FACULTY OF SCIENCE
UNIVERSITY OF COPENHAGEN

Master’s Thesis

Troels Henriksen — athas@sigkill.dk

Exploiting functional invariants
to optimise parallelism: a datatflow approach

Supervisors: Cosmin Eugen Oancea and Fritz Henglein

February 2014

Abstract

We present Ly, a purely functional programing language supporting
nested regular data parallelism and targeting massively parallel SIMD
hardware such as modern graphics processing units (GPUs).

Lo incorporates the following novel features:

e A type system for in-place modification and aliasing of arrays and
array slices that ensures referential transparency, which in turn
supports equational reasoning.

e An assertion language for expressing bounds checks on dynamically
allocated arrays, which can often be checked statically to eliminate
dynamic bounds checks.

e Compiler optimisations for hoisting bounds checks out of inner loops
and performing loop fusion based on structural transformations.

‘We show that:

e The type system is simpler than existing linear and unique typing
systems such Clean [4], and more expressive than libraries such as
DPH, Repa and Accelerate [12, 24, 13], for efficient array processing.

e Our fusion transformation is capable of fusing loops whose output is
used in multiple places, when possible without duplicating compu-
tation, a feature not found in other implementations of fusion [23].

e The effectiveness of our optimisations is demonstrated on three
real-world benchmark problems from quantitative finance, based
on empirical run-time measurements and manual inspection of the
optimised programs. In particular, hoisting and fusion yield a
sequential speed-up of up to 71% compared to the unoptimised
source code, even without any parallel execution.

The results suggest that the language design, expressiveness and
optimisation techniques of Lo can be realized across a range of SIMD-
architectures, notably existing GPUs and manycore-chips, to simultane-
ously achieve portability and eventually performance competitive with
hand-coding.

The results reported are based on joint work with Cosmin Oancea,
DIKU.

ii

Contents

Preface

1 Introduction

Part I Language Design
2 The Ly language
3 Uniqueness Types

4 Internal Representation

Part 11 Optimisations

5 First Order Optimisations

6 The Rebinder

7 Fusion

8 Fusion-enabling SOAC Transformations

9 Hindrance Removal

Part III Evaluation
10 Optimisation Results

11 Conclusions

Part IV Closing Credits
Bibliography

Artificial Benchmark Programs

iii

iii

18

26

34

39

50

70

80

88

95

103

106

Preface

This dissertation is submitted in fulfillment of the graduate education in com-
puter science (Datalogi) at the University of Copenhagen, for Troels Henriksen.

Chapter 1

Introduction

For practically the entire lifetime of the electronic computer, programmers have
been used to an exponential growth in commonly available computing power.
Until around 2006, this directly manifested itself as improvements to sequential
performance, although physical limits made it uneconomical (or impossible)
for this trend to continue. These days, hardware designers are making their
machines increasingly parallel: rather than speeding up the individual processors,
as happened previously, more processors, or more specialised processors, are
added. Thus, while computing power is still growing, it has become increasingly
necessary to write programs that are parallel in order to take full advantage of
modern advancements in hardware.

One interesting development is the commoditisation of massively parallel
vector processors in the form of graphics cards. While hardware acceleration of
graphics became commonplace in the 90s, it was not until the rise of CUDA
and OpenCL in 2006 that General-Purpose computing on Graphics Processing
Units (GPGPU) began to move into the mainstream. The kind of parallelism
supported by GPGPU is data parallelism, wherein each processor performs the
same task on different pieces of the data. This is also called Single Instruction
Multiple Data (SIMD). Today, there are three main ways to take advantage of
this data parallel processing power:

Low-level interfaces: CUDA and OpenCL implementations are supplied by
the GPU vendors.! These are very low-level, and provide a C-like pro-
gramming interface. Furthermore, GPU hardware has very complicated
performance characteristics, and it can be hard to achieve optimal, or even
good performance. Nevertheless, the full supported power of the devices is
available at this level, and optimal performance is theoretically achievable,
although in practice, specialist knowledge is required to achieve good
results at this level.

At the most basic level, all other approaches eventually boil down to
talking to a low-level interface.

IStrictly. OpenCL has a broader focus, and seeks to provide an interface to heterogenous
computation in general, but for the purpose of this thesis, we will consider OpenCL and
CUDA to be GPU-oriented.

CHAPTER 1. INTRODUCTION

Libraries: Some programming libraries aimed at high-peformance computing
have been rewritten to take advantage of GPU acceleration. For example,
Nvidia provides CUBLAS [30], an implementation of the well-known BLAS
array operations API. These libraries are typically written by experts,
and come close to peak potential performance on the target hardware. It
is generally easy to use these libraries from any language offering a good
foreign function interface, and it is thus an efficient way to reach a large
number of potential users. Usage of these libraries requires little in the
way of GPU knowledge, or indeed knowledge about parallel programming
at all.

On the downside, although each discrete function may be well-optimised in
isolation, the library approach does not permit optimisation of composed
operations. For example, if a library exports a function mult to multiply
two matrices, and we use it in two invocations to multiply three matrices,
as in mult (x,mult(y,z)), the library will likely not be as fast as if we
used a specialised ternary multiplication function. Although particularly
clever libraries may use a variant of lazy evaluation to delay computation
and optimise some composed operations [26], the optimisation potential
is still limited as long as the program cannot be inspected directly.

The library approach is very popular in practice, with many high-performance
computing libraries now possessing GPGPU backends.

Data-parallel programming languages: The final way to perform GPGPU
is to integrate GPU support directly into a programming language, with
full compiler support. This permits code generation based on a global
view of the entire computation, at least in theory, and optimise with full
knowledge of the program. There appears to be two main paths within
the programming language approach:

Embedded languages: Somewhat similar to the library approach, this
integrates GPGPU support in an existing language as an Embedded
Domain Specific Language (EDSL) [16]. The distinction between
an EDSL and a library is often fuzzy, with the distinction typically
being about the level of composability offered, and whether the EDSL
follows the same evaluation rules as the host language. Further
blurring the issue, some EDSLs use syntactical extensions — for
example through macros [25] or quasiquotation [27] — while others
take advantage of the host languages existing syntactical facilities.
The limitations for EDSLs are similar to the ones for libraries. For
example, the embedded language must be expressible in the type
system of the host language. It also varies how much support the
host language provides for hooking into the compiler, in order to
perform optimisation. On the other hand, much of the infrastructure
of the host language will be inherited by the EDSL, leading to a
much simpler implementation, compared to writing a full compiler.
Furthermore, due to the integration with the host language, EDSL
usage can be very seamless. On the other hand, it is extremely hard
to access an EDSL from outside of the host language.

CHAPTER 1. INTRODUCTION

DPH, Repa and Accelerate [12, 24, 13] are examples of data-parallel
EDSLs for Haskell, with Accelerate suppors OpenCL and CUDA
backends.

Independent languages: The final approach is to write an entire com-
piler targeting GPGPU execution. This provides total control, at the
cost of greatly increased implementation complexity. Furthermore,
it can be difficult to integrate components written in a these new
languages into existing code-bases written in mainstream languages.
Nevertheless, the language can be designed from the bottom up for ef-
ficient parallel execution, without compromises due to host language
integration. The NESL [8] language is an early (’96) example of a
programming language designed entirely for data-parallel execution.
Although designed before the proliferation of GPUs, a GPU backend
has recently been developed [5]. Another example of such a language
is Single-Assignment C (SAC) [18].

In a way, we could also consider the OpenCL and CUDA kernel
languages themselves to be in this category, but we only consider
high-level languages to be proper members of this group.

The library approach is effective if a library exists for the specific problem
the programmer is attempting to solve, but will often be neither sufficiently
fast nor expressive for new domains. EDSLs suffer from a similar problem —
in particular, nested parallelism and similar complex control flow is generally
poorly supported. The NESL and SAC languages are more expressive, but their
implementation does not perform many advanced optimisations. Clearly, there
is still great uncertainty about the best way to program these massively parallel
machines.

To investigate possible solutions, we have examined several real-world fi-
nancial kernels originally implemented in languages such as OCaml, C++, and
C, and measuring in the range of hundreds of lines of compact code, with two
main objectives in mind:

1. What is the simplest language that permits a relatively straightforward
translation of the financial programs, while still expressing algorithm
invariants that enable the generation of efficient parallel code?

2. What compiler optimizations would result in efficiency comparable to
code hand-tuned for the specific hardware?

To answer the first question, we will present £y, an independent language
designed for parallel execution. We have chosen to implement Ly as a non-
embedded language in order to have more design freedom, as we do not need to,
e.g., fit Ly into the type system of an existing language. Our language supports
nested parallelism on regular arrays, i.e., arrays where all rows of the array have
the same size. This restriction is due to regular arrays being more amenable to
compiler optimizations, in particular they allow transposition and simplified
size analysis.

CHAPTER 1. INTRODUCTION

Our language supports nested parallelism because many programs exhibits
several layers of parallelism that cannot be exploited by flat parallelism in the
style of REPA [24]. For example, the examined financial kernels contain several
innermost scan or reduce operations, and at least one semantically sequential
loop per benchmark.

Our language is also functional, because we would rather invest compiler
effort in exploiting high-level program invariants rather than in proving them.
The common example here is parallelism: map-reduce constructs are inherently
parallel, while Fortran-style do loops require sophisticated analysis to decide
parallelism. Furthermore, such analyses [11, 19, 32, 31] have not yet been
integrated in the repertoire of commercial compilers, likely due to “heroic effort”
concerns, albeit their effectiveness was demonstrated on comprehensive suites,
and some of them were developed more than a decade ago.

The answer to the second question seems to be that a common ground needs
to be found between functional and imperative optimizations and, to a lesser
extent, between functional and imperative language constructs. Much in the
same way in which data parallelism seems to be generated by a combination of
map, reduce, and scan operations, the optimization opportunities seem solvable
via a combination of tramsposition, loop fusion, loop interchange and loop
distribution [2].

It follows that classic index-based loops are necessary in the intermediate
representation, regardless of whether they are provided as a language construct
or are derived from tail-recursive functions via a code transformation.

Loop fusion is one of the most important code transformations, as it has
the potential for substantially optimising both memory hierarchy overhead and,
sometimes asymptotically, space requirements. In imperative languages, fusing
producer-consumer loops requires dependency analysis on arrays applied at
loop-nest level. Such analysis, however, has often been labeled as “heroic effort”
and, if at all, is supported only in its simplest and most conservative form in
industrial compilers. In functional languages however, fusion is naturally and
relatively easily derived from the producer-consumer relation between program
constructs that expose a rich, higher-order algebra of program invariants, such
as the map-reduce list homomorphisms.

Finally, an indirect consequence of having to deal with sequential dependent
loops is that Ly provides support for in-place updates of array elements. The
observable semantics still respect referential transparency, i.e., a deep copy of
the original array but with the corresponding element replaced, intersected
with the imperative one, i.e., referential transparency cannot be guaranteed, a
compile-time error is signaled. This approach enables the intuitive cost model
that the user likely assumes, while preserving the functional semantics.

Throughout this thesis, we will often refer to a vaguely defined “programmer”,
as well as ascribe various motives and expectations to this nebulous being. While
Ly is intended as an intermediate language, and in the end is intended as a target
language by compilers for higher-level languages, it has a well-defined human-
readable (and writable) syntax, and can be programmed directly. Indeed, all
extant Ly programs have been written by hand. Thus, when “the programmer”
is referenced, we can refer to either an actual human, or a compiler generating

CHAPTER 1. INTRODUCTION

Ly code. For our purposes, these will have identical motives, although a human
programmer may complain somewhat more vocally about the lack of syntactical
niceties in the language.

1.1 Contributions

We present a purely functional data-parallel programming language, £g, with
support for nested parallelism. The language supports a method for safely
performing in-place updates of array data through a type system concept called
uniqueness types. Through the translation of real-world financial programs to
Ly, we demonstrate the practical usefulness of this language feature.

We describe the design and implementation of several optimisations, notably
hoisting bounds checks out of inner loops, and loop fusion based on a structural
transformation. The fusion transformation is capable of fusing loops whose
output is used in multiple places, when possible without duplicating computation.
Optimising bounds checks is an example of a general principle of removing
checks statically when possible, and dynamically when necessary.

The benefits of our optimisations are demonstrated on three real-world
financial benchmarks. It is shown that the compiler is able to hoist bounds
checks and other assertions outside of loops.

The effectiveness of fusion is demonstrated via compiler instrumentation
and quantitative and qualitative measurements on the three benchmarks, in the
form of inspecting the changes in program dataflow. This shows that always
refusing to duplicate computation is too conservative on parallel hardware, and
discuss potential directions for further improvement.

The implementation of the £y compiler consists of roughly ten thousand
lines of Haskell (ignoring comments and blank lines), and it is hosted and
publicly browsable at https://github.com/HIPERFIT/LOLanguage.

Parts of this thesis, in particular the core of the fusion algorithm in Chapter 7,
has been previously published as

HENRIKSEN, TROELS and COSMIN EUGEN OANCEA. “A T2 Graph-
reduction Approach to Fusion”. In: Proceedings of the 2Nd ACM
SIGPLAN Workshop on Functional High-performance Computing.
FHPC ’13. Boston, Massachusetts, USA: ACM, 2013, pp. 47-58.
ISBN: 978-1-4503-2381-9. DOI: http://dx.doi.org/10.1145/
2502323.2502328. URL: http://doi.acm.org/10.1145/2502323.
2502328

1.2 Report outline

The remainder of the report is structured as follows. Chapters 2 and 3 will
introduce the programmer-visible part of £y and serves as a language reference.
Chapter 4 presents a slight modification of the external language, that makes
it more amenable to transformation and optimisation. Chapter 5 discusses
simple classical optimisations in the context of Ly, while Chapter 6 discusses
slightly more advanced classical optimisations. Chapter 7 covers loop fusion, an

https://github.com/HIPERFIT/L0Language
http://dx.doi.org/10.1145/2502323.2502328
http://dx.doi.org/10.1145/2502323.2502328
http://doi.acm.org/10.1145/2502323.2502328
http://doi.acm.org/10.1145/2502323.2502328

CHAPTER 1. INTRODUCTION

important structural optimisation, while Chapters 8 and 9 cover transformations
that enable other optimisations (although particularly fusion).

