
Approximate Nearest-Neighbour Fields via
Massively-Parallel Propagation-Assisted K-D Trees

Cosmin Eugen Oancea
Department of Computer Science (DIKU)

University of Copenhagen
Copenhagen, Denmark

cosmin.oancea@di.ku.dk

Ties Robroek
ties@trobroek.com

Fabian Gieseke
Department of Information Systems

University of Münster
Münster, Germany

fabian.gieseke@uni-muenster.de

Abstract—Nearest neighbour fields accurately and intuitively
describe the transformation between two images and have been
heavily used in computer vision. Generating such fields, however,
is not an easy task due to the induced computational complexity,
which quickly grows with the sizes of the images. Modern parallel
devices such as graphics processing units depict a viable way of
reducing the practical run time of such compute-intensive tasks.
In this work, we propose a novel parallel implementation for
one of the state-of-the-art methods for the computation of near-
est neighbour fields, called propagation-assisted k-d trees. The
resulting implementation yields valuable computational savings
over a corresponding multi-core implementation. Additionally, it
is tuned to consume only little additional memory and is, hence,
capable of dealing with high-resolution image data, which is vital
as image quality standards keep rising.

Index Terms—nearest neighbour fields, propagation-assisted
k-d trees, high-performance computing, computer vision.

I. INTRODUCTION

Finding similarities between two images is a fundamental
concept in computer vision, and have been used for a variety
of tasks including, but not limited to, inpainting in videos [1],
super-resolution [2], or denoising [3]. One way of expressing
similarities is based on the concept of nearest neighbour
fields (NNF) [4]. Due to the heavy computational workload,
such fields are usually approximated—leading to approximate
nearest-neighbour fields (ANNF)—which simply means that
for every patch of a given image A we aim to find a patch in
another image B, which approximates it well (visually).

In recent years, both the amount of images as well as
the resolution of the images have dramatically increased. For
this reason, the computation of ANNFs can quickly become
a major computational bottleneck for today’s data-intensive
computer vision tasks. This has sparked the need and interest
for the efficient computation of nearest neighbour fields.
Various techniques exist to compute ANNFs. A well-known
branch of methods is based on spatial search structures such as
classical k-d trees [5] that can be used to accelerate the induced
nearest neighbour queries. While such data structures often
offer a way to significantly reduce the amount of comparisons

This research has been partially supported by the Independent Research
Fund Denmark under the research projects “Monitoring Changes in Big Satel-
lite Data via Massively Parallel AI” and “FUTHARK: Functional Technology
for High-Performance Architectures”.
Copyright notice 978-1-7281-6251-5/20/$31.00 ©2020 IEEE

that need to be conducted, the induced runtime is usually
still problematic. For this reason, approximations have been
proposed such as the popular PatchMatch [4] scheme or the
so-called coherency sensitive hashing (CSH) framework [6],
which yield good approximations based on spatial locality:
Here, the main argument is that pixels/patches within a given
image and also between two similar images are correlated
(e.g., if the two images show an object that has only slightly
changed its position). This contextual information can be
exploited to efficiently “propagate” good nearest neighbour
candidates during the computation of the ANNFs (e.g. row
to row when computing nearest neighbours from top to bot-
tom). Finally, He and Sun have proposed a method named
propagation-assisted k-d trees [7] that combines the concepts
of spatial search structure and propagation, by designing an
algorithm that takes advantage of both the spatial subdivision
induced by a k-d tree as well as of propagation.

The techniques mentioned above generally yield significant
computational savings compared to standard (exact) schemes.
However, modern computer vision tasks often require the
computation of such fields for huge amounts of image pairs
with images consisting of millions of pixels. Hence, the com-
putation of ANNFs still remains a computationally challenging
problem and subject to ongoing research. Highly-parallel de-
vices such as modern graphics processing units (GPUS) have
been used to accelerate compute-intensive tasks in a variety
of fields. In this work, we provide a corresponding highly-
parallel implementation for propagation-assisted k-d trees,
which makes use of a propagation scheme tailored to modern
GPUS. The resulting framework is up to one order of magni-
tude faster than an optimized multi-threaded implementation
and provides valuable computational savings over other state-
of-the-art competitors. In addition, it consumes a relatively
small amount of memory, which enables it to process large
image instances on cheap, commodity hardware.

II. BACKGROUND

For the sake of completeness, we briefly sketch approximate
nearest neighbour fields and massively-parallel k-d trees.

A. Approximate Nearest Neighbour Fields

Nearest neighbour search is the centrepiece for computing
nearest neighbour fields, yet the adaptation to such fields in-

Fig. 1: Illustration of a nearest neighbour field: The left image depicts the first image A and the middle image its reconstruction
based on the nearest neighbour indices given for the other image B. It can be seen that, given an appropriate NNF, one can
successfully reconstruct the image A. The image on the right visualizes the Euclidean distances (i.e., last layer of the NNF).

troduces some particularities. A nearest neighbour field (NNF)
captures the similarities between two images A,B ∈ Rh×w×c

by storing the nearest neighbour (patch) in image B for
every patch in image A [4]. More precisely, let PA ⊂ Rd

and PB ⊂ Rd be the set of patches of image A and B,
respectively, each containing (h − p + 1) · (w − p + 1)
patches of dimensionality d = p2c, where p is the patch
size (each patch is flattened). The nearest neighbour field
NNF(A,B) of A and B contains, for each patch q ∈ PA,
its nearest neighbour q′ ∈ PB w.r.t. some distance measure.
Typically, the Euclidean distance/L2 distance is used in Rd,

i.e. g(q, q′) =
(∑d

i=1 (qi − q′i)
2
)1/2

.

