].
The results in Figure 4 show that the best CUDA version

is faster than Futhark by a factor as high as 29.8× and on

average 6.3× on the considered datasets.

7 Related Work and Conclusions
Compiler Techniques. gpu-flat builds on Blelloch’s sem-

inal work on the flattening code transformation [6, 8] which

maps irregular nested parallelism into a sequence of flat-

parallel ones, in a manner that preserves the work-depth

asymptotic of the source program [7], and which has also

been implemented for GPU execution [3]. Our implementa-

tion exhibits two key differences: The first one is that flat-

tening pushes all sequential recurrences outside the parallel

code, and it introduces many prefix-sum operations that

are executed in global memory and thus limit performance

gains. Instead, we bin-pack inner parallelism at block level

so that it can be efficiently executed in shared memory. The

second difference is more subtle and refers to the fact that

the original transformation replicates variables that are not

bounded (free) in the inner parallel constructs. This may

increase the memory footprint, and thus it might prevent

the use of shared memory, which is a scarce resource. In

comparison, we do not expand such variables, but instead

we indirectly access them through auxiliary arrays, such

Acceleration of Lattice Models for Pricing Portfolios of Fixed-Income Derivatives ARRAY ’21, June 21, 2021, Virtual, Canada

as outinds , inninds , and Bw in Listing 3. The latter can be

reused between arrays of equal shapes, such as Qss and Css.
gpu-flat demonstrates that the common-wisdom strat-

egy of always sequentializing the parallelism in excess is

suboptimal, because utilizing inner parallelism may allow

to better exploit temporal locality. A similar strategy (and

observation) has been used for accelerating a remote-sensing

algorithm aimed at detecting landscape changes from satel-

lite data applied at continental scale [16].

Finally, our techniques for optimizing the two-level di-

vergence were inspired by data and iteration reordering

transformations aimed at improving locality and commu-

nication patterns [12, 28, 30, 33], and by inspector-executor

restructuring transformations [29, 31, 34]. However, we are

not aware of any compiler framework able to derive the

gpu-flat version or the optimizations used for gpu-outer.

Accelerating Financial Algorithms. In practice, the tri-
nomial tree numerical method is the standard choice for

solving the HW1F model. It is especially suited for pric-

ing low-dimensional bond instruments, that we focus on

in this work, which depend on 1 or 2 underlyings. Its main

advantage is its simple deterministic execution path, that

enables valuation tractability. In comparison, Monte Carlo
Simulations (MC) are more general, but also more expensive

computationally, and the introduced randomness distorts

the understanding of the pricing. We were unable to find

work studying GPU acceleration of this exact problem, thus

we compare with work aimed at comparable problems, and

focus on the main performance inhibitor: the divergence

introduced by heterogeneous trees.

Grauer-Gray et al. (2013) [17] adapt QuantLib implemen-

tation of Bond and Repo pricing through iterative boot-

strapping and enable it for GPUs. Although none of the

experiments employs a trinomial tree, the authors report

an experiment on a diversified bond portfolio, where they

parallelize the computation on the outer level, similarly to

gpu-outer. They identify, but they do not address the is-

sue of thread divergence. Schabauer et al. (2008) [32] also

present an outer-level parallelization scheme for pricing path-

dependent interest rate products on bounded trinomial lat-

tices that resembles gpu-outer. They use Fortran and MPI

for distributed computing across as many as 16 nodes with

single-core CPUs and report speedups of up to 13×. How-

ever, the evaluation uses a homogeneous set of trees (equal
dimensions), which does not exhibit divergence, and inner

parallelism is not utilized due to high communication costs.

Gerbessiotis (2003) [14] describes a distributed implemen-

tation of a trinomial tree method for pricing vanilla equity

options. He uses MPI to achieve about 16× speedup on 16

dual-core CPUs. The outer level parallelism does not exist,

because he addresses the problem of a single large trinomial

tree computation that has 32768 or 65536 time steps.