1.3 Notation

In various places, I will use an overline to indicate a comma-separated sequence
of terms. For example, when describing a function call, rather than writing:

fler, .., en)

I may instead write:
f(es)

I may also use this in conjunction with expliclt arguments, as in:

f(estart) §7 eend)

Which is a shortcut for

f(estarta €1,---,6€n, eend)

Part 1

Language Design

Chapter 2

The L, language

The Ly programming language is a purely functional, call-by-value, mostly
first-order language that permits bulk operations on arrays using second-order
array combinators (SOACSs).

The primary idea behind L is to design a language that has enough expres-
sive power to conveniently express complex programs, yet is also amenable to
aggressive optimisation and parallelisation. Unfortunately, as the expressive
power of a language grows, the difficulty of optimisation often rises likewise.
For example, we support nested parallelism, despite the complexities of ef-
ficiently mapping to the flat parallelism supported by hardware, as a great
many programs depend on this feature. On the other hand, we do not support
non-regular arrays, as they complicate size analysis a great deal. The fact that
Ly is purely functional is intended to give an optimising compiler more leeway
in rearranging the code and performing high-level optimisations. It is also the
plan to eventually design a rigorous cost model for Ly, although this work has
not yet been completed.

This chapter serves as a reference and basic introduction to the £y language,
while Chapters 3 and 4 describes more subtle design issues. Sections 2.1 and 2.2
will present Ly through informal walkthrough of the major language concepts,
whilst a complete reference of language constructs is given in Section 2.3.

2.1 First-order Lg

The syntax of L, as seen on Figure 1 and Figure 2, is heavily inspired by
Haskell and Standard ML. An identifier starts with a letter, followed by any
number of letters, digits and underscores. Numeric, string and character literals
use the same notation as Haskell (which is very similar to C), including all
escape characters. Comments are indicated with // and span to end of line.

An L program consists of a sequence of function definitions, of the following
form.

fun return-type name (params...) = body

A function must declare both its return type and the types of all its pa-
rameters. All functions (except for inline anonymous functions; see below) are

CHAPTER 2. THE £y LANGUAGE

t == int (Integers)
| real (Floats)
| bool (Booleans)
| char (Characters)
| {ti, ..., tpn} (Tuples)
| [t] (Arrays)
| =[] (Unique arrays)
k == n (Integer)
| = (Decimal number)
| b (Boolean)
| ¢ (Character)
| {v1,...,0.} (Tuple)
| [v1,...,0,] (Array)
p u= id (Name pattern)

| {p1, ..., pny (Tuple pattern)

Figure 1: Lo syntax

defined globally. £y does not use type inference. Symbolic constants are not
supported, although 0-ary functions can be defined. As a concrete example,
here is the recursive definition of the factorial function in L.

fun int fact(int n) =
if n = 0 then 1
else n * fact(n-1)

Indentation has no syntactical significance in Ly, but recommended for read-
ability.

The syntax for tuple types is a comma-separated list of types or values
enclosed in braces, so {int, real} is a pair of an integer and a floating-point
number. Both single-element and empty tuples are permitted. Array types are
written as the element type surrounded by brackets, meaning that [int] is a one-
dimensional array of integers, and [[[{int, real}]]] is a three-dimensional
array of tuples of integers and floats. An immediate array is written as a
sequence of elements enclosed by brackets.

[1, 2, 3] // Array of type [int].
[[11, [2]1, [3]] // Array of type [[int]].

All arrays must be regular (often termed full) - for example, all rows of a
two-dimensional array must have the same number of elements.

[[1, 21, [31] // Compile-time error.
[iota(1), iota(2)] // A run-time error if reached.

The restriction to regular arrays simplifies size analysis and optimisation.

Arrays are indexed using the common row-major notation, e.g., a[il, i2,
i3...]. An indexing is said to be full if the number of given indexes is equal
to the dimensionality of the array.

CHAPTER 2. THE £y LANGUAGE

= k (Constant)
| v (Variable)
| {e1,...,en} (Tuple expression)
| [ler,...,en] (Array expression)
| e1®es (Binary operator)
| -e (Prefix minus)
| not e (Logical negation)
| if e; then ey else e (Branching)
| wvler, ..., enl (Indexing)
| wvler, ..., en) (Function call)
| let p = e; in ey (Pattern binding)
| zip(ei, ..., en) (Zipping)
| unzip(e) (Unzipping)
| iota(e) (Range)
| replicate(e,, ey) (Replication)
| size(e) (Array length)
| reshape((ey,...,e,), €) (Array reshape)
| transpose(e) (Transposition)
| split(er, e2) (Split eo at index eg)
| concat(ep, e2) (Concatenation)
| let v; = vg with (In-place update)
[61,...,en] <= ey

in €y

| loop (p = e1) = (Loop)
for v < ey do eg3
in ey4
fun = fun t v(t; v1,...t, Vp) = €
prog = €
| fun prog

Figure 2: L, syntax, continued

A let-expression can be used to refer to the result of a subexpression:

let z=x +y in ...

Recall that Ly is eagerly evaluated, so the right-hand side of the let is evaluated
exactly once, at the time it is first encountered.

Two-way if-then-else is the only branching construct in £y. Pattern
matching is supported in a limited way for taking apart tuples, but this can
only be done in let-bindings, and not directly in a function argument list.
Specifically, the following function definition is not valid.

fun int sumpair({int, int} {x, y}) = x + y // WRONG!
Instead, we must use a let-binding explicitly, as follows.

fun int sumpair({int, int} t) =
let {x,y} =t inx +y

10

CHAPTER 2. THE £y LANGUAGE

Pattern-matching in a binding is the only way to access the components of a
tuple.

Function calls are written as the function name followed by the arguments
enclosed in parentheses. All function calls must be fully saturated - currying is
only permitted in SOACs (see Section 2.2).

2.1.1 Sequential loops

Lo has a built-in syntax for expressing certain tail-recursive functions. Consider
the following tail-recursive formulation of a function for computing the Fibonacci
numbers.

fun int fib(int n) = fibhelper(1,1,n)

fun int fibhelper(int x, int y, int n) =
if n = 1 then x else fibhelper(y, x+y, n-1)

We can rewrite this using the loop construct.

fun int fib(int n) =
loop ({x, y} = {1,1}) = for i < n do
{y, x+y?}
in X
The semantics of this is precisely as in the tail-recursive function formulation.
In general, a loop

loop (pat = inttial) = for % < bound do loopbody
in body

has the following semantics:

1. Bind pat to the initial values given in initial.

2. While 7 < bound, evaluate loopbody, rebinding pat to be the value returned
by the body. At the end of each iteration, increment 7 by one.

3. Evaluate body with pat bound to its final value.

Semantically, a loop expression is completely equivalent to a call to its corre-
sponding tail-recursive function. For example, denoting by t the type of x, the
loop in Figure 3 has the semantics of a call to the tail-recursive function on the
right-hand side.

The purpose of loop is partly to render some sequential computations
slightly more convenient, but primarily to express certain very specific forms of
recursive functions, specifically those with a fixed iteration count. This property
can eventually be used for analysis and optimisation, although the current Lg
compiler does not yet exploit this.

11

CHAPTER 2. THE £y LANGUAGE

fun t f(int i, int n, t x) =

loop (x = a) = if i >= n then x
for i < n do else f(i+1, n, g(x))
=
g(x)
in body let x = f(i, n, a)
in body

Figure 3: Equivalence between loops and recursive functions

2.1.2 In-place updates

In an array-oriented programming language, a common task is to modify some
elements of an array. In a pure language, we cannot permit free mutation, but
we can permit the creation of a duplicate array, where some elements have been
changed. General modification of array elements is done using the let-with
construct. In its most general form, it looks as follows.

let dest = src with [indezes] <- wvalue
in body

This evaluates body with dest bound to the value of srec, except that the
element(s) at the position given by indezes take on the new value value.! The
given indexes need not be complete, but in that case, value must be an array of
the proper size. As an example, here’s how we could replace the third row of
an n X 3 array.

let b = a with [2] <- [1,2,3] in b
Whenever dest = src, we can write
let dest [tndezes] = walue in body

as a shortcut. Note that this has no special semantic meaning, but is simply a
case of normal name shadowing.

For example, the loop given below implements the “imperative” version of
matrix multiplication of two N x N matrices.

fun *[[int]] matmultImp(int N, [[int]] a, [[int]] b) =
let res = replicate(N, iota(N)) in
loop (res) = for i < N do
loop (res) = for j < N do
let partsum =
let res = 0 in
loop (res) = for k < N do
let res = res + al[i,k] * bl[k,j]
in res
in res

in let res[i,j] = partsum in res
in res

in res

Yes, this is the third binding construct in the language, ignoring function abstraction!

12

CHAPTER 2. THE £y LANGUAGE

l = fnt (& v1, ..., t, v,) => e (Anonymous function)
| id Ce1, ..., en) (Curried function)
| op ® (e, ..., ep) (Curried operator)

e map(l, e)

| filter(l, e)

| reduce(l, z, e)

| scan(, z, e)

| redomap(l,, ln, z, €)

Figure 4: Second-order array combinators

With the naive implementation based on copying the source array, executing
the let-with expression would require memory proportional to the entire source
array, rather than proportional to the slice we are changing. This is not ideal.
Therefore, the let-with construct has some unusual restrictions to permit
in-place modification of the src array, as described in Chapter 3. Simply put,
we track that src is never used again. The consequence is that we can guarantee
that the execution of a let-with expression does not involve any copying of
the source array in order to create the newly bound array, and therefore the
time required for the update is proportional to the section of the array we
are updating, not the entire array. We can think of this as similar to array
modification in an imperative language.

2.2 SOACs

The language presented in the previous section is in some sense “sufficient”, in
that it is Turing-complete, and can express imperative-style loops in a natural
way with do-loops. However, L; is not intended to be used in such a way -
bulk operations on arrays should be expressed via the four second-order array
combinators (SOACs) shown in Figure 4, as the optimisations covered in later
chapters are expressed as transformations on these.

The semantics of the SOACs is identical to the similarly-named higher-order
functions found in many functional languages, but we reproduce it here for
completeness. The types given are not Ly types, but a Haskell-inspired notation,
since the SOACs cannot be typed in Ly itself.

map(f,a) = (@ — B) = [a] = [F]
={fal0]), ..., flaln])}

filter :: (& — bool) — [a] — [q]
filter(f,a) = {alil | f(alil) = True }

reduce : (a > a = a) > a— [= «
reduce(f,z,a) = f(. ..(f(f(z,al0]), al1])...), alnl)

13

CHAPTER 2. THE £y LANGUAGE

scan:: (0 > a— a) = a— [a] = [

scan(f,z,a) ={f(x,al0]), f(f(x,al0]),all]l),...}

scan is an inclusive prefix scan, and returns an array of the same outer size
as the original array. The functions given to reduce and scan must be binary
associative operators, and the value given as the initial value of the accumulator
must be the neutral element for the function. These properties are not checked
by the £y compiler, and are the responsibility of the programmer.

redomap is a special case — it is not intended for use by the programmer,
but used internally for fusing reduce and map. Its semantics is as follows.

redomap :: (@ > a — «a) = (a = f — «a)
—a—=[f] =«

redomap(®,g,x,v) = foldl(g, =, v)

Note that the runtime semantics is a left-fold, not a normal £y reduce. In
particular, g need not be associative. We use a Haskell-like syntax to explain
the rationale behind redomap:

(reduce © e) o (map f) can be formally transformed, via the list homomorphism
(LH) promotion lemma [6], to an equivalent form:

(reduce © €) o (map f) = reduce ® e o map (reduce © ¢ o map f) o split,
where the original list is distributed to p parallel processors, each of which
execute the original map-reduce computation sequentially and, at the end,
reduce in parallel the per-processor result using the operator ®. Hence, the
inmer map-reduce can be rewritten as a left-fold:

(reduce ® e) o (map f) = reduce ©® e omap (foldl g¢) o split,

Where g is a function generated from the composition of f and ©. It follows
that in order to generate parallel code for

(reduce ® e) o (map f) it is sufficient to record either ® and f, or ® and g.
We choose the latter, i.e., redomap(®, g, e), because it allows a richer composi-
tional algebra for fusion. In particular, it allows us to fuse reduce o map o fil-
ter into a redomap without duplicating computation, as described in Chapter 7.

2.3 Language reference

The builtin types in £y are int, real, bool and char, as well as their combi-
nation in tuples and arrays.

The following list describes every syntactical language construct in the
language.

constant
Evaluates to itself.

var
Evaluates to its value in the environment.

x arithop y
Evaluate the binary operator on its operands, which must both be of

14

CHAPTER 2. THE £y LANGUAGE

either type int or real. The following operators are supported: +, *, -
/a %a = <a <=a pow.

X bitop y
Evaluate the binary operator on its operands, which must both be of type
int. The following operators are supported: =, &, |, >>, <<, i.e., bitwise
xor, and, or, and arithmetic shift right and left.

x & y
Logical conjunction; both operands must be of type bool. Not short-
circuiting, as this complicates program transformation. If short-circuiting
behaviour is desired, the programmer can use if explicitly.

x |y
Logical disjunction; both operands must be of type bool. As with &&, not
short-circuiting.

not x
Logical negation of x, which must be of type bool.

-x
Numerical negation of z, which must be of type real or int.

ali]
Return the element at the given position in the array. The index may be
a comma-separated list of indexes.

zip(ay,...,ap)
Zips together the elements of the outer dimensions of arrays a1, ..., ay,.
Static or runtime check is required to check that the sizes of the outermost
dimension of arrays aq,...,a, are the same. If this invariant does not
hold, program execution stops with an error.

unzip(a)
If the type of a is [{t1,...,t,}], the result is a tuple of n arrays, i.e.,
{[t1],-- -, [tn]}, otherwise it is a type error.

iota(n)

An array of the integers from 0 to n.

replicate(n, a)
An array consisting of n copies of a.

size(k, a)
The size of dimension k of array a. k£ must be a static integral constant.

split(n, a)
Partitions the given array into two disjoint arrays a [0...n], a[n+1...],
returned as a tuple.

concat(a, b)
Concatenate the rows/elements of one array with another. The shape of
the two arrays must be identical in all but the first dimension.