The NNF has the same width and height as image A and
stores, for each possible patch in image A (location of a
patch center), the coordinates of its nearest neighbour patch in
image B. Typically, three layers are used, where the first layer
contains the x-coordinates, the second the y-coordinates, and
the third layer the distances for the nearest neighbour patches.
For instance, the NNF[i,j,0] contains the x-coordinate of the
nearest neighbour patch in image B of the patch in image
A with center (i, j). Correspondingly, NNF[i,j,1] stores the y-
coordinate, and NNF[i,j,2] is the L2 distance between the two
patches. Figure 1 shows that NNFs can be used to reconstruct
an image by means of the recorded neighbours information.

To compute a NNF, the best nearest neighbour patch in
image B has to be identified for each patch in image A.
This usually requires the computation of millions of nearest
neighbours in a relatively high-dimensional search space (e.g.,
p = 8 and c = 3 results in a d = 192-dimensional space).
For this reason, searching for exact nearest neighbours tends
to quickly become infeasible, especially if NNFs for many
image pairs have to be computed. Hence, a common approach
to reduce the computational complexity is to consider only ap-
proximate nearest neighbours, which has led to the concept of
approximate nearest neighbour fields (ANNFs). For instance,
a typical preprocessing step is to reduce the dimensionality
of the patches by means of dimensionality reduction methods
such as principal component analysis (PCA) [8].

Various approaches to compute ANNFs have been proposed
in the literature. As already mentioned above, dimensionality
reduction methods along with spatial search structures can be
used to obtain approximate answers (e.g. via a k-d tree with-
out backtracking, see below). In addition, schemes based
on propagation have been proposed such as the aforemen-

tioned PatchMatch approach [4]. More recently, variants of
PatchMatch such as CSH or propagation-assisted k-d trees
have been used to even further reduce the practical runtime
needed to compute ANNFs [6], [7]. In this work, we will
provide an efficient massively-parallel implementation for the
propagation-assisted k-d trees, which combine the idea of
propagation (as employed by PatchMatch) with the concept
of spatial pruning via k-d trees.

B. Massively-Parallel K-D Trees

A classical k-d tree for a point set P = {x1, . . . ,xn} ⊂ Rd

is a balanced binary tree [5], [9], where the root of the tree
corresponds to all points in P . The construction of the tree
takes place in a level-wise manner. For a node v at level i, the
point set Pv that corresponds to v is split into two (almost)
equal-sized subsets, e.g., by using the median in dimension i
mod d or in the dimension i with widest spread (this scheme
resorts to the latter scheme). The recursive construction of the
tree ends as soon as any stopping criterion is fulfilled, such as
|Pv| < c for some constant c ∈ N. The tree construction takes
O(n log n) time, since medians can be found in linear time.

For a given point q ∈ Rd, one can use such a k-d tree
to find the nearest neighbours by traversing the tree in two
phases. First, the tree is traversed from top to bottom in
order to find the box that (naturally) contains the point q.
All points stored in that leaf are compared with the query
point and the best k neighbours are stored. Second, the tree
is fully traversed from bottom to top, by recursively visiting
(checking) neighbouring boxes/subtrees, but only when the
distance from the (query) point q to the box is smaller than the
(worst) k’s nearest neighbour candidate. The nearest neighbour
set may be updated whenever a leaf is visited. Given relatively-
low dimensional search spaces, k-d trees usually accelerate the
search significantly (logarithmic runtime in practice). How-
ever, with increasing dimensionality (e.g. d > 20), more and
more leaves of the tree have to traversed, which can yield a
linear runtime per query in the worst case if all leaves have
to checked (i.e. no better than a brute-force search).

Hence, given a large amount of queries and search spaces
of increasing dimensionality, nearest neighbour search using
k-d trees might still become a computational bottleneck. Mod-
ern parallel devices such as graphics processing units (GPUS)
can help to accelerate the search again in such scenarios. These
devices are nowadays also used to accelerate general compute-
and data-intensive tasks, which is known as general-purpose

pA(x, y − 1)
pB(x

′, y′ − 1)

pA(x, y)
pB(x

′, y′)

Fig. 2: Propagating patches [4], [7]

computing on graphics processing units (GPGPU). In contrast
to multi-core processing units, which feature a relatively small
number of complex units (e.g., 2-64), GPUS resort to thou-
sands of simple processing units. Given appropriate implemen-
tations, GPUS often yield significantly smaller runtimes than
their direct CPU-based competitors. In recent years, efficient
GPU implementations have been proposed for a variety of
tasks in data mining and machine learning [10]–[13].

Computing ANNFs is a special form of nearest neighbour
search. In the past, GPUS have successfully been used for
this general task with many approaches coming from the
field of compute graphics [14]–[17]. For high-dimensional
search spaces, brute-force schemes have been proposed [18],
which offer great speed-ups over their multi-core competi-
tors given medium-sized datasets. Other frameworks are
based on locality-sensitive hashing [19] or adapted sorting
schemes [20], [21]. In addition, implementations harnessing
both the power of GPUS as well as spatial subdivisions
induced by spatial search structures have been proposed [22]–
[26]. Our work is inspired by the buffer k-d tree approach [12],
which takes advantage of both k-d trees and massively-
parallel computing and which is based on reorganizing the
computational workflow into a memory-centric fashion that
optimizes temporal locality [27].

III. PARALLEL PROPAGATION-ASSISTED K-D TREES

We are now ready to outline the algorithmic buildings
blocks of our parallel implementation. We start by providing
the main ideas of propagation-assisted k-d trees [7].

A. Propagation-Assisted K-D Trees

Nearest neighbour search based on k-d trees induces a
recursive traversal of subtrees of the tree (see above). In the
worst case, all leaves will be visited by this traversal. A simple
way to guarantee a logarithmic runtime per query is to stop
the recursive traversal after a fixed number of leaves have
been visited (e.g., 10). However, this modification also leads
to approximate answers and restricting the number of leaf
visits to a small number can cause a significant decrease in

Algorithm 1 Propagation-Assisted K-D Trees

Require: Two images A,B ∈ Rh×w×c, patch size p ∈ N,
number k of nearest neighbours

Ensure: Nearest neighbour field represented by nearest neigh-
bour indices I .