GPU parallelisation of a simpler binomial lattice method
is better represented in the literature: Gui et al. (2013) [18]

parallelize the binomial tree using CUDA to price a stan-

dard vanilla equity option. The problem is restricted to the

homogenous case as tree dimensions are the same across op-
tions, thus no divergence occurs. The approach is to exploit

inner parallelism by pricing each option on one thread-block,

which is not applicable to variant widths, and is less challeng-

ing than the flattening of irregular parallelism used for gpu-

flat. Suo et al. (2015) [35] use GPUs (via CUDA/OpenCL)

to implement a binomial tree, and compare it with a MC to

price a single vanilla equity option. Their optimizations are

aimed at unbounded trees, and are not suited for portfolios in

which tree dimensions vary. Gerbessiotis (2004) [15] studies

the acceleration of a binomial tree for pricing an option using

a distributed setup, but they similarly consider a homoge-

neous portfolio of instruments (no divergence). Zhang et al.

(2012) [37] present a hybrid implementation that constructs

and traverses a binomial tree on CPU and GPU simultane-

ously to price a singleAmerican equity option. Similarly, their

technique however does not naturally extend to heteroge-

nous portfolios. Huang and Thulasiram (2005) [20] develop

parallel algorithms for pricing path-dependent American

exotic options with up to 10 underlyings using the binomial

tree. They use multi-core CPUs linked with MPI, and con-

sider the performance changes due to different number of

time steps for a variable number of assets. However, the

considered options have trees of the same dimensions.

Other work studies different numerical methods to solve

the Hull-White pricing model. Theiakos et al. (2015) [36]

target GPUs, but price a mortgage contract with one under-

lying by using a Finite Difference Method (FDM) to solve the

problem. Dang et al. (2014) [11] use GPUs to price cross-

currency interest rate derivatives with many underlyings

and path-dependent features. They use FDM to solve the

high-dimensional system of PDEs. Both approaches assume

homogeneous portfolios, hence no divergence. Bernemann

et al. (2010) [4] use GPUs, but use Monte Carlo Simulations
(MC) and more sophisticated Heston Hull-White model with

local volatility to price structured equity instruments. MC
is the only method that can be used to solve this extended

model version. Finally, a large body of work was dedicated to

GPU acceleration of MC used for pricing derivatives [25, 27],
model calibration [1] or risk management [13].
Generality. The techniques reported in this paper can

be applied to some of the surveyed work. For example, gpu-

flat can be used to exploit irregular parallelism on both

GPU [17, 18] and in a distributed (MPI) setting [15, 32], e.g.,

by bin-packing valuations across nodes and by mapping

inner-parallelism at node level. Similarly, finite-difference

methods typically use a bounded grid in both spatial and

temporal dimensions. Hence our optimisations are likely

applicable to solving bulks of PDEs, which are heavily used

not only in finance [32, 36], but also in fields such as fluid

dynamics, mechanics, acoustics, weather prediction.

ARRAY ’21, June 21, 2021, Virtual, Canada Wojciech Michal Pawlak, Marek Hlava, Martin Metaksov, and Cosmin Eugen Oancea

Acknowledgments
This research has been partially supported by the Indepen-

dent Research FundDenmark grant under the research project

FUTHARK: Functional Technology for High-performance Ar-
chitectures and by Innovation Fund Denmark under the re-

search project ref.no. 5189-00224B.

References
[1] Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman,

Fritz Henglein, Troels Henriksen, Maj-Britt Nordfang, and Cosmin E.

Oancea. 2016. FinPar: A Parallel Financial Benchmark. ACM Trans.
Archit. Code Optim. 13, 2, Article 18 (2016).

[2] Luigi Ballabio. 2020. QuantLib, A free/open-source library for quanti-

tative finance. https://www.quantlib.org/.
[3] Lars Bergstrom and John Reppy. 2012. Nested Data-parallelism on the

GPU. ICFP ’12: Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming 47, 9 (2012), 247–258.

[4] André Bernemann, Ralph Schreyer, and Klaus Spanderen. 2010. Pricing

structured equity products on GPUs. In 2010 IEEE Workshop on High
Performance Computational Finance. IEEE, Washington, DC, USA, 1–7.