15

CHAPTER 2. THE £y LANGUAGE

copy (x)
Return a deep copy of the argument. Semantically, this is just the identity
function, but it has special semantics related to uniqueness types as
described in Chapter 3.

reshape ((dimy, ..., dim,), a)
Reshape the elements of the given array into the specified shape. The
number of elements in a¢ must be equal to dimy X ... X dim,.

transpose(a)
Return the transpose of a.

transpose(k,n,a)
Return the generalised transpose of a. If b=transpose(k,n,a), then

a[il,...,ik,ik+1,...,ik+n,...,iq] :b[il,...,Z'k+1,...,ik+n,ik,...,iq].

We will call this an operation an (k, n)-transposition. Note that trans-
pose(0,1,a) is the common two-dimensional transpose.

Be aware that £ and n must be static integer literals, and k + n must be
non-negative and smaller than the rank of a, or it is considered a type
error.

let pat = e in body
While evaluating body, bind the names mentioned in pat to the components
in the corresponding positions of the value of e. We will refer to the
expression e as the “right-hand side” (or RHS).

let dest = src with [index] <- v in body
Evaluate body with dest bound to the value of sre, except that the
element(s) at the position given by the index take on the value of v. The
given index need not be complete, but in that case, the value of v must
be an array of the proper size.

if c then a else b
If ¢ evaluates to True, evaluate a, else evaluate b.

loop (pat = initial) = for i < bound do loopbody in body

1. Bind pat to the initial values given in initial.

2. While ¢ < bound, evaluate loopbody, rebinding pat to be the value
returned by the body.

3. Evaluate body with pat bound to its final value.

map(f, a)
Apply f to every element of a and return the resulting array.

reduce(f, x, a)
Left-reduction with f across the elements of a, with z as the neutral
element for f. f must be associative, as the evaluation order is not
otherwise specified.

16

CHAPTER 2. THE £y LANGUAGE

scan(f, x, a)
Inclusive prefix-scan.

filter(f, a)
Remove all those elements of a that do not satisfy the predicate f.

2.3.1 Tuple shimming

In a SOAC, if the given function expects n arguments of types t1,...,t,, but
the SOAC will call the function with a single argument of type {t1,...,t,}
(that is, a tuple), the Lo compiler will automatically generate an anonymous
unwrapping function. This allows the following expression to type-check (and
run):

map(op +, zip(as, bs))

Without the tuple shimming, the above would cause an error, as op +is a
function that takes two arguments, but is passed a two-element tuple by map.

2.3.2 Arrays of tuples

For reasons that will be explained in Chapter 7, arrays of tuples are in a
sense merely syntactic sugar for tuples of arrays. The type [{int, reall}] is
transformed to {[int], [reall} during the compilation process, and all code
interacting with arrays of tuples is likewise transformed. In most cases, this
is fully transparent to the programmer, but there are edge cases where the
transformation is not trivially an isomorphism.

Consider the type [{[int], [real]}], which is transformed into {[[int]],
[[realll}. These two types are not isomorphic, as the latter has more stringent
demands as to the fullness of arrays. For example,

[
{011, [1.01},
{[2,3], [2.0]}
]

is a value of the former, but the first element of the corresponding transformed
tuple

{
(f11, [2, 311,
[[1.0], [2.0]]
}

is not a full array. Hence, when determining whether a program generates full
arrays, we must hence look at the transformed values - in a sense, the fullness
requirement “transcends” the tuples.

Section 4.1 contains more information on the transformation of arrays of
tuples.

17

Chapter 3

Uniqueness Types

While £y is through and through a pure functional language, it may occasionally
prove useful to express certain algorithms in an imperative style. Consider a
function for computing the n first Fibonacci numbers:

fun [int] fib(int n) =
// Create "empty" array.
let arr = iota(n) in
// Fill array with Fibonacci numbers.
loop (arr) = for i < n-2 do
let arr[i+2] = arr[i] + arr[i+1]
in arr

in arr

If the array arr is copied for each iteration of the loop, we are going to put
enormous pressure on memory, and spend a lot of time moving around data,
even though it is clear in this case that the “old” value of arr will never be used
again. Precisely, what should be an algorithm with complexity O(n) becomes
O(n?), due to copying the size n array (an O(n) operation) for each of the n
iterations of the loop.

To prevent this, we will want to update the array in-place, that is, with
a static guarantee that the operation will not require any additional memory
allocation, such as copying the array. With an in-place modification, a let-with
can modify the array in time proportional to the slice being updated (O(1) in
the case of the Fibonacci function), rather than time proportional to the size
of the final array, as would the case if we perform a copy. In order to perform
the update without violating referential transparency, we need to know that no
other references to the array exists, or at least that such references will not be
used on any execution path following the in-place update.

In Ly, this is done through a type system feature called uniqueness types,
similar to, although simpler, than the uniqueness types of Clean [3, 4]. Alongside
a (relatively) simple aliasing analysis in the type checker, this is sufficient to
determine at compile time whether an in-place modification is safe, and signal a
compile time error if let-with is used in way where safety cannot be guaranteed.
This means that let-with must always be efficient, and its use is not permitted
otherwise.

18

CHAPTER 3. UNIQUENESS TYPES

The simplest way to introduce uniqueness types is through examples. To
that end, let us consider the following function definition.

fun *[int] modify(*[int] a, int i, int x) =
let b = a with [i] <- a[i] + x in
b

The function call modify(a,i,z) returns a, but where the element at index
i has been increased by x. Note the asterisks: in the parameter declaration
*x[int] a, this means that the function modify has been given “ownership” of
the array a, meaning that any caller of modify will never reference array a
after the call again. In particular, modify can change the element at index i
without first copying the array, i.e. modify is free to do an in-place modification.
Furthermore, the return value of modify is also unique - this means that the
result of the call to modify does not share elements with any other visible
variables.

Let us consider a call to modify, which might look as follows.

let b = modify(a, i, =) in

Under which circumstances is this call valid? Two things must hold:
1. The type of a must be *[int], of course.

2. Neither a or any variable that aliases a may be used on any execution
path following the call to modify.

In general, when a value is passed as a unique-typed argument in a function
call, we consider that value to be consumed, and neither it nor any of its aliases
can be used again. Otherwise, we would break the contract that gives the
function liberty to manipulate the argument however it wants. Note that it is
the type in the argument declaration that must be unique - it is permissible to
pass a unique-typed variable as a non-unique argument (that is, a unique type
is a subtype of the corresponding nonunique type).

A variable v aliases a if they may share some elements, i.e. overlap in
memory. As the most trivial case, after evaluating the binding let b = a,
the variable b will alias a. As another example, if we extract a row from a
two-dimensional array, the row will alias its source:

let b = a[0] in
... // b is aliased to a (assuming a is not one-dimensional)

Section 3.1 will cover sharing and sharing analysis in greater detail.
Let us consider the definition of a function returning a unique array:

fun *[int] f£([int] a) = e

Note that the argument, a, is non-unique, and hence we cannot modify
it. There is another restriction as well: a must not be aliased to our return
value, as the uniqueness contract requires us to ensure that there are no other

19

CHAPTER 3. UNIQUENESS TYPES

let b = a with [i] <- 2 in
f(b,a) // Error: a used after being source in a let-with

Figure 5: Violation of Uniqueness Rule 1

fun *[int] broken([[int]] a, int i) =
a[i] // Return value aliased with ’a’.

Figure 6: Violation of Uniqueness Rule 2

references to the unique return value. This requirement would be violated
if we permitted the return value in a unique-returning function to alias its
(non-unique) parameters.

To summarise: values are consumed by being the source in a let-with, or
by being passed as a unique parameter in o function call. We can crystallise
valid usage in the form of three principal rules:

Uniqueness Rule 1 When a value is passed in the place of a unique parameter
in a function call, or used as the source in a let-with expression, neither
that value, nor any value that aliases it, may be used on any execution
path following the function call. A violation of this rule is illustrated on
Figure 5.

Uniqueness Rule 2 If a function definition is declared to return a unique
value, the return value (that is, the result of the body of the function)
must not share memory with any non-unique arguments to the function.
As a consequence, at the time of execution, the result of a call to the
function is the only reference to that value. A violation of this rule is
illustrated on Figure 6.

Uniqueness Rule 3 If a function call yields a unique return value, the caller
has exclusive access to that value. At the point the call returns, the return
value may not share memory with any variable used in any execution
path following the function call. This rule is particularly subtle, but can
be considered a rephrasing of Uniqueness Rule 2 from the “calling side”.

Finally, it is worth emphasising that everything in this chapter is used as
part of a static analysis. All violations of the uniqueness rules will be discovered
at compile time (in fact, during type-checking), thus leaving the code generator
and runtime system at liberty to exploit them for low-level optimisation.

3.1 Sharing analysis

Whenever the memory regions for two values overlap, we say that they are
aliased, or that sharing is present. As an example, if you have a two-dimensional
array a and extract its first row as the one-dimensional array b, we say that a

20

CHAPTER 3. UNIQUENESS TYPES

and b are aliased. While the £y compiler may do a deep copy if it wishes?, it is
not required, and this operation thus holds the potential for sharing memory.
Sharing analysis is necessarily conservative, and merely imposes an upper bound
on the amount of sharing happening at runtime. The sharing analysis in £
has been carefully designed to make the bound as tight as possible, but still
easily computable.

In Ly, the only values that can have any sharing are arrays - everything else
is considered “primitive”. Tuples are special, in that they are not considered
to have any identity beyond their elements. Therefore, when we store sharing
information for a tuple-typed expression, we do it for each of its element types,
rather than the tuple value as a whole.

To be precise, sharing information for an expression e, written aliases(e),
can take one of two forms:

1. I, where [is a subset of the variables in scope at e. This means that e may
share data with some of the variables in [. This is the sharing information
when the type of e is not a tuple.

2. (ly,...,1l,), which requires that the type of e is a tuple {¢1,...,t,}, and
denotes that the sharing of the ith component is ;. This is the shape of
the sharing information when the type of e is a tuple.

We need a way to combine sharing information. The typical case is com-
puting sharing information for the expression if ¢ then el else e2, where
the sharing of the resulting value is the “combination” of the sharing in both
el and e2. We make this combination precise by the associative, commutative
operation s; @ sg, which is defined by the following equation.

l1®ly =11 Ul
<ll7"';ln>€B<ln+l7~-‘7l2n> = <l1@ln+17'~~7ln®12n>

Now we can define
aliases(if ¢ then el else e2) = aliases(el) @ aliases(e2).

We will often treat sharing information as a set and write things such as
Vo € aliases(e).p(v) — in these cases, the set elements are all variables contained
anywhere in the sharing information.

Aliasing is transitive — if v € aliases(e) and v’ € aliases(e), then v €
aliases(v’). Aliasing is mostly intuitive - during type-checking, the symbol table
contains not only the type of each variable, but also which other variables it
may alias. Hence, we can define an aliasing rule for variables:

aliases(v) = {v} U {Any variable in scope that aliases v}

LAt some point, a proper cost model for Lo will be developed, and it is very likely that
we require such indexing to be O(1).

21

CHAPTER 3. UNIQUENESS TYPES

The aliasing rules for other expressions are mostly intuitive, but a few
interesting cases are presented here:

aliases(e) = () (Whenever e has a basic type?)

aliases(a[i]) = aliases(a)

= aliases(e;) @ aliases(es)

) =0
)=a
aliases(copy(e)) =0
aliases(if ¢ then e; else ey) = a

)=a

aliases(transpose(e)

Note that transpose introduces aliasing - this is to permit an implementa-
tion where the transposed array is never actually manifested in memory, but
is merely an index space transformation of the underlying array resolved at
compile-time. The operations reshape, split, etc. have a similar rule.

The rule for function application is more complicated. To begin with, and
this was indeed the original rule in £y, we can state that the return value of a
function call aliases all of its arguments.

aliases(fle1,...,en)) = U aliases(e;) (=Too restrictive!)
1<i<n

However, it turns out that this is far too restrictive. Consider a call £1(a)
to the function £1 whose type is shown on Figure 7 - if the return value aliased
the argument a, then we could never use the return value at all, as it would
alias something that has been consumed, namely the parameter a:

let x = f1(a) in // Now ’x’ would alias ’a’.
X // Violates Uniqueness Rule 1,
// as something aliasing ’a’ is accessed

Hence, a first elaboration is that the return value should only alias those
function arguments that are not consumed:

aliases(fle1,...,en)) = U aliases(e;) (—Still too restrictive!)

1<i<n,e; is not consumed

The argument for the soundness of this rule is as follows: even if the return
value may at runtime alias a consumed argument, we do not need to record it,
as that argument will never be accessed elsewhere.

Unfortunately, the above rule is still too restrictive, as can be illustrated
by function £2 from Figure 7. Consider a call £2(a) - by the above rule, the
return value would be aliased to a, which would violate Uniqueness Rule 3, as
a may be used again.

Hence, we add another elaboration, wherein the alias set is empty if the
return value is unique.

22

CHAPTER 3. UNIQUENESS TYPES

fun [int] f1(*[int] a)

fun *[int] f£2([int] a)

Figure 7: Unique arguments

0 If f returns an unique value

aliases(f(e1; .-, en)) = 1<i<n aliases(e;) Otherwise

e; is not consumed
The final rule is essentially correct, except that it ignores tuples. As men-
tioned earlier, sharing information for tuples is represented element-wise. Hence,
we can simply apply the above rule piecewise for each element in the tuple.
Although the current aliasing rules for function calls have proven sufficient
for now, there are cases where it is too conservative. Consider the following
function.

fun [int] contrived([[int]] src, [int] indexes, int i) =
src[indexes[i]]

In a call contrived(src,indexes, i), by the above rules, we would consider
the return value to be aliased to both src and indexes, as both are non-
consumed parameters. Yet, it is clear by inspecting the actual function definition
that the return value will only index the src parameter.

This problem is not solvable merely through refinement of the aliasing rules
- either the user must annotate each function with information about which
of the parameters may be aliased by the return value, or the compiler could
deduce it using some sharing inference algorithm. As the latter would add a
great deal of complexity, and the former require a language change, we have
postponed tackling this problem until it becomes a problem in practice.

3.2 Tracking uniqueness
Let us summarise:

e If the type of an array parameter is preceded by a single asterisk, it
denotes that the array is unique, i.e., that it will never be reused outside
of the current function.

e The source operand to a let-with must be unique. If it is not, it is
reported as a type error.