1: PA, PB = CREATEPATCHES(A,B)
2: m = FITPCA(PA, PB , nm)
3: rA, rB = REDUCEDIM(m,PA, PB)
4: T = BUILDKDTREE(rB)
5: (Ik, Vk) = SEARCHCONTAININGLEAF(T , k, rA)
6: (Ik, Vk) = EXACTKNNFSTROW(T , k, Ik, Vk, rA[0])
7: (Ik, Vk) = PROCESSROWS(T , k, Ik, Vk, rA[1 :])
8: I = SELECTBEST(Ik, PA, PB)
9: return I

accuracy. Propagation-assisted k-d trees lessen the negative
effects of such approximations by also resorting to the concept
of propagation [7]. The intuition is that, once previous queries
have found successful matches, future “close-by” queries can
use this information to their advantage. Specifically, when
looking for a nearest neighbour to a specific patch, previously
investigated patches within the same area of the image have
nearest neighbours that might provide helpful information on
where to find good candidates for the current query patch.
This modification is inspired by PatchMatch [4], [28], whose
propagation scheme is also based on spatial locality, inferring
strong candidates from previous searches.

More precisely, propagation-assisted k-d trees first compute
the exact nearest neighbour (in the dimensionality-reduced
space) for the first row of the query image A by applying
a (full) k-d tree traversal. For the remaining patches, initial
nearest-neighbour candidates are determined from the leaf that
contains the query patch, and then the nearest neighbours
are refined by selectively visiting new leaves inferred from
the analysis of the previous row. Figure 2 demonstrates the
propagation for a query patch pA(x, y). Since the patch
pA(x, y − 1) above pA(x, y) has already been processed, one
has access to its nearest neighbour patch, denoted by patch
pB(x

′, y′ − 1) in image B. The propagated leaf for patch
pA(x, y) is the (k-d tree) leaf that contains the patch pB(x

′, y′)
(i.e., the patch immediately below pB(x

′, y′ − 1) in image
B). Instead of propagating only the first nearest neighbour per
patch, He and Sun [7] propagate k neighbours per query patch
pA(x, y), which results in at most k+1 leaves to be checked.
At the end, the best patch candidate is selected based on the
original non-reduced patches (see below for the details).

B. Sequential Implementation

A sequential implementation for propagation-assisted
k-d trees is shown in Algorithm 1: To compute the ANNF,
corresponding patches are computed in Line 1 for both image
A and image B for a given patch size p. This results in
(h− p+ 1) · (w + p+ 1) patches of dimensionality d = p2c.
To facilitate the nearest neighbour search, the dimensionality
of the patches is reduced. Instead of resorting to the so-

called Walsh-Hadamard transform [7], we conduct a principal
component analysis (PCA) on a random subset of size nm

of the patches (taken from both PA and PB) and use the
resulting model m to obtain patches in a reduced feature
space with dimensionality dr. This is achieved via the function
REDUCEDIM, which yields the reduced patches rA and rB .
Next, a k-d tree is fitted on the reduced patches rB of image
B. Following He and Sun [7], we consider a k-d tree, which
iteratively splits the dataset along the axes with widest spread.
In addition, a mapping between the (indices of the) original
patches and the leaf indices is generated, i.e., each patch in
the original image “remembers” the leaf that contains it.

The procedure SEARCHCONTAININGLEAF extracts for
each (reduced) patch in image A (query) an initial set of k
nearest neighbour candidates from the leaf to which the patch
naturally belongs to (i.e. a simple top to bottom traversal in
the k-d tree without backtracking), and procedure EXACTKN-
NFIRSTROW computes the exact nearest neighbours for the
first row of patches via a standard k-d tree traversal (i.e. with
full backtracking). The 2D arrays Ik and Vk contain, for each
query, the indices and distances of/to the k nearest neighbours.

The propagation-assisted nearest neighbour search is con-
ducted by procedure PROCESSROWS, which aims to im-
prove the initial candidates computed by SEARCHCONTAIN-
INGLEAF: The patches of image A are processed row-wise in
the manner outlined above, i.e., for each patch of a given row,
up to k new leaves (to be searched) are identified by looking
at the nearest neighbours of the patch just above the current
one, and by selecting the leaves containing the (reference)
patches just below them.1 After having processed all rows,
one ends up with k nearest neighbour candidates for each
patch. The procedure SELECTBEST processes all the patches
and identifies, for each patch, the best among the k available
candidates w.r.t. the original patches PA and PB (this fine-
tuning step is called re-ranking by He and Sun [7]).

C. Data-Parallel Implementation on GPUs

Next, we describe the data-parallel implementation of Al-
gorithm 1. Since the running time is dominated by the propa-
gation step, we explain the implementation of PROCESSROWS
in detail and only give a bird-eye view of the other steps:

FITPCA: Considering a small random subset is sufficient to
obtain a decent PCA model (e.g. using nm = 1000 is generally
sufficient). Note that, since nm is a constant, fitting the PCA
model takes only constant time. For this reason, the practical
runtime is negligible and we do not parallelize this step.

CREATEPATCHES and REDUCEDIM: Creating the
patches for images A and B is a straightforward data-
parallel operation, and reducing the patch dimensionality
comes down to code that resembles the matrix-multiplication
pattern. In principle, these two steps can be fused together
so that the arrays PA and PB are not manifested in memory,
thus significantly reducing the memory-footprint requirements.

1Note that this step uses the indirect array that records for each reference
patch, the leaf to which the patch belongs to.