[5] Guy E. Blelloch. 1989. Scans as Primitive Parallel Operations. Com-
puters, IEEE Transactions 38, 11 (1989), 1526–1538.

[6] Guy E Blelloch. 1990. Vector models for data-parallel computing. Vol. 75.
MIT press Cambridge.

[7] Guy E. Blelloch and JohnGreiner. 1996. A Provable Time and Space Effi-

cient Implementation of NESL. In Procs. of ACM SIGPLAN International
Conference on Functional Programming (ICFP ’96). ACM, 213–225.

[8] Guy E Blelloch, Jonathan C Hardwick, Jay Sipelstein, Marco Zagha,

and Siddhartha Chatterjee. 1994. Implementation of a Portable Nested

Data-Parallel Language. Journal of parallel and distributed computing
21, 1 (1994), 4–14.

[9] Phelim P. Boyle. 1986. Option Valuation Using a Three-Jump Process.

International Options Journal 3 (1986), 7–12.
[10] Damiano Brigo and Fabio Mercurio. 2006. Interest Rate Models - Theory

and Practice. Springer, Berlin, Heidelberg.
[11] Duy Minh Dang, Christina C. Christara, and Kenneth R. Jackson. 2014.

Graphics processing unit pricing of exotic cross-currency interest rate

derivatives with a foreign exchange volatility skewmodel. Concurrency
and Computation: Practice and Experience 26, 9 (2014), 1609–1625.

[12] Chen Ding and Ken Kennedy. 1999. Improving Cache Performance in

Dynamic Applications ThroughData and Computation Reorganization

at Run Time. In Procs. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’99). ACM, 229–241.

[13] Matthew Dixon, Jike Chong, and Kurt Keutzer. 2009. Acceleration

of Market Value-at-risk Estimation. In Procs. of Workshop on High
Performance Computational Finance (WHPCF ’09). ACM, 5:1–5:8.

[14] Alexandros V. Gerbessiotis. 2003. Trinomial-tree Based Parallel Option

Price Valuations. Parrallel Algorithms and Applications 18, 4 (2003).
[15] Alexandros V. Gerbessiotis. 2004. Architecture independent parallel

binomial tree option price valuations. Parallel Comput. 30, 2 (2004).
[16] Fabian Gieseke, Sabina Rosca, Troels Henriksen, Jan Verbesselt, and

Cosmin E. Oancea. 2020. Massively-Parallel Change Detection for

Satellite Time Series Data with Missing Values. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). 385–396.

[17] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos.

2013. Accelerating financial applications on the GPU. In Procs. of
GPGPU-6. ACM, New York, NY, USA, 127–136.

[18] Yechen Gui, Shenzhong Feng, Gaojin Wen, Guijuan Zhang, Yanyi Wan,

and Tao Liu. 2013. High Performance Implementation of Binomial

Option Pricing Using CUDA. In GPU Solutions to Multi-scale Problems
in Science and Engineering. Lecture Notes in Earth System Sciences.
Springer, Berlin, Heidelberg, 201–214.

[19] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin E.

Oancea. 2019. Incremental Flattening for Nested Data Parallelism. In

Procs. Symposium on Principles and Practice of Parallel Programming
(PPoPP ’19). ACM, New York, NY, USA, 53–67.

[20] Kai Huang and Ruppa K. Thulasiram. 2005. Parallel algorithm for

pricing American Asian options with multi-dimensional assets. In 19th
International Symposium on High Performance Computing Systems and
Applications (HPCS’05). IEEE, Washington, DC, USA, 177–185.

[21] John Hull. 2017. Options, Futures, and Other Derivatives (10th ed.).

Pearson Education, New York, NY, USA.

[22] John Hull and Alan White. 1990. Valuing Derivative Securities Using

the Explicit Finite Difference Method. The Journal of Financial and
Quantitative Analysis 25, 1 (1990), 87–100.