Let-with and function calls are the only places in which variable consumption
can happen. As a first example, let us consider a function that replaces the
value at a given position in an integer array.

fun *[int] replace(*[int] arr, int i, int x) =
let arr[i] = x in arr

23

CHAPTER 3. UNIQUENESS TYPES

let b = a in // Now b € aliases(a).
let ¢ = a with [i] <- x in // Vw € aliases(a) = Mark v as consumed.
b // Error, because b € aliases(a)!

Figure 8: Example of array consumption

The type of this function expresses the fact that it consumes its array
argument, and also returns a unique array. This permits composition - re-
place(replace(a, il, x), 12, y) is a valid application. Defining replace
as

fun [int] replace2(*[int] arr, int i, int x) =
let arr[i] = x in arr

would still be type correct (a unique array can be used anywhere a nonunique
is expected), but the composition replace2(replace2(a, il, x), i2, y)
would no longer be well typed.

Checking that uniqueness invariants are being upheld is far subtler than
normal type checking. In particular, detailed sharing analysis has to be per-
formed, in order to ensure that after an array a is consumed, it becomes an
error to use any value that may refer to (parts of) the old value of the array.
Whenever we consume a variable a, we mark as inaccessible all of its aliases, as
illustrated on Figure 8.

A key principle is that of sequence points that lexically checkpoint the use
of variables. As an example, assume that we are given a function f of type
*[int] -> int. That is, £ consumes an array and returns an integer. The
expression

f(a) + alil

is invalid because a consumption and observation of the same variable hap-
pens within the same sequence. It is valid for a sequence to contain multiple
observations of the same variable, but if a variable is consumed, that must be
the only occurrence of the variable (or any of its aliases) within the sequence.
Binding constructs (lets, let-withs and loops) create sequence points that delimit
sequences. If we rewrite the expression to coordinate the consumption into its
own sequence, all will be well.

let ¢ = al[i] // Since a[i] is of primitive type,
// c does not alias a.
in f(a) + ¢

The reason for this rule is to enable simpler code generation, as any necessary
order of operations is evident in the code. It does require a certain amount of
care when doing program transformations, as for example expression reordering
may result in an invalid program, as shown on Figure 9 and discussed in further
detail in Chapter 7.

In the previous examples, function arguments that were consumed were all
simple variables, making it easy to describe what was being consumed. But in
general, we might have an expression

24

CHAPTER 3. UNIQUENESS TYPES

let x = a[0] in let b = a with [i] <- y in
let b = a with - let x = a[0] in // Error:

[i] <- y in // violates Uniqueness Rule 1
x + b[1] x + b[1]

Figure 9: Expression reordering causing violation of uniqueness rules

replace(e, i, x)

where e is some arbitrary expression. In this case, we mark as consumed all
variables in aliases(e).

Constant, literal arrays are not considered unique, as the compiler may put
them in read-only memory and return the same reference every time they are
accessed. For example, the following program is invalid.

fun [int] fibs(int i, int x) =
let a =1[1, 1, 2, 3, 5, 8, 13] in
let a[i] = x in a

Since a is not unique, its use in the let-with is a type error. However, we can
use copy to create a unique duplicate of the array.

fun [int] fibs(int i, int x) =
let a = copy([1, 1, 2, 3, 5, 8, 13]) in
let a[i] = x in a

If we have a function such as
fun int f(x[int] a, int x) = x

then it is not valid to curry it in such a way that we provide values for the
consumed parameters. For example, map(f (a), b) would be an error. The
reason for this is that £ may be called an arbitrary number of times during the
mapping, but a can only be consumed once.

25

Chapter 4

Internal Representation

It is a common compilation technique to transform the externally visible language
into a simpler intermediate language, on which all optimisation and further
compilation is performed. This is usually necessary, because languages written
for human consumption have a large amount of bells and whistles that make
programming more convenient, but offer no significant avenues for optimisation,
but rather just leave more cases for the optimiser to handle.

We do not suffer as badly from that problem with Ly, as it was designed
as an intermediate language itself. Nevertheless, before embarking on any
optimisation, we do transform the input program to an internal dialect of L. In
most compilers, it is usually not possible to transform the intermediate language
to the external language, at least not without losing much of the structure of the
original program. In comparison, the transformation from external to internal
Lo is comparatively simple and reversible (with some loss of information; see
Section 4.3). Internal L also supports a mechanism for making usually implicit
checks explicit, such as bounds checks when indexing arrays, in some cases
permitting their optimisation through standard optimistaions. This is described
in Section 4.2.

A very important first notice: All names in internal Ly are globally unique.
This means that we will never have name shadowing, and we can uniquely
identify, say, a let-binding by one of the names it binds.

4.1 Tuple Transformation

The principal difference between external and internal Ly is that the latter does
not permit arrays of tuples. There are two reasons for this:

e Dataflow analysis is simplified by removing zip/unzip expressions - the
fusion algorithm in Chapter 7 benefits greatly from this.

e Arrays of tuples cannot in general be efficiently represented in memory
due to alignment constraints, and so we would have to remove them at
some stage anyway.

An array of tuples type is converted to a tuple containing arrays of the
original tuple components, for which the process is then repeated recursively.

26

CHAPTER 4. INTERNAL REPRESENTATION

Futhermore, tuples are flattened. All other types are left unchanged. A few
examples:

[int] = [int]
[{int,real}] = {[int], [reall}
[{[int], real}] = {[[intl], [reall}
{{int, bool}, real} = {int, bool, real} (Flattening)

zip and unzip are not allowed in internal £y3. Both are removed during
the conversion process, as they perform a transformation between representa-
tions that is not necessary in internal Lg, although zip has some additional
complications that are discussed in Section 4.2.

Most expressions operating on arrays of tuples have to be modified to
operate on the components of the replacement tuples-of-arrays instead, but the
transformation is relatively trivial, so we will not describe it in detail.

Internal £j also does not permit tuple-typed variables. Hence, every pattern
that binds a variable to a tuple must be converted to explicitly name the
elements of the tuple, e.g:

let x = {f(a), g(b)} in

(3
let {x1,x2} = {f(a), g®)} in

4.1.1 Tupleless SOACs

As internal Ly does not permit tuples of arrays, we need to find a way to convert
an expression such as:

map(fn int (int,int t) =>
let x,y =t in
f(x,y),
zip(a, b))

The solution is tupleless SOACs: variants of the normal SOACSs in which several
arrays are traversed in parallel. For example, the previous expression will be
converted to:

mapT(fn {int} (int x, int y) =>
f(x,y),
a, b)

Conceptually, we can imagine that the tupleless SOACs all have a built-in zip.
Furthermore, initial values for tuple-typed accumulators (for reduceT, scanT
and redomapT) are given element-wise, and also passed element-wise to the
function. This, combined with the ban on arrays of tuples, implies that no
parameter of a function in a tupleless SOAC is ever tuple-typed.

27

CHAPTER 4. INTERNAL REPRESENTATION

e = <c>mapT(fn t (¢ v1, ..., tn V) => €f, €1, ..., €p)
| <e>filterT(fn t (41 w1, ..., by Up) => €5, €1, ..., €,)
| <c>reduceT(fn t (¢ vy, y bt vn) = ep, {z1, ..., xR}, e,
| <c>scanT(fn t (81 vi, ..., tn V) => ef, {z1, ..., 2,3}, e,
| <c>redomapT(fn t, (to; Voys ---» to, Vo,) => €o,
fn t; (til Vjgs o oes tin Uin) => €;,

{x1, ..., Tn}, €1, .., €n)

Figure 10: Tupleless Second-order array combinators

As a minor detail, curried functions are also not permitted in tupleless
SOACs, although we will still use them for notational convenience. The notation
is summarised on Figure 10 - the <¢> notation is explained in the next section.

4.2 Assertions

Removal of zip carries with it an additional complication. Recall that zip is
responsible for checking that the input arrays are of the same (outer) size, and
if they are not, terminate the program with an error. The obvious solution is
to make each tupleless SOAC do the same check, but that would be wasteful
of computer resources. Even worse, it’s not a full solution to the problem.
Consider the following expression.

let ¢ = zip(a,b) in
clo]

How should this be transformed? There is an obvious solution:
{af0], b[01}

But it is of course wrong - there is no checking that a and b are of the same
length, hence the original expression may fail, while the transformed expression
may evaluate successfully. The final solution is to predicate the expression on
the fact that a and b must match.

if a and b have the same length
then {al0], b[0]}
else fail

Using branches to accomplish this somewhat complicates further transformation
and optimisation however, so an approach based on assertions was chosen. First,
we introduce a new type, cert, which is inhabited by only one value Checked.
The idea is that a value of type cert acts as a certificate, certifying that some
property has been checked. We then add three new language constructs:

assert(e)
Returns Checked if the boolean expression e returns True, otherwise
terminates the program with an error.

conjoin(eq,...,ey)
Allof eq, ..., e, must be expressions of type cert. Always returns Checked.
The purpose of conjoin is to combine several cert values into one.

28

., en)

.y €n)

CHAPTER 4. INTERNAL REPRESENTATION

<V1,...,0p>€
A predicated expression. Evaluate e and return its value. The variables
v1,...,0, are certificates: variables that must each be of type cert.
They exist solely to express a dependency between the expression e and
whichever assertions it is predicated upon, which implies that on any
execution path leading to e, the assertions computing the certificates will
have been executed first.

Now the index expression given above can be transformed into the following.

let ¢ = assert(size(0,a) = size(0,b)) in
{<c>al0], <c>b[0]}

An advantage of this approach is that the association between assertions and
predicated expressions is given by the same variable-usage rules that govern all
other expressions, and it is therefore not necessary to handle assert specially
in the various transformations. It is, however, necessary to maintain the list of
certificates when transforming a predicated expression, but it turns out that
this is simple in practice. Essentially, the rule of thumb is that every expression
derived one or more predicated expressions must be predicated likewise.

The assertion design also has the particularly convenient property that even
if later transformations pick apart the tuple literal, the individual components
will still be predicated on the original property. Even more importantly, the
condition size(0,a) = size(0,b) is seen as a perfectly ordinary expression by
the rest of the compiler, and can be simplified (or removed altogether) by size
analysis, copy propagation, constant folding, common-subexpression elimination
and other standard optimisations.

One thing is worth noting: The assertion expression, or the value that it
computes, has no recognisable meaning by itself. It is not a proposition in the
sense of formal logics, and we can only determine which property it guarantees
by the way in which it is used. This limits what kinds of information the
compiler can deduce from an assertion, compared to using a real theorem prover
or dependent type system. In particular, we can perform only very limited static
checking, where through simplification we are able to obtain the expression
assert(False), although even then we cannot be certain that the assertion
is not dead code. Hence, the assertion system functions solely at run-time.
Nevertheless, the power-to-weight ratio is very high for this design, and it suits
our purpose well.

Having introduced an assertion mechanism to solve the problem of tupleless
SOACs, it is of course worth to consider whether it can be used for other purposes
as well. As it turns out, we can use assertions to express bounds-checking (using

a somewhat ugly syntax):
let ¢ = assert(0 <= i && i < size(0,a)) in

al<e> | il
Again, what we gain is the ability to exploit our standard expression-

optimisation machinery to simplify and perhaps even remove the bounds check.
In particular, range analysis can be used to hoist such expressions out of inner
loops - all the while staying within the (internal) £y language. This will be
covered in greater detail in Section 6.1.

ali] =

29

CHAPTER 4. INTERNAL REPRESENTATION

t o= cert

k = Checked

c = U1,...,Un

e assert(e)
conjoin(ey, ..., €p)
<c>idley, ..., enl

<c>size(k, e)

<c>transpose(e)
<c>split(ey, es)
<c>concat (e, e3)

(Certificate)
(Always-true certificate)
(Sequence of variables)

Assertion)

Conjoin assertions)
Indexing)

Array length)

Transposition)
Split es at index eq)
Concatenation)

= (
\ (
\ (
| (
| <c>reshape((eq, ... (Array reshape)
\ (
\ (
\ (
| (

let <c>v; = w9 with In-place update)
[ce>ler,...,ep] <= ey
in ey
| vi<e>ler, ..., eyl (Indexing)

Figure 11: Assertions

4.2.1 Function Calls

One question is left - namely how functions mesh with the assertion system.
One solution is to simply require function calls to be predicated. That is, the
program

fun [int] f([{int,int}] input) =
map (op+, input)

f(zip(a,b))
is converted into

fun [int] £([int] inputl, [int] input2) =
mapT(op +, inputl, input2)

let ¢ = assert(size(0,a) = size(0,b)) in
f<c>(a,b)

This is satisfactory from the point of view of the caller - the function £ (after
undergoing transformation) has the precondition that a and b are of the same
size, and this is indeed checked by the above call. The body of the function is
slightly more dubious, as mapT is invoked without a certificate that its inputs
are of the same size, but as long as the caller takes care to only invoke the
function when this precondition is satisfied (which we do in the above case), all
will be well.

The real problem occurs if we inline f. If we do it naively, we get this
program:

let ¢ = assert(size(0,a) = size(0,b)) in
mapT(op +, a, b)

30

CHAPTER 4. INTERNAL REPRESENTATION

And now we have a problem — c is not used anywhere, and may thus be moved
to after the mapT expression, or maybe even removed as dead code! This is
bad. A possible solution would be to make the inliner smarter, and modify
the inlined function body such that every leaf of its syntax tree is predicated
on the same certificates as the original function call. This is a rather clumsy
solution however, and may cause unnecessary predication on branches of the
function that do not depend on the precondition, which would inhibit some
transformations, like hoisting. A more fine-grained solution is needed.

That solution is to embed the certificates directly into the parameter list of
the function. A function that originally accepted a single parameter of type
[{int,int}] will, after conversion to internal Ly, accept three parameters of
types cert, [int], [int]. The example given at the beginning of the section
will become:

fun [int] f(cert input_c, [int] inputl, [int] input2) =
mapT<input_c>(op +, inputl, input2)

let ¢ = assert(size(0,a) = size(0,b)) in
f(c, a,b)

Naive inlining will produce:

let ¢ = assert(size(0,a) = size(0,b)) in
mapT<c>(op +, a, b)

Which is the desired result.
Return values can be handled in a similar fashion. The program

fun [{int,int}] f(int x) =
zip(iota(x), iota(x))

let a = £(10) in
map(g,a)

is converted into

fun {cert, [int], [int]} f(int x) =
let vl = iota(x) in
let v2 = iota(x) in
let ¢ = assert(size(0, v1) = size(0, v2)) in
{c, vi, v2}

let {c, a1, a2} = £(10) in
mapT<c>(g, al, a2)

The return type of £ has been modified to include a certificate for the
postcondition that the two return arrays have the same outer size.!