However, this prevents locality optimizations for the RE-
DUCEDIM step—e.g., block and register tiling—resulting in
up to 33% application-level slowdown. As such, our imple-
mentation manifests PA in global memory, then reduces the
dimensionality of PA, and repeats the process for image B,
while reusing the memory of PA for PB . The latter is freed
immediately after rB has been computed.

BUILDKDTREE: Building the k-d tree is performed en-
tirely in data-parallel fashion. The representation of internal
nodes consists of a pair (dmax

spr ,mmax
spr) denoting the index of

the dimension (of maximal spread) that is to be split for that
node and its median value, respectively. The leaves store the
(reduced) patches they contain using a 2D array representation
(number of leaves × leaf size). The computation starts by
padding rB with patches having infinity on all dimensions,
such that the resulting binary tree is perfectly balanced. The
padding introduces at most one more patch per leaf, and thus
results in negligible overhead, e.g., if the leaf size is 100,
then the memory overhead is less than 1%.2 The advantage
of padding is that it enables regular nested parallelism, which
can be efficiently mapped to the GPU hardware. For example,
each node at a certain level in the tree will contain the same
number of patches, and, sorting the patches can be performed
in parallel both at node level and across all nodes at the same
level. Then we compute the minimal and maximal element on
each dimension, denoted lb0i , ub

0
i ,∀i ∈ 0..dr − 1, where dr is

the number of reduced dimensions. Finally, a sequential loop
of count equal to the height of the tree is executed such that
nodes at each level are processed in parallel:

1 The lower and upper bounds for each dimension of the
set of patches belonging to the current node are computed
by making a copy of lb0i , ub

0
i ,∀i and updating them

according to the median indices and values encountered
during a walk from the root of the tree to this node.

2 A map-reduce computation is applied on the result of step
1 to identify the dimension of highest spread (dmax

spr).
3 The patches corresponding to the current node are sorted

w.r.t the values of dimension dmax
spr —we use radix sort

and process 2-bits at a time.3

4 Finally the value of the median of the current node mmax
spr

is extracted as the middle element of the sorted sequence,
and the patches are split in parallel between the two
children of the current node.4

SEARCHCONTAININGLEAF: This procedure processes in
parallel all the patches in image A (a.k.a., queries). Since the

2Furthermore, the padded nodes will be naturally contained by the rightmost
leaves, and if a leaf consists entirely of padded nodes, then it will never be
searched since its median will necessarily be infinity.

3Please note that this is a batch sort, as it is performed in parallel across
the patches belonging to a node and also in parallel across all the nodes at the
same level in the tree. This is enabled by the padding procedure that creates
a perfectly-balance tree.

4This step requires only a parallel write operation (scatter) because the sort
is performed on an array of tuples obtained by zipping together the values of
the dimension of highest spread with their indices 0 . . . q− 1, where q is the
number of patches belonging to a node at that tree level. Thus what is left to
do is to reorganize the patches according to the permuted indices.

total number of queries is larger than the amount of parallelism
needed to fully utilize the GPU hardware, we use one thread
to process each query, and sequentialize the inner parallelism.
The procedure has three (sub-)steps:

1 for each query the tree is walked from the root to find
the leaf the query naturally belongs to;

2 the queries are sorted according to their corresponding
leaf indices computed in step 1;

3 for each query, an initial set of k nearest neighbours
is computed by performing a brute-force search in the
corresponding leaf (found in step 1).

Step 2 is an optimization that improves locality of reference:
on average, we will have a number of leaf-size queries
that correspond to the same leaf. Grouping these queries
together makes it likely that they will be executed on the
same streaming multiprocessor (SM), which enables the reuse
of the leaf data from the L1 cache—because the reference
patches of the leaf are accessed in the same order by all
such queries. This optimization speeds up the computation of
SEARCHCONTAININGLEAF by a 3− 4× factor.

EXACTKNNFSTROW: This procedure is used to compute
the exact set of k nearest neighbours for the patches (queries)
belonging to the first row of image A by means of standard
k-d tree traversal. Since the GPU hardware does not support
(well) backtracking, we implement the tree traversal with a
while loop. The input of an iteration is, for each query, the
last visited leaf (initially the one computed by SEARCHCON-
TAININGLEAF) and a stack represented as an integer (initially
zero). The stack uses one bit to record for each internal tree
node on the current path whether the node’s child that is on
the other side of the median w.r.t. the query has been visited:

1 An iteration computes the next leaf to be visited and a
new stack, by (i) walking up the current path until it finds
a parent whose bit is not set and the median test fails, i.e.,
the corresponding child was not visited and may possibly
contain better candidates, and then by (ii) walking down
the tree to a new leaf by following the children that are
on the same side of the median as the query. For a certain
query, the traversal ends when step (i) reaches the root
and its stack bit is set (both children were visited).

2 If a new leaf was found in step 1, then a brute-force search
is performed on that leaf to improve the k candidates. The
implementation of this step is similar to the one used for
PROCESSROWS, which will be explained in detail next.

PROCESSROWS: This procedure implements the propaga-
tion step in which the nearest neighbours of the patches of a
row are improved by searching the leaves inferred from the
nearest neighbours of the patch just above the current one on
the previous row. This is implemented as a sequential loop,
whose iterations process an entire row of patches in parallel
by means of two computational kernels.