[23] John Hull and Alan White. 1994. Numerical Procedures for Imple-

menting Term Structure Models I: Single-Factor Models. The Journal
of Derivatives 2, 1 (1994), 7–16.

[24] John Hull and Alan White. 1996. Using Hull-White Interest Rate Trees.

The Journal of Derivatives 3, 3 (1996), 26–36.
[25] Fredrik Nord and Erwin Laure. 2011. Monte Carlo Option Pricing with

Graphics Processing Units. In Advances in Parallel Computing. IOS
Press, Amsterdam, The Netherlands, 143–150.

[26] NVIDIA. 2017. NVIDIA Tesla V100 GPU Architecture. Technical Re-
port. NVIDIA Corporation. https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf

[27] Cosmin E. Oancea, Christian Andreetta, Jost Berthold, Alain Frisch,

and Fritz Henglein. 2012. Financial Software onGPUs: BetweenHaskell

and Fortran. In Procs. of Workshop on Functional High-Performance
Computing (FHPC ’12). ACM, 61–72. https://doi.org/10.1145/2364474.
2364484

[28] Cosmin E. Oancea and Alan Mycroft. 2008. Set-Congruence Dynamic

Analysis for Thread-Level Speculation (TLS). In Languages and Compil-
ers for Parallel Computing, José Nelson Amaral (Ed.). Springer, Berlin,

Heidelberg, 156–171.

[29] Cosmin E. Oancea and Lawrence Rauchwerger. 2013. A Hybrid Ap-

proach to Proving Memory Reference Monotonicity. In Languages and
Compilers for Parallel Computing (LCPC’11) (LNCS, Vol. 7146). Springer,
Berlin, Heidelberg, 61–75.

[30] Cosmin E. Oancea, JasonW. A. Selby, Mark Giesbrecht, and Stephen M.

Watt. 2005. Distributed Models of Thread-Level Speculation. In Procs.
of International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’05). 920–927.

[31] Lawrence Rauchwerger, Nancy Amato, and David Padua. 1995. A

Scalable Method for Run Time Loop Parallelization. Int. Journal of Par.
Prog 26 (1995), 26–6.

[32] Hannes Schabauer, Ronald Hochreiter, and Georg Ch Pflug. 2008.

Parallelization of Pricing Path-Dependent Financial Instruments on

Bounded Trinomial Lattices. In Computational Science - ICCS. Springer,
Berlin, Heidelberg, 408–415.

[33] MichelleMills Strout, Larry Carter, and Jeanne Ferrante. 2003. Compile-

time Composition of Run-time Data and Iteration Reorderings. In

Procs. Conference on Programming Language Design and Implementa-
tion (PLDI ’03). ACM, 91–102.

[34] Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. 2018.

The Sparse Polyhedral Framework: Composing Compiler-Generated

Inspector-Executor Code. Proc. IEEE 106, 11 (2018), 1921–1934.

[35] Simon Suo, Ruiming Zhu, Ryan Attridge, and Justin Wan. 2015. GPU

option pricing. InWHPCF ’15: Proceedings of the 8th Workshop on High
Performance Computational Finance. ACM, New York, NY, USA, 1–6.

[36] Alexios Theiakos, Jurgen Tas, Han van der Lem, and Drona Kand-

hai. 2015. Ultra-Fast Scenario Analysis of Mortgage Prepayment Risk.
Technical Report. SSRN, Rochester, NY.

[37] Nan Zhang, Chi-Un Lei, and Ka Lok Man. 2012. Binomial American

Option Pricing on CPU-GPU Hetergenous System. Engineering Letters
20, 3 (2012), 279–285.

https://www.quantlib.org/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.1145/2364474.2364484
https://doi.org/10.1145/2364474.2364484

	Abstract
	1 Introduction
	2 Financial Background
	2.1 Hull-White Trinomial Tree

	3 Notation & Parallel Specification
	4 GPU-OUTER and Optimizations
	5 GPU-FLAT Flattening Nested Parallelism
	6 Experimental Evaluation
	6.1 Performance Results

	7 Related Work and Conclusions
	Acknowledgments
	References