This solution requires a large amount of tedious tracking of certificates in
the module that converts external to internal L, but as a tradeoff, the rest

n this specific case, later simplification will eventually result in the assertion being
removed and replaced with the literal Checked, but it has been retained for clarity in this
example.

31

CHAPTER 4. INTERNAL REPRESENTATION

of the compiler can be kept simpler, as all dependencies between predicated
expressions and assertions are explicit.

4.3 Converting from Internal to External £

The internal language matches the external quite closely; nevertheless, the
transformation from external to internal language does not have a fully defined
inverse. That is, given a program in internal Ly, we can compute an equivalent
program in external Ly, but it might not be the original program. The steps
are simple in principle:

1. Convert tupleless SOACs to ordinary SOACs, zipping the arguments and
unzipping the return value.

2. Remove all expressions and bindings of type cert, including function
parameters.

3. Remove predicates from all predicated expressions.

4. Remove all asserts.

The problem is that we cannot reconstruct the original arrays of tuples from
the tuples of arrays of internal £y. We cannot know whether any tuple of arrays
we encounter was originally an array of tuples or not. However, as long as the
entry point of the program, the main function, does not use arrays of tuples as
argument or return value, there should be no observable difference. If necessary,
we could handle main on an ad-hoc basis to preserve its original type.

32

Part 11

Optimisations

33

Chapter 5

First Order Optimisations

As a data-parallel programming language, most of the interesting optimisations
for Ly naturally revolve around SOACs. Yet, classical optimisations such as copy
propagation, constant folding, hoisting and common subexpression elimination
(CSE) remain important. For example, they are part of optimising the delayed
representation of some constructs, as demonstrated on Chapter 5.

This chapter will cover the implementation of copy propagation and constant
folding for Ly. Hoisting and CSE will be covered in Chapter 6.

5.1 Inlining

One property holds for all optimisations performed by the Ly compiler: They
are all strictly intraprocedural. Thus, we rely on aggressive inlining as the first
step of the optimisation pipeline, wherein we inline every non-recursive function
call. Inlining a large function at multiple call sites can of course result in a
tremendous amount of code bloat, but as function calls are in any case usually
always inlined on current GPU hardware, due to very little (or no) stack being
available, this is perhaps excusable.
After inlining, most functions will be dead, and are summarily removed.

5.2 Let- and tuple-normalisation

At its core, program optimisation is about recognising code patterns, and
rewriting them to a more efficient form that retains the meaning of the original
code. To make this process simpler, we pre-process the program to give it a
more regular structure. The use of internal Ly as presented in Chapter 4 is an

let a = iota(n) in 4 + x + arr[j,i]
replicate(m, x) in

let ¢ = transpose(arr) in

af4] + b[1] + c[i,j]

(a) Unoptimised (b) Optimised

[}
[0}
t
o'
]

Figure 12: Optimising indexing into replicate, iota and transpose

34

CHAPTER 5. FIRST ORDER OPTIMISATIONS

important step in this process, but it is not sufficient by itself. To this end, we
use a transformation pass that rewrites needlessly complex program structure
into a simpler form. The mechanics behind the transformation are tedious and
unimportant (basically a recursive traversal through the syntax tree), and it is
best understood by the invariants guaranteed of the resulting program:

e Tuple expressions can appear only as the final result of a function, SOAC,
or if expression, and similarly for the tuple pattern of a let binding, e.g.,
a formal argument cannot be a tuple,

e Consecutive let, let-with and loop expressions are at the same nesting
level, e.g., e; cannot be a let expression when used in let p = e; in eg,

e Each if is bound to a corresponding let expression, and an if’s condition
cannot be in itself an if expression, e.g.,

a + if (if ci then e; else e3)
then e3
else ey

4
let c2 = if c; then e; else e2 in
let b = if co then e3 else e4 in a+tb

e Function calls, including SOACs, have their own let binding, e.g., g(reduceT(f,a))
= let y = reduceT(f,e,a) in g(y),

e All actual arguments in a function call are vars, e.g., f (a+b)=>1let x=a+b in f(x).

Note that we consider “function-like” constructs such as transpose, reshape
and replicate to be functions as far as the above invariants are considerned.

5.3 Copy/constant propagation and constant folding

Copy propagation is the mechanism by which we eliminate bindings that are
merely copies of existing variables. Constant propagation is the inlining of
constant bindings where the bindings are used. Constant-folding is the process
of evaluating a constant expression at compile time, for example an addition
where both operands are statically known. Figure 13 illustrates the difference
between the three processes.

In imperative compilers, these optimisations are usually performed on a
program after it has been converted to a basic block graph. However, after
undergoing the let/tuple-normalisation described in the previous section, it is
easy to perform all three optimisations in tandem directly on the syntax tree of
an Ly program.

The central idea is that we consider some expressions to be inlineable. When-
ever the RHS of a 1let-expression is inlineable, we substitute any occurrences of
the name bound by the binding within the body of the let-expression by the
RHS (we ignore bindings where the pattern is a tuple-pattern for now). For
example, consider this expression:

35

CHAPTER 5. FIRST ORDER OPTIMISATIONS

let x = 2 in let x = 2 in 2+ 3
let y = 3 in let y = 3 in U
let z = x in X +y 5
z+y 4

U 2 + 3

let x = 2 in

let y = 3 in

X +y

(a) Copy propagation (b) Constant propagation (c) Constant folding

Figure 13: Examples of copy/constant propagation and constant folding

let b = transpose(a) in let b = reshape((n,m), a) in
bli,j] bli,j]
4 ¥
alj,il ali*m+j] // Assuming ’a’ has rank 1.

Figure 14: Removing reshape and transpose

We consider the expression 2 (a constant number) to be inlinable, hence we
substitute 2 for a within e and remove the binding of a entirely.

A big question is which expressions to inline. As inlining may duplicate
the inlined expression, we should only inline where such duplication will not
result in additional computation at run-time. As a start, we can certainly inline
variables and non-array constants. Incidentally, this by itself provides copy-
and constant-propagation.

As for other expressions, we note that reshape and transpose operations
are entirely index-space transformations, and can thus be handled at compile-
time wherever the result of the operation is used. Although uninplemented in
the current £y compiler, it is envisioned that a transformation similar to the
one on Figure 14 will be used by the code generator. Therefore, we freely inline
reshape and transpose. As iota and replicate can be removed in a similar
manner, they are therefore also considered inlineable.

Bindings with tuple-patterns can be inlined under some circumstances,
specifically if the RHS is itself a tuple literal, where every component is an
inlineable expression.

However, even if an expression is in principle inlineable, there are still three
cases that prevent inlining:

e If an array-typed variable is indexed, we need to keep it in the program,
unless the replacement expression is itself a variable (that is, copy propaga-
tion). This is because Ly only permits indexing of variables, not arbitrary
array-typed expressions.

e If an array-typed variable is used as the source in a let-with, we again
need to keep its binding in the program.

36

CHAPTER 5. FIRST ORDER OPTIMISATIONS

e If a variable cannot be substituted with an expression for some other
reason (notably, because it would violate the 1let-normalisation properties
from Section 5.2), we also cannot remove its binding.

Apart from substituting variables, we also look at other expressions to
determine whether constant folding is possible. This is done by a bottom-up
traversal of the syntax tree, where each expression is processed as follows:

X binop y
If z and y are literals, compute and substitute with the result.

unop x
If z and y is a literal, compute and substitute with the result.

size(k, a)
Depending on k£ and how a was bound, we may be able to replace the
size expression.

e If k=0 and a is the result of iota(n) or replicate(n,e), we can
substitute with simply n, as that is the size of a.

e If a is a literal constant, we can substitute with the exact size.

let pat = e in body
If, after transforming body, none of the names in pat are used, remove the
binding.

if ¢ then a else b
If ¢ can be constant-folded to either True or False, replace with the
corresponding branch.

£(...)
If all parameters to a function call are literal values, we use the interpreter
to evaluate the function and insert its return value. At the moment, we
assume that the function will terminate, although this assumption is not
really justifiable. Instead, we should probably only evaluate non-recursive
functions.

assert (True)
Replace with Checked.

LC1,...,Cp>€
Remove any certificate ¢; that is bound to Checked (i.e. a certificate that
is always true).

conjoin(cy, .. .,cy) hfil
Remove any certificate ¢; that is bound to Checked (i.e. a certificate that
is always true).

alil
There are several potential avenues for constant-folding index operations,
depending on how a was bound:

37

CHAPTER 5. FIRST ORDER OPTIMISATIONS

a is bound to a variable b: Replace with b[i].

a is tota(n): Replace with i — note that this may make an invalid pro-
gram valid, as we remove the bounds check i < n. We could use the
assertion mechanism from Section 4.2 to bring it back, but this is
not done in the current compiler.

a is b[5]: Replace with b[j,i].

a is an array literal: Replace with the corresponding element in the array
literal.

a is replicate(n, v): Replace with v.

ali,jl
If more than one index is given, we can handle the same cases as above
(although indexing into e.g. an iota would of course be a type error), as
well as a few more:?
a is transpose(b): Replace with b[j,1].

a is replicate(n,iota(m)): Replace with j.

IFor simplicity, we treat only the case where two indices are given. The implementation
in the Lo compiler supports an arbitrary number of indices.

38

Chapter 6

The Rebinder

In the compiler literature, hoisting (also known as loop-invariant code motion)
is the movement of loop-invariant expressions out of a loop. This has a clear
benefit: rather than executing once per iteration of the loop, the expression is
executed once before the loop begins. For L, hoisting can be an important
optimisation, as it holds the potential for moving bounds checks and other
assertions out of inner loops. We will see an example of this in the next section.

Common Subexpression Elimination (henceforth referred to as CSE) is a
popular compiler optimisation that identifies identical expressions (i.e. ex-
pressions that always evaluate to the same value), and replaces them with a
variable holding the computed value. If the common expressions are expensive
or computed very frequently, e.g. by being part of an inner loop, this can result
in significant speedup.

It turns out that hoisting and common subexpression elimination can be
unified in a single framework, which in the £y compiler is termed the Rebinder.

This chapter will start out by describing basic principles of hoisting and CSE
in Sections 6.1 and 6.2. In Section 6.3, we will describe their implementation in
the Ly compiler.

6.1 Hoisting

When compiling an imperative language, we must be careful not to move any
code with side effects, but in a pure language such as Ly, we can hoist freely
(with a few restrictions that I'll get to in Section 6.1.1). A simple example of
hoisting in action is shown on Figure 15.

At first glance, hoisting may seem to apply too rarely to be of much benefit,
since most programmers would put loop-invariant code outside of the loop in

map(fn int (int x) => let k =y + z in
let k =y + z in map(fn int (int x) =>
x + k, x + k,
=
a) a)

Figure 15: Hoisting in action

39

CHAPTER 6. THE REBINDER

the first place. However, there are two important use cases that do not involve
programmer-written code:

e Much Ly code is not written by the programmer, but is rather the result
of program transformation by the compiler. Inlining and constant folding
may easily result in the creation of loop-invariant expressions within a
loop.

e Explicit bounds checks, as introduced in Section 4.2, can sometimes be
hoisted out of inner loops.

The latter case merits futher elaboration. Consider the following program:

map(fn int (int i) =>
ali] + a[ix2],
iota(n))

Here, a is a free variable. Once the compiler has turned the implicit bound
checks explicit, the program will look like this:

map(fn int (int i) =>
let cl1 = assert(d >= 0 && i < size(0,a)) in
let c2 = assert(i*2 >= 0 && i*2 < size(0,a)) in
al<c1>]i] + al[<c2>|i*2],
iota(n))

Now, the assertions are not loop-invariant, as they depend on i. If we
assume a sufficiently smart compiler, for example by employing some extension
of symbolic range propagation[10], we can deduce that the variable ¢ will always
be in the range [0, — 1]. This allows us to rewrite the assertions — the checks
for non-negativity goes away, as it is always true, and we only have to check
the upper bound for the maximum values that i and i*2 may attain:

map(fn int (int i) =>
let cl1 = assert(n < size(0,a)) in
let c2 = assert(n*2 < size(0,a)) in
al<c1>]i] + al[<c2>|i*2],
iota(n))

Now c1 and c2 are loop-invariant, and we can move them out of the loop
body, and perform bounds checking just once, before entering the loop:

let cl1 = assert(n < size(0,a)) in
let c2 = assert(n*2 < size(0,a)) in
map(fn int (int i) =>
al<c1>]i] + al[<c2>|i*2],
iota(n))

For a simple loop such as the above, the potential benefits are great, as most
of the instructions of the original loop body was devoted to bounds checkings.
The Ly compiler does not yet support the range analysis that enables the
critical rewrite of the assert expressions. An unpublished bachelors thesis by

40

CHAPTER 6. THE REBINDER

Jonas Brunsgaard and Rasmus Wriedt Larsen suggests that the technique works
in practice, but their work has not yet been merged with the main compiler
code base.

Hoisting assertions such as these is useful not only when the program uses
explicit array indexing. While the array accesses performed by SOACs are
by construction always in-bounds, and therefore do not need dynamic checks,
the assert expressions we generate when transforming from external SOACs
to tupleless SOACs are conceptually identical to bounds checks, and similarly
important to hoist. For example, consider this program:

map(fn [int] ([int] r) =>
map (op+, zip(r, b)),
a)

After transformation to internal Ly, we get the following:

mapT(fn {[int]} ([int] r) =>
let ¢ = assert(size(0,r) = size(0,b)) in
<c>mapT(op+, r, b),
a)

The assertion is not loop-invariant, and range analysis is no help. For this
case, structural size analysis (described in depth in Section 9.1.1) reveals that
since r is a row of a, the outer size of r (size(0,r)) is equal to the inner size
of a (size(1,a)). Thus, the compiler rewrites to:

mapT(fn {[int]} ([int] r) =>
let ¢ = assert(size(1,a) = size(0,b)) in
<c>mapT(op+, r, b),
a)

The assertion is now loop-invariant and can be hoisted:

let ¢ = assert(size(l,a) = size(0,b)) in
mapT(fn {[int]} ([int] r) =>
<c>mapT(op+, r, b),
a)

The details of how hoisting is implemented in the £y compiler is covered in
Section 6.3.