The first kernel assigns one thread per patch in the current
row, which computes the set of (new) leaf indices to be prop-
agated from the patch just above it, denoted prop_leaves.
The to-be-propagated leaves do not contain duplicates and do

// Input: i is the current-row index (i > 0)
// knns: [num_rows][row_len][k](int,float),
// queries: [num_rows][row_len][d]float,
// prop_lens: [row_len]int,
// prop_leaves:[row_len][k]int
// leaves: [num_leaves][leaf_len][d]float
forall j in 0 .. row_len-1 //CUDA grid parallel

__shared__ float dists[leaf_len];
__shared__ struct{int ind; float dst} knn[k];
__shared__ float query[d];
collective_copy_glb2shr(knn, knns[i,j], k);
collective_copy_glb2shr(query,queries[i,j],d);
forseq l in 0 .. prop_lens[j]-1
int leaf_ind = prop_leaves[j,l];

forall p in 0 .. leaf_len-1 //CUDA block
dists[p] = sumOfSquares(query,

leaves[leaf_ind,p]);
end //forall

int t = k-1; bool cycle = true;
while (cycle && t >= 0) do

(m_ind, min_dst) =
reduce(minind, dists); // CUDA block

if(min_dst < knn[t].dst) {
knn[t].ind = leaf_ind*leaf_len+m_ind;
knn[t].dst = min_dst;
dists[m_ind] = ∞; t = t - 1;

} else { cycle = false; }
end // while
sortPartialSortedSeqs(knn);

end // forseq
collective_copy_shr2glb(knns[i,j], knn, k);

end // forall

Fig. 3: Pseudocode of the GPU implementation corresponding
to the brute-force search of the propagated leaves in procedure
PROCESSROWS. The outermost forall loop corresponds to
the Cuda grid. The inner forall and the reduce are executed
in parallel by the threads of a Cuda block, which has the same
size as the leaf of the k-d tree.

not include the leaf that naturally contains the patch, since
the latter has been (computed and) searched by the SEARCH-
CONTAININGLEAF procedure. As such, prop_leaves is
represented as a (padded) matrix of row size × k integers, and
we store in a separate array, denoted prop_lens, the number
of to-be-propagated leaves corresponding to each patch.

The second kernel implements the brute-force search of the
new leaves. The common way to implement this step would
be to assign one thread per (query) patch and to traverse
the (reference) patches stored in the leaf while updating
at each step its nearest neighbours (if necessary). Such an
implementation is inefficient for two reasons: (i) the number of
to-be-searched leaves varies across queries, which gives raise
to significant thread divergence overhead, and (ii) the maximal
size of a row in our experiments is about 4000 patches, which
would severely underutilize the GPU hardware, which requires
order of tens-of-thousands threads for full occupancy.

Figure 3 presents the pseudocode of our implementation,
which processes one query in one CUDA block, whose size

is chosen to be equal to the number of reference patches in
a leaf, denoted leaf_len. The code starts by allocating an
array named dists of leaf_len floats in shared memory,
and by copying the current query and its current nearest-
neighbours candidates (knn) from global to shared memory.
The sequential loop forseq processes a new leaf at a time:
the nested forall loop is executed in parallel across the
CUDA-block threads and initializes the dists array with the
distance from the current query to each patch in the leaf. Then
a sequential while loop refines the nearest neighbours:

Each iteration starts by computing the minimal distance
and corresponding index of the distances in dists—i.e.,
reduce(minind, dists). This step is also executed in
parallel across the threads of the CUDA block. If the computed
distance is smaller than the worse-known initial nearest neigh-
bour, then the first thread in the CUDA block updates (i) the
nearest neighbours with the computed candidate, and (ii) the
corresponding index in dists with infinity, such that the next
iteration computes the next-best nearest neighbour of the leaf.
The while loop terminates when the computed candidate has
a distance higher than the worst still-alive nearest neighbour
from the initial set. Now knn consists of two partially sorted
sequences: (i) the initial one starting at the beginning and
(ii) the one computed from the current leaf starting at the
end. These are merged into one ascending sorted sequence by
the first thread in the block (sortPartialSortedSeqs).
After all new leaves have been processed, the resulting nearest
neighbour set is (collectively) copied back to global memory.

This implementation has row_len×leaf_len degree of
parallelism, which is enough to fully utilize GPU hardware,
and it lifts the (divergent) unbalanced behavior from individual
threads to CUDA blocks, where it is supported well by the
block scheduler. Finally, the computation is performed mostly
in shared memory, which is much faster than global memory.

SELECTBEST: This procedure selects in parallel for each
query patch the best of its k nearest neighbours w.r.t. the
original-image patches (i.e., full rather than reduced dimen-
sionality). Because this step is applied to all queries in parallel,
processing one query per CUDA thread fully utilizes hardware.

IV. EXPERIMENTS

This section assesses the performance of our parallel imple-
mentation, in terms of (i) run time and accuracy comparison
with existing state-of-the-art implementations, and (ii) the
impact of optimizations and the percentage of runtime of
computational (sub)kernels.

A. Experimental Setup

All experiments described in this section were performed on
an AMD system with 16GB DRAM, 8 Ryzen 7 3700X cores,
using 2-way multithreading, which is also equipped with an
GeForce RTX 2070 NVIDIA GPU with 8GB DRAM, 2304
cuda cores running at 1.41GHz under CUDA 10.1. The CPU-
parallel code was hand-written in C and compiled with GCC
7.5.0 (-fopenmp -O2); the reported CPU run times were

� 	 �� �	 �� �	 �� �	 ��
�������

���	

�	��

�
�	

	���

	��	

		��

��
��
��
��

���
������
������
������������

Fig. 4: Comparison between competing algorithms using the
VidPairs dataset [6] with all 133 image pairs in native reso-
lution. The patch size was fixed to 8x8. All methods had to
find k = 8 nearest neighbours. Markers on the openmp and
opencl curve represent different levels of PCA reduction
(5, 10, 20, 30, 40, 50), whereas markers on the CSH curve
represent different amounts of iterations (3, 5, 8, 10).

validated across 2 runs and are based on 16 threads. The GPU
code has been written in the Futhark language [29]–[31]. 5

As baselines, we considered both CSH [6] as well as
our multi-threaded version implementation of propagation-
assisted k-d trees (denoted by CSH and openmp, respec-
tively).6 These baselines have been reported to be superior
over other approaches, including PatchMatch [6], [7]. Below,
we compare our massively-parallel implementation (denoted
by opencl) with these baselines and investigate the influence
of several parameters. We also provide a one-to-one run time
comparison between openmp and opencl.7 As datasets, we
considered the VidPairs dataset [6], which consists of 133 pairs
of similar images taken from 1080 Full HD movie trailers. We
additionally resorted to VidPairs4K, a novel dataset consisting
of 155 image pairs extracted from ultra high definition film
trailers in 4k resolution, see the appendix for more details.

B. Time-Accuracy Comparison

Figure 4 shows the performance of three competitors. The
performance of the algorithms is expressed as the (average)
time it takes to process an image pair, and as the (average) L2
error of the corresponding nearest neighbour field. The test
has been performed on the entire VidPairs dataset in native
resolution. Both openmp and opencl outperform CSH.

5Futhark is used to implement the data-parallel computational ker-
nels, which are then easily interfaced in projects written in mainstream,
productivity-oriented frameworks by means of specialized code genera-
tors [31]. While Futhark provides good supports for abstraction and for writing
generic libraries [30], the current foreign-function interface (FFI) is limited to
monomorphic code, but various techniques have studied how to extend the FFI
to support type-parameterized components [32]. Our implementation makes
heavy use of Futhark’s support for adapting the compilation technique to the
particularities of the dataset [29], which builds on dynamic analysis techniques
used in the area of automatic parallelization [33], [34].

6For CSH, we resorted to the publicly available single-core implementation
that is available under http://www.eng.tau.ac.il/~simonk/CSH/.
The default parameters were used unless specified.

7The implementation in the form of an open-source Python package is
available at https://github.com/diku-dk/annfmp.

(a) CSH (b) Ours

Fig. 5: Accuracy of generated fields and their respective
reconstructions. Top row: Original image. Second row: Re-
construction as well as the Euclidean error of the highlighted
area after 3 iterations (CSH) and with PCA 5 (opencl). Third
row: 5 iterations (CSH) and PCA 10 (opencl). Fourth row:
10 iterations (CSH) and PCA 20 (opencl).

The multi-core implementation openmp achieves a better L2
score as CSH in up to a quarter of the time and opencl
is more than five times faster than openmp. In addition,
openmp and opencl achieve significantly higher degrees
of accuracy when compared to what CSH yields. Figure 5
shows the difference in error distribution between the CSH and
our methods. More specifically, the L2 error is more evenly
distributed over the fields in limited runs when compared to
CSH, as it can be seen in row 2 and 3 of Figure 5.

Comparing opencl to openmp shows a definite advan-
tage by utilising the resources of the GPU. opencl yields
similar error scores in only a fraction of the time required by

� �� �� �� �� ��
�������

��

��

	�

�

���

��
��

��
��

���
������
������

Fig. 6: Comparison between competing algorithms using the
VidPairs4K dataset with all 155 image pairs. The patch size
was fixed to 8x8 and all methods had to find k = 8
nearest neighbours. Markers on the plots denote testing points,
where more time demanding tests are on larger images. All
image sizes (500, 720p, 1080p, 1440p and 2160p (4K)) from
VidPairs4K have been included.

openmp.8 The run time of openmp quickly increases with
increasing PCA, while opencl’s run time remains near static,
and thus producing a 1−10× speedup over openmp.

C. Scalability

Next, we investigated the scalability of the different ap-
proaches given images of increasing sizes, see Figure 6. On
tiny image sizes (image with width 500 VidPairs4K), the
performance is very similar for all methods. The very small
problem size causes overhead to likely be the prime contributor
to run time. It is with the larger problem sizes that we see
our opencl to show its parallel advantage. In particular, it
stays under 2 seconds even on the most difficult of tasks and
outperforms openmp by a 10× factor.

D. Patch Size

The patch size directly impacts the complexity of the
problem by defining the dimensionality of the original search
space. Figure 7 shows the run time and L2 scores of all
three algorithms on VidPairs given varying patch sizes. Both
openmp and opencl consistently maintain an accuracy/time
lead over CSH. Additionally, both openmp and opencl
achieve similar or lower ultimate L2 scores. This difference
is more pronounced on smaller patch sizes, where the L2
score difference is relatively larger. It is worth stressing that
opencl scales well with the dimensionality of the patches
(its runtime is barely increasing).

E. Performance Analysis

Table I presents the total GPU execution time (second
row) and the percentage of the execution time spent in each
of the stages presented in Algorithm 1 and discussed in
Section III-C. The dataset consists of two images, of sizes
800× 1920× 3 (left) and 1600× 3840× 3 (right), where the

8The implementations of the openmp and opencl implementations vary
slightly from a conceptual perspective (e.g. the k-d tree construction is slightly
different); hence, the slightly varying L2 scores.

� �� �� �� ��
��������

�

�

�
��

��
��

���
������
������

� �� �� �� �� 	�
�
��������

�

��

�
��

��
��

���
������
������

� �� �� �� �� 	�
� ��
��������

	���

	��	

		��

	��	

�
��

��
��

���
������
������

� �� ��
� ��
��������

���

���

�
��

��
��

���
������
������

Fig. 7: Adjusting the patch size (2x2, 4x4, 8x8, 16x16). All
algorithms had to find k = 8 nearest neighbours and the
algorithms ran on the first 25 pairs of the VidPairs dataset.
For both openmp and opencl, variations w.r.t. the PCA
dimensions (5, 10, 20, 30, 40 and 50) are plotted. For CSH, a
varying number of iterations are plotted (5, 8, 10, and 20).

reduced dimensionality has been varied from 10 to 40. One can
observe that the PROCESSROW accounts for about half of the
runtime, and together with EXACTKNNFSTROW they account
for 57% − 70% of total runtime. The k-d tree construction
(BUILDKDTREE) accounts for 7 − 16% of runtime and the
percentage decreases when increasing the dimensions, while
SEARCHCONTAININGLEAF accounts for 2−11% of runtime,
and the percentage increases when increasing dimensionality.9

Table II uses as dataset the same two images as table I.
Row openclunopt reports the impact of the optimization
discussed at the end of section III-C, i.e., using an entire Cuda
block (rather than one thread) to execute the brute-force search
of a leaf by one query. This optimization results in application-
level speedups between 3.8 − 5.2×. Row openmp reports
the speedup of the GPU version in comparison to the multi-
threaded CPU version using OpenMP: the average speedup is
about 8× and it seems to increase with the size of the image.