6.1.1 What Not to Hoist

Clearly, we can hoist only loop-invariant expressions. Unfortunately, not all
loop-invariant expressions are hoistable, and as is often the case when seemingly
valid transformations become problematic, constraints imposed by uniqueness
types are at fault. Consider the following program:

map(fn (int i) =>
let a = iota(10) in
f(a, i),
b)

41

CHAPTER 6. THE REBINDER

It seems that we should be able to hoist a out of the loop like this:

let a = iota(10) in
map(fn (int i) =>
f(a, i),
b)

However, if the function call f(a,i) consumes the a argument, hoisting
would result in an invalid program, as a would be consumed multiple times. We
need a “freshly allocated” a for each iteration of the loop. Hence, we must not
hoist a binding out of a loop in which it is consumed.

As a minor, but important point, it is strictly not permitted to hoist out
of loops unless it can be proven that the loop will always execute at least one
iteration. The Ly compiler currently ignores this restriction, implicitly assuming
that all arrays are non-empty.

Hoisting out of branches

Most compilers generally do not hoist out of branches, as branching is often
used to prevent expensive execution of expensive expressions whose value is
not needed. On many GPUs however, execution happens in lock-step across all
processors. This implies that unless the branch condition computes the same
value in all threads, both sides of the branch will have to be executed [20].
This implies that in some cases, hoisting out of a branch does not cause more
instructions to be executed, and hoisting might expose the possibility of other
optimisations, particularly common subexpression elimination (see Section 6.2).

We should still be careful when hoisting expressions out of the branches of
a conditional, as it is possible that the expression may result in an error unless
the condition checked by the conditional is true. For example, consider this
expression:

if ¢ then y / x
else if p then y / x
else O

If y / x was hoisted out of the branch, the resulting program might end up
dividing by zero. Assertions and array indexing are other operations that are
not safe to hoist out of a branch. Most expressions are safe however, and the Lg
compiler aggressively hoists these out of branches. Depending on improvements
in hardware, or the targeting of Ly for non-GPU systems, it is likely that this
strategy will need to be revised.

Performance Considerations

There is another potential case where hoisting, while not resulting in an invalid
program, proves detrimental rather than beneficial to performance. This occurs
when retrieving the hoisted value from memory would be more expensive than
re-computing it for each loop iteration, which is particularly likely to occur on
GPUs, as global memory accesses are enormously expensive. Balancing this
problem is not currently tackled by the £y compiler, which instead hoists as

42

CHAPTER 6. THE REBINDER

aggressively as possible. Note that this is not a problem when hoisting assertions,
such as bounds checks, as the resulting values are not actually accessed from
within the loop.

6.2 Common Subexpression Elimination

Common Subexpression Elimination (henceforth referred to as CSE) is a popular
compiler optimisation that identifies identical expressions (i.e. expressions that
always evaluate to the same value), and replaces them with a variable holding
the value. For example, this program:

2 *x x + 2 % x
Can be transformed through CSE into:

let tmp = 2 * x in
tmp + tmp

This saves us a multiplication. As with hoisting, CSE can potentially
be detrimental to performance if it increases memory pressure, but again like
hoisting, this is not something the £y compiler currently takes into consideration.

We must be careful not to perform CSE such that we end with a violation
of the uniqueness rules. Consider this program:

let a = iota(10) in
let b = iota(10) in
let a[2] = 5 in
f(a,b)

Since iota(10) appears in two places, we might be tempted to factor it out:

let tmp = iota(10) in
let a = tmp in

let b = tmp in

let a[2] = 56 in
f(a,b)

However, this violates Uniqueness Rule 1, as b is aliased to a, yet is used after
a is consumed in a let-with expression. The solution is to not perform CSE on
expressions whose result is eventually consumed — or more conservatively, never
perform CSE on an expression of type *[a]. The latter is easier to implement,
although too conservative, but is what the £y compiler currently does.

6.3 Rebinder Implementation

Conceptually, hoisting and CSE are rather different transformations. However,
they both depend on identifying subexpressions that can be moved (in the case
of hoisting) or replaced (in the case of CSE), but where the actual expression
rewriting is quite simple. In the £y compiler, the observation was made that a
lot of the machinery used to implement hoisting could be easily extended to also

43

CHAPTER 6. THE REBINDER

perform CSE, and thus was born a compiler pass with the rather idiosyncratic
name the Rebinder.

The central idea is to assume a program in a slightly modified A-normal
form [35], a format similar to three address code, where the definition of each
let-binding is a simple expression, and the body of a let-binding is either
another binding or a variable. A simple expression is either a branch', or
an expression where all subexpressions are variables or constants (except for
the bodies of SOAC functions), which implies that their execution terminates
immediately. For example, the following program:

fun real solve(real a, real b, real c) =
(-b + sqrt(bxb - 4.0%*axc)) / (2.0%a)

Would look like this in A-normal form. Note that it is also let-normalised
(Section 5.2):

fun real solve(real a_0, real b_1, real c_2) =
let negate_3 = -b_1 in
let times_4 b_1 * b_1 in
let times_5 4.0 *x a_0 in
let times_6 times_5 * c_2 in
let minus_7
let norm_8
let plus_9
let times_10
let divide_11
divide_11

times_4 - times_6 in
sqrt(minus_7) in
negate_3 + norm_8 in
2.0 ¥ a_0 in

plus_9 / times_10 in

This simplifies hoisting and CSE significantly, as the problem is now reduced
to moving nodes in the syntax tree (for hoisting) and substituting definitions of
let-bindings (for CSE). A-normalisation is performed by a separate pass before
entering the Rebinder, and is generally trivial, but there are a few difficulties
that I will cover in Section 6.3.3.

In order to keep the exposition simpler, loop and let-with will be ignored
(except with respect to upholding uniqueness constraints), and only discuss
hoisting of normal let-bindings.

To try to give an intuition of the Rebinder, let us consider the following
contrived program:

fun int main([int] a, int i, int v) =
let res =
reduceT(fn {int} (int sum, int x) =>
sum + x + v*al[i],
{v*al[il}, a) in

res

The goal is to hoist the loop-invariant expression v*a[i] out of the loop,
and use CSE to combine it with the initial value of the accumulator. To this
end, it is first transformed to A-normal form:

INot permitted in “standard” A-normal form.

44

CHAPTER 6. THE REBINDER

fun int main([int] a_0, int i_1, int v_2) =
let index_10 = a_0[i_1] in
let times_11 = v_2 * index_10 in
let {res_5} =
reduceT(fn {int} (int sum_3, int x_4) =>
let plus_6 = sum_3 + x_4 in
let index_7 = a_0[i_1] in
let times_8
let plus_9 = plus_6 + times_8 in
plus_9,
{times_11}, a_0) in

v_2 * index_7 in

res_b

The intuition we will use is to strip an expression e of any enclosing bindings,
resulting in a “core” expression €', and a set of bindings. There may be free
variables in €’ that are bound by the bindings in the set. At some point, we
will have to insert the bindings in the program, but we will try to put them
as far up the syntax tree as possible. For example, stripping the body of main
above would result in the core expression res_5 and the bindings index_10,
times_11, and res_5.

The set of bindings, which we will term the potentially hoistable set, is a
partially ordered set of binding pairs (p;,e;). A binding pair (p;, e;) corresponds
to the Ly binding let p; =e;. The partial order is <: for two bindings b;, b;,
b; = b; if b; uses any variables bound by b;, or if b; = b;. The potentially
hoistable set thus represents an acyclic data-dependency graph.

The Rebinder proceeds with a recursive walk down the syntax tree, collecting
bindings into the potentially hoistable set. Additionally, for each binding, we
recurse down its right-hand side in order to determine whether it contains any
hoistable subexpressions. This is only the case if the RHS is a SOAC — where
we can hoist out of the body — or if — where we can hoist out of the branches.
For all other expressions, due to the program being in A-normal form, the
subexpressions will be variables or constants, which are not hoisted.

A traversal of the example program listed above follows:

e First, we encounter the index_10 and times_11 bindings, and their right-
hand sides are inspected. Neither of these inspections yield hoistable
subexpressions, but we remove index_10 and index_11 themselves and
insert them into the potentially hoistable set.

e Next, we encounter the res_5 binding and we descend recursively into
the scope of the SOAC function body:

— We inspect the right-hand sides of plus_6, index_7, times_8 and
plus_9, none of which yield hoistable subexpressions. We collect
these bindings into a potentially hoistable set and remove them from
the function body, leaving just the expression {plus}.

— We are now done inspecting the function, and we need to decide
which of the bindings in the potentially hoistable set can in fact be
hoisted out. The function parameters are sum_3 and x_4, and any

45

CHAPTER 6. THE REBINDER

bindings that depend on these cannot be hoisted (the details are
given in Section 6.3.1). This leaves the bindings for index_7 and
times_8 as hoistable; while plus_6 and plus_9 are re-inserted into
the program.

This yields the index_7 and times_8 bindings as new elements in the
potentially hoistable set. We also add the modified res_5 binding itself.

e Since there are no more bindings left, and we are at the top level of a
function, we insert the bindings in the potentially hoistable set (index_10,
times_11, res_5, index_7 and times_8) in the program, yielding:

fun int main([int] a_0, int i_1, int v_2) =
let index_10 = a_0[i_1] in
let times_11 = v_2 * index_10 in
let index_7 a_0[i_1] in
let times_8 = v_2 * index_7 in

let res_b =
reduceT(fn {int} (int sum_3, int x_4) =>
let plus_6 = sum_3 + x_4 in
let plus_9 = plus_6 + times_8 in
{plus_9%},
{times_11}, a_0) in
res_b

We could now do a separate CSE pass over the entire program, but there
may be a more efficient strategy. The Rebinder is able to perform the CSE
optimisation whenever we insert the non-hoistable bindings into the syntax tree.
We will try to provide an intuition for the approach, using the above example:

When, at the end, we have to insert bindings for index_10, times_11, res_5,
index_7 and times_8, we have to determine an order that does not result in
a variable being used before it is defined. This is easy, since the potentially
hoistable set is already dependency-ordered and thus defines a data dependency
graph (shown on Figure 16). The following insertion order is obtained by
performing a depth-first traversal of the graph:

1. index_10
2. times_11
3. index_7
4. times_8

5. res_b.

None of these bindings can be removed, as the names they bind may be
used in subexpressions, but their right-hand sides (RHS) can be changed freely.
This is what is exploited to perform CSE. The following steps are performed:

index_10: Inserted unchanged, but we record its RHS, in case we end up seeing
an identical expression later on.

46

CHAPTER 6. THE REBINDER

v |] [ao]

Figure 16: Data dependency graph for example program

times_11: Likewise inserted unchanged, as its RHS does not correspond to any
previously seen.

index_7: Since the RHS of this binding is identical to the RHS of index_10,
we replace the RHS of index_7 with the variable index_10. We insert the
resulting binding let times_11 = index_7 and record the substitution
index_y — index_10.

times_8: The substitution index_y — index_10 is performed on the immedi-
ate subexpressions of the RHS, obtaining v_2 * index_10, then check
whether the resulting expression has been seen before. This turns out to
be identical to the RHS of times_11, and therefore we insert the binding
let times_8 = times_11.

res_5: The substitution index_y — index_10,times_8 — times_11 is per-
formed, although no changes are made. The binding is then inserted.

The result is the following program:

fun int main([int] a_0, int i_1, int v_2) =
let index_10 = a_0[i_1] in
let times_11 = v_2 * index_10 in
let index_7 = index_10 in
let times_8 = times_11 in
let res_5 =
reduceT(fn {int} (int sum_3, int x_4) =>
let plus_6 = sum_3 + x_4 in
let plus_9 = plus_6 + times_8 in
{plus_9},
{times_11}, a_0) in
res_b

Copy propagation can then be used to remove the index_7 and times_8
bindings.

47

CHAPTER 6. THE REBINDER

6.3.1 Hoisting Bindings

The problem is as follows: We are given a potentially hoistable set, {(p;, e;)},
of patterns p; and e;. Each pattern p; defines several names that may be used
by other expressions in the set.

We need to split the potentially hoistable set into a hoistable set, and a set
of the bindings that cannot be hoisted further, the unhoistable set. To this end,
we are given a unary relation B, that given a binding (p;, e;), tells us whether
e; is blocked from being hoisted. As the most archetypical reason, B(p;,e;)
whenever e; uses a parameter of the function that we are trying to hoist out of,
but the relation also checks the other cases mentioned in Section 6.1.1. We will
consider as unhoistable any binding that is unhoistable according to B, as well
as any binding that depends on an unhoistable binding.

Each of the expressions e; may use variables from any of the patterns p;
(except its own), but there may also be free variables that are not contained in
any pattern in the potentially hoistable set. These correspond to names bound
higher up in the program.

Since the potentially hoistable set is partially ordered, we can process its
elements in dependency order. We keep track of the names bound by unhoistable
bindings in an unhoisted name set, initially empty. For each binding (p;, e;), we
check whether B(p;,e;) or e; uses a name in the unhoisted name set:

e If so, the binding is put into the unhoistable set, and the names in p; are
added to the unhoisted name set.

e Otherwise, the binding is put into the hoistable set.

The end result is a set of hoistable bindings, and a set of nonhoistable bindings.
Because of the ordering, we are guaranteed that no binding in the former uses
a name bound in the latter.

6.3.2 Inserting Bindings

After dividing the potentially hoistable set into hoistable and non-hoistable
bindings, we have to insert all non-hoistable bindings around the core expression.
Concretely, we are given a core expression e. and an ordered set of expressions
{(pi, ei)}, where binding (p;, e;) must precede binding (p;+1, €;1+1). We can
take this opportunity to perform dead code elimination by removing any binding
(pi, €;) that is not used in either e. or any enclosed binding. The idea is to
track which names are actually used in the lexical scope of the binding, and
remove bindings that are never referenced.

The algorithm is as follows. We will track two pieces of data: A set F, which
is initialised to the free variables of e, 2. Then we proceed backwards through
the list of bindings, i.e., we first process the binding that should be innermost.
For each binding (p;, e;), we check whether any of the names bound by p; are
present in F. If so, we add the free variables of e; to F and insert the binding.
If the binding is not used, we skip it.

2This can be done efficiently if the rebinder constantly tracks the free variables of the
core expression.

48

CHAPTER 6. THE REBINDER

let a = x * y in let a =y * z in let a =2z * y in
let b =a * z in let b * x * a in let b * x * a in
b b b

(a) (x xy) * z (b) x * (y * z) (c)x *x (z xy

Figure 17: Normalisation of syntactically different expressions

6.3.3 Simplification of Expressions

The CSE technique described in the previous sections depends heavily on
semantically identical code also having (a-)equivalent bindings. However, in
many cases, two expressions may have different syntax trees, yet semantically be
the same. For example, consider the expressions (x*y)*z versus x* (y*z). If we
assume that * is associative®, these expressions will always compute the same
value. With respect to A-normal form, the two different normalised expressions
are shown on Figure 17.

Despite the syntactical difference between these two expressions, they are
clearly semantically identical, and we would like for CSE to remove one of them.
Given the way our CSE optimisation works, the only solution is to ensure that
equivalent expessions A-normalise to a-equivalent bindings. In general, this is
a very hard-problem - in fact, determining whether two expressions will always
evaluate to the same result is undecideable, as it reduces to the halting problem.
Fortunately, the problem becomes quite tractable with restricted to arithmetic
operations, through the use of simplification before employing the normaliser.

One solution, which was implemented in an unpublished bachelors thesis
by Jonas Brunsgaard and Rasmus Wriedt Larsen, is to simplify arithmetic
expressions into a form known as sum-of-products. In this form, the top node of
the syntax tree for an arithmetic expression is always an addition node with n
multiplication children. Each of these multiplication nodes may have m children,
which can be arbitary numeric expressions. By ordering the children of each
node according to some criterion (say, lexicographically), we obtain a unique
tree structure for arithmetic expressions that ignores superficial syntactical
differences, such as one shown on Figure 17. This unique tree structure can
then be A-normalised into an equally unique set of bindings.

3Strictly not the case for floating-point multiplication.

49

Chapter 7

Fusion

This chapter will outline the principles behind producer-consumer loop fu-
sion, describe their implementation in the £y compiler, and discuss possible
complications and restrictions of our handling of loop fusion.

In producer-consumer fusion, the aim is to merge (or fuse) two loops, where
the output of the first loop — the producer — is used as input to the second —
the consumer. We currently only fuse loops that are expressed via SOACs, not
the loop-notation. The reason for this is to simplify analysis, as it can be hard
to determine in which cases arbitrary do-loops can be combined, whereas it is
possible to define simple rules for how and when SOACs can be fused.

As a simple case, we can fuse the two loops in

(map f) o (map g¢)

and get
map (f o g),

thus removing the need to construct an intermediary array for the result of
map g, and in the context of GPGPU, reducing the likelyhood of global memory
accesses, which exhibit high memory latency. We will write “c1-co fusion” for the
case where a fusion is formed with ¢; as the producer and ¢y as the consumer.
Therefore, the previous example would be “map-map”-fusion.

The rules by which we combine SOACs through fusion is called our fusion
algebra. We aim at preserving the parallelism of the resulting expressions.

Most fusion algorithms in the literature are unable to handle fusion across
zip/unzip, and more generally the case where the output of a producer is
used by several consumers. The algorithm presented in this chapter is capable
of fusing such cases whenever possible without duplicating computation, as
demonstrated on Chapter 7.

This chapter covers two main themes: Section 7.1.1 describes informally
which producer-consumer we can fuse, as well as the form of the resulting
SOAC. Section 7.4 describes our aggressive fusion algorithm, in particular when
a producer result may be used by multiple consumers, without duplicating
computation

50

CHAPTER 7. FUSION

map(fn int (int x) =>

let b = map(op+(1), a) in
p(op+(1) let c = x + 2 in

let ¢ = map(op+(2), b) in _ .
let d = map(op+(3), b) in let d =x+ 3 in
. c+d,

map (op+, zip(c,d)) 2
(a) Unfused (b) Fused

Figure 18: Fusing multiple consumers without duplicating computation

Producers | Consumers
map map
reduce
scan
filter filter
redomap

Figure 19: Producers and consumers in Lo

7.1 Fusion in £

The language used to describe the fusion algorithm in this chapter is let-
normalised, internal Ly, as described in Chapter 4 and Section 5.2. We will
also assume that all instances of replicate(n,x) have been rewritten as
map(fn t (int i) => x, iota(n))'. For clarity, expository examples will
use the external L.

Figure 19 lists which £y SOACs are producers, which are consumers, and
which are both. In particular, note that even if we have a reduce-expression
returning an array, this does not mean that the reduce-expression is a producer
- because, in our algebra, it cannot be fused into another SOAC expression. The
reason is that the output of the reduction is only fully known after the final
input array element has been processed. Consider the following program:

let b = reduce(fn [int] ([int] acc, int x) =>
map(op + (x), acc),
iota(10), a) in
map(f, b)

The contents of the array b is not determined until the very last element of
a has been processed, and thus fusion with the map-expression cannot take place.
While it is possible to use reduce in a way that could theoretically be fused with
a consumer (for example by using it to simulate map), the analysis necessary
to determine whether a given reduction is fusible would be quite onerous, and
likely not useful in any but contrived examples, such as the above-mentioned
simulation of map.

In this way, reduce differs from map, in which each element of the output is
calculated from one element of the input — a classic case of data-parallelism.

n the actual implementation, we convert these back into replicate expressions if they
are not fused, but for clarity the bookkeeping necessary is elided in this presentation.

51

CHAPTER 7. FUSION

Even if we have a producer-consumer-pair, not all such pairs can be fused,
and not all are desirable to fuse. For instance, filter-map fusion is not possible,
although filter-reduce is. The reason is that, with the former, the size of the
map-output is the same as the size of its input, yet the size of the output of
filter cannot be known in advance, which precludes an efficient fused form.

7.1.1 Fusion algebra

In this section, we will give an informal introduction to which SOACs can be
fused, as well as the form of the result. In order to preserve clarity, we will not
go into great detail until Section 7.3.

map-map fusion

The quintessential example of fusion is composing two consecutive map operations
into a single map, as follows:

let {x1, x2} = mapT(f, al)
in mapT(g, x1, y)
3
mapT(fn B (a1 al;, «as yi) =>
let {Xli, x2;} = f(al;)
in g(x1;, y:)
, al, y)

replicate fusion

replicate is an interesting case. We wish to always be able to fuse replicate
into a consumer, like this:

let x = replicate(N,a) in
mapT(f, x) in

4
mapT(fn (1 (int i) =>
f(a), b)

And indeed, this can be done through ordinary map-fusion if replicate (N, a)
is first rewritten to map as described in Section 7.1.

map-reduce and map-scan fusion

The result of map-reduce-fusion is normally redomap.

let {x1, x2} = mapT(f, al)
in reduceT(®,e1,e2, x1,y)

I
redomapT (&

, fIn (B1,B2) (B1e1, P2 e2
, a1 al;,as Yi)
=> let {x1;, x2;} = f(al;)
in ®(e1,e2,x1;,y:)
, (e1, e2), al, y)

52

CHAPTER 7. FUSION

let {c} = mapT(fn {int} (int x, int y) => {x+y},
a, b) in
reduceT(op +, {0}, ©)
U

reduceT(fn int (int acc, int x, int y) => acc + x + vy,
{0}, a, b) // Type error, as accumulator
// type must match array input type

Figure 20: Cannot fuse to reduce (but redomap would be valid)

In general, we cannot fuse map and reduce to another reduce, as the
accumulator type of a reduction must match the element type of the input
array. Adding the input of the map to the input of the reduce may violate this
requirement, as demonstrated on Figure 20.

The solution is to first rewrite reduceT(®,z,a) to redomapT(H,D,z,a),
since we can always fuse map with redomap:

let {x1, x2} = mapT(f, al)

in redomapT(®, g, e, x1, y)
3

redomapT (&

, fn B (B e, a1 al;, az yi)
=> let {x1;, x2;} = f(al;)

in g(e, x1s, yi)
, e, al, y)

However, there are a few rare cases where we can fuse map and reduce to
reduce. This only happens when the input to the map has the same count and
types as the outputs of the map that are being used as input to the reduce.

let {x1, x2} = mapT(f, ai, a2)
in reduceT(®,{e1, e2, e3}, x1, X2, ¥y)
3
reduceT(fn (a1,a2) (a1 X1, as X2, Q3 X3,
a1 aii, oo aia, az ye) =>
let {x1, x2} = f(aer, aez)
in @(x1, x2, X3, X1, X2, ye)
, {e1, e2, e3}, a1, az, y)

In fact, under these circumstances we can also fuse map with scan:

let {xi, x2} = mapT(f, a;, az)
in scanT(®,{e1, e2, e3}, x1, X2, ¥)
(3
scanT(fn (a1,a2) (a1 x1, a2 X2, a3 X3,
o1 ai, a2 aisz, az ye) =>
let {x1, x2} = f(aer, aes)
in ®(x1, x2, X3, X1, X2, ye),
{e1, e2, e3}, a1, az, y)

It should be clear that the composed function is still associative, as required
by scan and reduce.

53

CHAPTER 7. FUSION

filter-filter fusion

Fusing filter-filter is quite simple - it’s a new filter SOAC where both
of the filter functions must return true for each element. However, we can only
perform the fusion if the input set of the consumer is a subset of the output set
of the producer. Put another way, the consumer must accept input from no
other source than the producer involved in the fusion.?

let {xi1,x2}=filterT(ci,a;,a2) in
let {y} = filterT(cz, x1) in
3
let {y, _} = filterT(fn bool (a1 aii,az aiz) =>
if ci(aii, aisa)
then co(aii)

else False,
a;, az) in

As a bit of a technical curiosity, we are forced to use an if-expression, as
the && operator in Ly is not short-circuiting.

filter-reduce fusion

We can fuse filter with reduce and obtain reduce only in the case where the
input set of the reduce is equal to the output set of the filter.

let {x} = filterT(c, a) in
reduceT (P, e, x)
4
reduceT(fn B (B e, (B ai) =>
if c(ai) then ®(e,ai) else e,

{e},

We can fuse filter with reduce and obtain redomapT if the input set of
the reduce is included in the output set of the filter.

let {x1,x2} = filterT(c, ai, a2)
in reduceT(®d, {e}, x1)
3
redomapT (4,
fn B (B e, a1 ai1, ag aiz) =>
if c(aii, aiz)
then ®(e, aij)
else e,
{e}, a1, a2)

2The implementation in the £y compiler is currently even more restrictive, in that the
input set of the consumer must match the output set of the producer exactly. Fixing this
oversight is left as an exercise for the author.

54

CHAPTER 7. FUSION

filter-redomap fusion

Similarly, we can fuse filter with redomapT and obtain redomapT if the input
set of the reduce is included in the output set of the filter.

let {xi,x2}=filterT(c, ai, az)
in redomapT(®, g, {e}, x1)
U
redomapT (P,
fn f (B e, a1 ai1, as aiz) =>
if c(aiy, ais)
then g(e, aii)
else e,
{e}, a1, a2)

7.1.2 Invalid fusion

We must be careful not to violate the uniqueness rules when performing fusion.
For example, consider the following program.

let b = map(f, a) in
let ¢ = a with [i] <- x in
map (g, b)

Without the constraints imposed upon us by the semantics of in-place
modification, we could fuse to the following program.

let ¢ = a with [i] <- x in
map(g o f, a)

However, this results in a violation of Uniqueness Rule 1, and the resulting
program is thus invalid. In general, we must track the possible execution paths
from the producer-SOAC to the consumer-SOAC, and only fuse if none of the
inputs of the producer have been consumed (in the uniqueness type sense of
the word) by a let-with or function call on any possible execution paths. This
is easier than it may appear at first glance, as the fusion algorithm will only
fuse when the consumer is within the lexical scope of the producer anyway.

7.1.3 When to fuse

Even when fusion is possible, it may not be beneficial, and may be harmful to
overall performance in the following cases.

Computation may be duplicated.
In the program

let x = map(f, a) in
{map(g, x), map(h, x)}

fusing the x-producer into the two consumers will double the number of
calls to the function £, which might be expensive. The implementation
in the £y compiler will currently only fuse if absolutely no computation

95

Can

CHAPTER 7. FUSION

is duplicated, although this is likely too conservative. Duplicating cheap
work, for example functions that use only primitive operations on scalars,
is probably not harmful to overall performance, although we have not
investigated this fully. In Section 9.2, we present a transformation that,
in some cases, duplicates computation in order to enhance fusibility.

In general, in the context of GPU, the tradeoff between duplicating
computation and increasing communication is not an easy problem to
solve. Accessing global memory can be more than a hundred times slower
than accessing local (register) memory, hence duplicating computation
may in some cases be preferable.

reduce memory locality.

Consider a simple case of fusing (map f) o (map g). When g is executed
for an element of the input array, neighboring elements will be put into
the cache, making them faster to access. This exhibits good data locality.
In contrast, the composed function f o g will perform more work after
accessing a given input element, increasing the risk that the input array
may be evicted from the cache before the next element is to be used. On
GPUs, there is the added risk of the kernel function exercising additional
register pressure, which may reduce hardware occupancy (thus reducing
latency hiding) by having fewer computational cores active. In this case,
it may be better to execute each of the two maps as separate kernels.

The L compiler does not currently handle this problem, as it is envisioned
that a later (and as-of-yet unimplemented) transformation will perform
loop distribution (sometimes called loop fission). This step is necessary
in any case, as it can be used to improve the degree of parallelism,
compared to the original program. Figure 21 demonstrates a fully fused
map where the degree of parallelism can be improved by distributing the
inner reductions out of the loop. In the original program, the inner map
had to wait for the two reductions to finish computing x and y before
executing its inner loop, whereas the distributed program consists of three
parallel loop nests.

The fusion algorithm is currently designed to fuse as much as possible,
although without duplicating computation.

7.2

Composition

To begin the exposition of the precise mechanics of fusion, we will present
the mechanics behind composing the functions involved in a fusion operation.
For example, consider the trivial example of map-map-fusion. In principle, the
equation seems simple enough:

map f omap g =map (f o g).