9For example it increases sharply when reduced-dim goes from 20 and
30: sorting the queries optimizes locality, but the higher dimensionality has
caused the resident memory set to not fit in cache anymore.

TABLE I: Total run time in seconds and percentage from total
run time of the stages described in Algorithm 1 for two images
of sizes 800 × 1920 × 3 (left) and 1600 × 3840 × 3 (right).
The first row shows that the reduced dimension of the patch
is varied from 10 to 40. The large-patch size is 192.

reduced-dim 10 20 30 40 10 20 30 40

run time sec 0.83 1.00 1.34 1.81 2.80 3.62 4.94 6.30

FitPCA % 5.5 2.2 1.9 1.4 .67 3.5 2.8 0.5
RedDim % 8.2 8.3 7.7 8.0 8.7 7.8 7.7 7.2
k-d Tree% 14.5 11.8 9.5 7.0 16.6 13.5 9.9 7.8
ContLeaf% 2.2 3.8 8.1 9.2 2.6 4.1 9.9 11.6
ExactKnn% 13.6 14.9 14.4 13.7 7.9 8.8 9.1 8.9
ProcRows% 44.0 49.2 51.2 55.5 45.1 48.5 50.0 56.2
SelectBest% 9.3 7.5 5.5 4.0 15.3 11.2 8.5 6.4
PythonOV% 2.6 2.2 1.6 1.2 3.0 2.6 2.2 1.4

TABLE II: Speed-up of opencl in comparison with (i) the
unoptimized one that uses one thread to perform the brute-
force search of a leaf (openclunopt) and (ii) the openmp
implementation. We use the same two images as in Table I.

Speed-up vs. 10 20 30 40 10 20 30 40

openclunopt 3.8× 4.6 5.2 4.7 3.2 3.9 4.5 4.5
openmp 6.7× 8.0 7.8 7.3 7.8 9.3 8.8 9.0

F. Visual Analysis

Reconstructions can be built using the nearest neighbour
fields and their source images. A representation of the target
image is constructed by having all patches contribute to every
pixel they overlap on. This procedure is known as “voting” [4].
Figure 8 depicts voting results of both opencl and CSH on
multiple image sizes. Figure 9 compares this representation to
the L2 score of the produced fields, whereas Figure 5 compares
reconstructions between different iterative and dimensionality
reduction settings. In particular, our reconstruction portrays
sharp, high contrast lines more accurately (Figure 8) and is
more colour accurate (Figure 9).

V. CONCLUSIONS

We propose an efficient highly-parallel implementation for
propagation-assisted k-d trees. The resulting framework is
about one order of magnitude faster than a corresponding
multi-threaded implementation and exhibits a small memory
footprint, which renders it capable to computing nearest neigh-
bour fields for large amounts of high-resolution image pairs.
We believe that our implementation will be useful for a variety
of compute- and data-intensive tasks in computer vision in
future that rely on nearest neighbour fields.

REFERENCES

[1] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video completion,”
in 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2004), 27 June - 2 July 2004, Washington,
DC, USA. IEEE Computer Society, 2004, pp. 120–127.

[2] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single
image,” in IEEE 12th International Conference on Computer Vision,
ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009. IEEE
Computer Society, 2009, pp. 349–356.

Fig. 8: Increasing accuracy by increasing the source image
size. For each of the two examples, the top row has been
generated via CSH, while the bottom row has been generated
using opencl. Input image sizes from left to right are 500,
720p, 1080p, 1440p and 4K, respectively.

[3] A. Buades, B. Coll, and J. Morel, “A non-local algorithm for image
denoising,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San
Diego, CA, USA. IEEE Computer Society, 2005, pp. 60–65.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patch-
match: A randomized correspondence algorithm for structural image
editing,” in ACM Transactions on Graphics (ToG), vol. 28, no. 3, 2009.

[5] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[6] S. Korman and S. Avidan, “Coherency sensitive hashing,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 38, no. 6, pp.
1099–1112, 2015.

[7] K. He and J. Sun, “Computing nearest-neighbor fields via propagation-
assisted kd-trees,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2012, pp. 111–118.

[8] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. Springer, 2009.

[9] J. Friedman, J. Bentley, and R. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Transactions on
Mathematical Software, vol. 3, no. 3, pp. 209–226, 1977.

[10] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector ma-

(a) CSH (b) Ours

Fig. 9: Accuracy of CSH and opencl given varying image
sizes (top to bottom: 500, 720p, 1080p, 1440p, and 4K).

chine training and classification on graphics processors,” in Proceedings
of the 25th International Conference on Machine Learning. New York,
NY, USA: ACM, 2008, pp. 104–111.

[11] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y.
Ng, “Deep learning with COTS HPC systems,” in Procs. of the 30th Int.

Conference on Machine Learning. JMLR.org, 2013, pp. 1337–1345.
[12] F. Gieseke, J. Heinermann, C. Oancea, and C. Igel, “Buffer k-d trees:

Processing massive nearest neighbor queries on GPUs,” in Proceedings
of the 31st International Conference on Machine Learning, ser. JMLR
W&CP, vol. 32, no. 1. JMLR.org, 2014, pp. 172–180.

[13] Z. Wen, R. Zhang, K. Ramamohanarao, J. Qi, and K. Taylor, “Mascot:
Fast and highly scalable SVM cross-validation using GPUs and SSDs,”
in Proceedings of the 2014 IEEE International Conference on Data
Mining, 2014, pp. 580–589.

[14] S. Popov, J. Günther, H. Seidel, and P. Slusallek, “Stackless kd-tree
traversal for high performance GPU ray tracing,” Computer Graphics
Forum, vol. 26, no. 3, pp. 415–424, 2007.

[15] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree construction
on graphics hardware,” ACM Transactions on Graphics, vol. 27, no. 5,
pp. 126:1–126:11, 2008.

[16] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and
on doing that in O(N log N),” in IEEE Symposium on Interactive Ray
Tracing. IEEE, 2006, pp. 61–69.

[17] D. Horn, J. Sugerman, M. Houston, and P. Hanrahan, “Interactive k-d
tree GPU raytracing,” in Proceedings of the Symposium on Interactive
3D Graphics and Games. ACM, 2007, pp. 167–174.

[18] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “K-nearest neigh-
bor search: Fast GPU-based implementations and application to high-
dimensional feature matching,” in Procs. of the 17th IEEE International
Conference on Image Processing. IEEE, 2010, pp. 3757–3760.

[19] J. Pan and D. Manocha, “Fast GPU-based locality sensitive hashing
for k-nearest neighbor computation,” in Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 2011, pp. 211–220.

[20] B. Bustos, O. Deussen, S. Hiller, and D. Keim, “A graphics hardware
accelerated algorithm for nearest neighbor search,” in Computational
Science – ICCS 2006, ser. Lecture Notes in Computer Science, vol.
3994. Springer, 2006, pp. 196–199.

[21] N. Sismanis, N. Pitsianis, and X. Sun, “Parallel search of k-nearest
neighbors with synchronous operations,” in IEEE Conference on High
Performance Extreme Computing. IEEE, 2012, pp. 1–6.

[22] L. Cayton, “Accelerating nearest neighbor search on manycore systems,”
in Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium. IEEE, 2012, pp. 402–413.

[23] D. Qiu, S. May, and A. Nüchter, “GPU-accelerated nearest neighbor
search for 3D registration,” in Procs. of 7th International Conference
on Computer Vision Systems. Springer, 2009, pp. 194–203.

[24] W. Wang and L. Cao, “Parallel k-nearest neighbor search on graphics
hardware,” in Procs. of 3rd International Symposium on Parallel Archi-
tectures, Algorithms and Programming. IEEE, 2010, pp. 291–294.

[25] J. Heinermann, O. Kramer, K. L. Polsterer, and F. Gieseke, “On GPU-
based nearest neighbor queries for large-scale photometric catalogs in
astronomy,” in KI 2013: Advances in Artificial Intelligence, ser. Lecture
Notes in Computer Science. Springer, 2013, vol. 8077, pp. 86–97.

[26] N. Nakasato, “Implementation of a parallel tree method on a GPU,”
Journal of Computational Science, vol. 3, no. 3, pp. 132–141, 2012.

[27] C. E. Oancea, A. Mycroft, and S. M. Watt, “A new approach to
parallelising tracing algorithms,” in Procs. of the 2009 International
Symposium on Memory Management, ser. ISMM ’09. ACM, p. 1019.

[28] D. Gadot and L. Wolf, “Patchbatch: A batch augmented loss for optical
flow,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 4236–4245.

[29] T. Henriksen, F. Thorøe, M. Elsman, and C. Oancea, “Incremental
flattening for nested data parallelism,” in Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’19. New York, NY, USA: ACM, 2019, pp. 53–67.

[30] M. Elsman, T. Henriksen, D. Annenkov, and C. E. Oancea, “Static
interpretation of higher-order modules in Futhark: Functional GPU
programming in the large,” Proceedings of the ACM on Programming
Languages, vol. 2, no. ICFP, pp. 97:1–97:30, Jul. 2018.

[31] T. Henriksen, M. Dybdal, H. Urms, A. S. Kiehn, D. Gavin, H. Abelskov,
M. Elsman, and C. Oancea, “APL on GPUs: A TAIL from the Past,
Scribbled in Futhark,” in Procs. of the 5th Int. Workshop on Functional
High-Performance Computing (FHPC). ACM, 2016, pp. 38–43.

[32] Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt, “Parametric Poly-
morphism for Computer Algebra Software Components,” in Procs. 6th
Int. Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC). Mirton Publishing House, 2004, pp. 119–130.

Fig. 10: Six image pair examples of the VidPairs4K dataset,
which consists of 155 image pairs.

[33] C. E. Oancea and L. Rauchwerger, “A hybrid approach to proving
memory reference monotonicity,” in Languages and Compilers for
Parallel Computing (LCPC), S. Rajopadhye and M. Mills Strout, Eds.
Springer Berlin Heidelberg, 2013, pp. 61–75.

[34] C. E. Oancea and A. Mycroft, “Set-congruence dynamic analysis for
thread-level speculation (TLS),” in Languages and Compilers for Par-
allel Computing (LCPC). Springer-Verlag, 2008, pp. 156–171.

APPENDIX

The VidPairs4K dataset has been introduced for this re-
search. Similar to the VidPairs dataset [6], it has been har-
vested from official film trailers, see Figure 10. In total, 155
image pairs have been extracted from film trailers that natively
support resolutions up to 4K (3840×2160 pixels). There are at
least 3 and at most 30 frames in between the images of a given
pair. Just as for the VidPairs dataset, images in VidPairs4K
vary between widescreen (16:9) and cinematic widescreen
(2.40:1); though the width does not vary between image pairs.

The dataset and our custom framework for testing and com-
paring techniques for ANNF generation are publicly available
at http://trobroek.com/vidpairs4k/.