However, while the intuition behind the above equation is correct, it is woefully
imprecise. Fusion in Ly is not performed on simple maps that take input from

56

CHAPTER 7. FUSION

map (fn int ([int] r) =>
let x = reduce(f, 0, r) in
let y = reduce(g, 0, r) in
map (h(x,y),),
a)

let xs = map(reduce(£f,0),a) in
let ys = map(reduce(g,0),a) in
map(fn [int] ({int,int, [int]} t) =>
let {r,x,y} =t in
map (h(x,y), r),
zip(a,xs,ys))

Figure 21: Loop distribution

let {x, y, 2z} = mapT(f, a) in
mapT(fn int (int a, int b, int c) => e, x, y, X)

let {x, y, z} = mapT(f, a) in
mapT(fn int (int a, int b, int d4) =>
let ¢ = a in e,
X, ¥, 2)

Figure 22: Single-input transformation

only one other map, but complex mapTs that may take input from several sources,
where only some may be fusible. Hence, a more detailed elaboration is necessary.

This section will describe various ways of combining the functions used in
SOACs, as appropriate for different cases of fusion. In Section 7.3, we will
describe the rules used for fusion of full SOAC expressions.

In this section, we will assume that each output of a producer is used exactly
once in every relevant redomap- and map-consumer. This assumption can be
provided through trivial rewriting prior to performing function composition, as
illustrated on Figure 22. We gain the property that each output of the producer
is bound to exactly one parameter of the consumer’s function, making it easier
to describe the relationship between producer and consumer.?

The presentation will be of the form of judgements. To skip ahead a bit, we
will write the map-composition of two functions as

01,..-,0k
(1

(lpy €pys---s€0,,) ar€ars--1€an) = (Iry€ryyeoser) |

map

This judgement is said to hold if the preconditions specified for the judgement
are upheld. The preconditions for a given judgement, if any, will be listed when
the judgement is defined below.

3In the actual implementation, this transformation is not done. Instead, the composition
uses more complicated bookkeeping, but presenting all details would obscure the exposition
of the central mechanism.

o7

CHAPTER 7. FUSION

7.2.1 map-map composition

We are given two functions:
lo=1fn t,, Way> --+» Da,) => €q

whose inputs are e, , . . . ,€4,, and whose outputs are o1, ...,0x; and
lb=1n to, Wb, ---» Db,) => e,

whose inputs are ep, , ... ,€ep,, .
The goal is to compute a function

lr=1fn tp, Prys -+ Dr) = €r

that corresponds to the intuitive notion of the composition l; o [,.
For notational convenience, we define the following sets of parameters of the
two functions.
params(ly) = {Pays - - Pa, }

params(ly) = {ps,, ..., Db, }

If the inputs of [, are disjoint from the outputs of [,, then we are done, and
l, = lp. Otherwise, there is a non-empty mapping

T(0;) = py; when o0; = ey,

of outputs of [, to the corresponding parameters of ,. The parameters (and
corresponding inputs) to the desired function /,. are the parameters of l,, except
those in Z, concatenated with the parameters of [,:

{€r,,... e} = params(l,) = (params(ly)\0) ® params(l,)

where ¢ are the parameters p,; in the range of Z.
The body of [, is then defined as follows:

er =1let {Z(01),...,Z(0k)} = e, in e

We will refer to this entire operation as:

01,...,0k

(lpy€bys---sep,) (lay€ars---v€ay) = (lryeryyevyer,)

map

7.2.2 filter-filter composition

We do not have fold per se in Ly, but this method of composition is used for
both reduce and the fold-like semantics of redomap, hence the name.
We are given two functions:

lo = fn {bool} (Pa,s -5 Pa,) => €4
which take as inputs eq, , . .. %, , and whose outputs are o1, ...,0x; and

Iy = fn {bool} (py,, ..., pp,) => ey,

58

CHAPTER 7. FUSION

whose inputs are ep, , ... ,€p, .

Precondition: Every input e;, must correspond to some output o;, and
every output o, must correspond to some input ep,. That is, the producer set of
l, is equal to the input set of [;. Or to put it another way, [, takes input from
no other source.

The goal is to compute a function

l, = fn {bool} (P4, ---» Da,) => €

whose inputs are i, , .. .,i,, that corresponds to the intuitive composition of
la N\ lp. Note that the parameters are the same as for [,, which means that we
have to explicitly create a let-binding for the names of the parameters of [, or
they will be free in e,. To this end, define the mapping

Z(0;) = py; when o; = ep,.
The body of [, is now definable as
e, = let {ok} = e, in ok &&
let {Z(01),...,Z(0k)} = {pDa;»--->Pa,} in €

where ok is some fresh variable.
We will refer to this entire operation as:

01;..-,0k

(lpy€pys---sen,) I (la,€ayy---s€a,) = (bry€ayy---s€a,)

7.2.3 filter-fold composition

We are given two functions:
lo =fn {bool} (pa;s ---» Pa,) => €q
which take as inputs e, , . . . ,%,, and whose outputs are o1, ... ,0x; and
lb=1fn tp,, (upy, «-vy Ub,s Pbys «--» DPb,) => €p,

whose inputs are ep, , ... €, .

Precondition: Every input e;, corresponds to some output o;, and every
output o; corresponds to some input ep,. That is, the producer set of [, is equal
to the input set of [,. Or to put it another way, [, takes input from no other
source. The ups are accumulator parameters that do not correspond to an array
input.

The goal is to compute a function

l,=1fn &, (Or,s .., D) = €.

Note that the parameters are the same as for [,, which means that we have
to explicitly create a let-binding for the names of the parameters of I, before
ep makes sense. To this end, define the mapping

I(0;) = pp; when o; = ep,.

59

CHAPTER 7. FUSION

The body of [, is now definable as
e, = 1let {ok} = e, in if ok
then let {Z(01),...,Z(0k)} = {pa,s---spa,} in e
else {up,, ..., wp, t
where ok is some fresh variable.

We will refer to this entire operation as:

01,...

,0
fooil.dlC (la,eal,...,ea") = (lraeam-..,@an)

(lb, ebl, ey ebn)
7.3 Fusion rules

With function composition defined, we can define fusion rules for SOACs. We
present fusion as a judgement

oS
producer ~ consumer
= result

This means that producer, which produces outputs os, can be fused with
consumer, yielding result as the combined SOAC. Valid judgements of this
form are given by the following inference rules, which should mostly be intuitive.

(10,75%) © (1a,752) = (1,,757)

map

(FUSE-MAP-MAP)

mapT (I , es,,,)«oximapT(lb ,€Sp)
=mapT(l,.,€s5;)

(16,25) (la,5q) = (I, @57)

map

— (€s, = esp) (FUSE-MAP-SCAN)
mapT (I, ,€54) ~>scanT(ly, {us},esp)
=scanT(l,,{us},es;)

Fusing map-reduce and filter-reduce is usually done by first rewriting
reduce to redomap, although when the producer-output and consumer-input
match exactly, filter-reduce can fuse to reduce.

filterT(l,,€54) ﬁredomapT(lb 1y ,{us},esp)
=redomapT (ly,I, ,{us},es,)

— (esy C 09)
filterT(l,,€54) ~>reduceT(ly,{us},esp)
=reduceT(l, ,{us},€s4)

(FUSE-FILTER-REDUCE-1)

Note that FUSE-FILTER-REDUCE-1 has a side condition that implies that
the types of €s, are equal to the types of €s,. This permits us to keep the result
as a reduceT rather than a redomapT.

(fn t,, (P5)) => €4, e5;) © (lo,5a) = (fn . (P5;) => e,,e5r)

map

mapT(la,esa)giredomapT(EB,fn ty, (usy, psp) => ep,{vs}r,esy)
=redomapT(h,fn t, (usy, ps,) => e,,{vs}t,es;)

(FUSE-MAP-REDOMAP)

60

CHAPTER 7. FUSION

pk
O

Figure 23: T;-T2-reduction

(fn ty, (F50) => e,75%) O (1a,750) = (E ty, (B5) => e,.75)
o

filterT(l, ,€5,) “SredomapT(®,fn t, (usy, psy) => ep,{VS},E55)
=redomapT(P,fn ¢, (usy, Ps,) => e,,{Us},€54)

(FUSE-FILTER-REDOMAP)

filterT(l,, esa){&i}redomapT(lb 1y ,{us},esp)
=redomapT (P, !, ,{us},es,)

— (FUSE-FILTER-REDUCE-2)
filterT(l, ,€84)~~reduceT (I, ,{us},esp)
=redomapT (D, I, ,{us},es,)

7.4 The fusion algorithm
The entire algorithm consists of two distinct stages:

1. Traverse the program, collecting SOAC-expressions and fusing producers
into consumers where possible. The end result is a mapping from SOACs
in the original program, to replacement SOAC expressions (the result of
fusion operations). This is called the gathering phase.

2. Traverse the program again, using the result of the gathering phase to
replace SOAC expressions with their fully fused forms. This may lead to
dead code, as the output variables of producers that have been fused into
their consumers are no longer used. These can be removed using standard
dead code removal.

The replacement stage is trivial, hence the rest of this section will be
concerned solely with the gathering stage.

Ly, as a block-structured language, is suited to region-based analysis, and
the fusion algorithm is indeed designed as a reduction of a dataflow graph.

Our structural analysis is inspired by the T;-Ts-reduction [1]. We say that
a flow graph is reducible if it can be reduced to a single node by the following
two transformations:

T;: Remove an edge from a node to itself.

61

CHAPTER 7. FUSION

{x1} = mapT(h1, x2)<—|mapT(hz, x2)| I{xl) = mapT(h1, x2)|<7 mapT (h2, x2)

N . |

I{yl,yz,y3} = mapT(f1, x1, x2)| 1 I{yl,yZ,yB} = mapT(fl, x1, x2)| 2

Jiz1,223 = {a1,92} = ©oizL,22) =
mapT(f2, yl, y2) mapT(g,y3,z1,y2,y3) : : mapT(f2, y1, y2)
ImapT(h, ql, 92, z2, y1, y3)| . . mapT(fn {real}

(real zli, real y2i,
real z2i, real yli,
real y3i) =>
let {qli,q2i} = g(y3i,z1i,
y2i,y3i) in
h(qli,q2i,z2i,yli, y3i),
z1,y2,z2,yl,y3)

{x1} = mapT(hl, x2) <—ImapT(h2, XZ)I I{xl} = mapT(hl, x2)|<7 mapT(h2, x2)

: [1.y2,y31 = mapT (71, x1, x2)] ; Cot mapT (fn %reat} i} b 4:
N : real xli, real x21) => N
T P let {yli,y2i,y3i} = :

f1(x1i,x21i) in

mapT(fn {real} : : let {zl},z2+} =
(real y2i, : : f2(y1},y2:l.) in
real yli, real y3i) => s let {qli,q2i} =
let {z1i,z2i} = f2(yli,y2i) in . . g(¥31,?11,¥21,¥31)'1n
let {qli,q2i} = Lo h(qli,q2i,z2i,yli,y3i),

x1, x2)

g(y3i,z1i,y2i,y3i) in
h(qli,q2i,z2i,yli,y3i),
y2,y1,y3)

Ts: Combine two nodes m and n, where m is the single predecessor of n, and
n is not the entry of the flow graph.

On Figure 23 is shown a small flow graph and highlights instances where
the two reductions could apply. The overall idea is to construct a flow graph of
the £y program, reduce it to a single point, and at each reduction step combine
the information stored at the nodes being combined.

Ly always produces a reducible graph. Each node corresponds to an ex-
pression, with the successors of the node being its subexpressions. This means
that we can implement the reduction simply as a bottom-up traversal of the L
syntax tree.

Figure 24 depicts the intuitive idea on which our fusion transformation is
based. The top-left figure shows the dependency graph of a simple program,
where an arrow points from the consumer to the producer.

The main point is that all SOACs that appear inside the box dashed box can
be fused without duplicating any computation, even if several of the to-be-fused
arrays are used in different SOACs. For example, y1 is used to compute both
{z1,z2} and {q1,q2}*. This is accomplished by means of T, reduction on the

4Note also that not all input arrays of a SOAC need be produced by the same SOAC.

62

CHAPTER 7. FUSION

dependency graph:
The rightmost child, i.e., mapT(g,..), of the root SOAC (mapT(f1,...))
has only one incoming edge, hence it can be fused. This is achieved by:

1. Replacing in the root SOAC the child’s output with the child’s input
arrays

2. Inserting a call to the child’s function in the root’s function, which com-
putes the per-element output of the child,

3. Removing duplicate input arrays of the resulting SOAC.

This operation is exactly what the fusion rules in Section 7.3 formalise.

The top-right part of Figure 24 shows the (optimised) result of the first
fusion, where the copy statements have been eliminated by copy propagation. In
the new graph, the leftmost child of the root, i.e., the one computing {z1,z2},
has only one incoming edge and can be fused. The resulting graph, shown in
the bottom-left figure can be fused again resulting in the bottom-right graph
of Figure 24. At this point no further 75 reduction is possible, because the
SOAC computing x1 has two incoming edges. This example demonstrates a key
benefit of removing zip/unzip and using the tupleless SOACs representation:
There are no intermediate nodes in the data-dependency graph between fusable
producer and consumer.

7.4.1 Dataflow rules

During reduction, we will track the following pieces of information.

SOACs : Exp — (Label x Pat x Exp)Set. The set of SOACs that appears in
an expression, modelled as a mapping from a (unique) label to a pair of
a SOAC expression and its output pattern. We shall say SOACs(e) to
refer to this mapping, and SOACs(e)[l] to refer to the SOAC with label
l. For example,

SOACs(let {a,b,c} = mapT(f,z,y,2) in {a,b,c}) =
{(& {a’b:C},maPT(f’%y’Z))}a

where £ is a fresh label. After the SOACS set has been computed, we can
use SOACs(ep), where ey, is the body of a function to refer to the set of
all SOACS in that function. Since the fusion transformation is strictly
intraprocedural, this is sufficient for our needs.

This mapping may not necessarily contain all SOACs that appear syn-
tactically in the program. A core idea behind the fusion algorithm is
that whenever we would add a SOAC to this mapping, we instead check
whether it can be fused with the SOACs already present.

unfusible : Exp — NameSet. The infusible set, a set of variable names, is key
to preventing unwanted fusion, as it indicates which SOACs should never
be fused. The infusible set prevents both undesired and invalid fusion,
as outlined in sections Sections 7.1.2 and 7.1.3 respectively. Given an

63

CHAPTER 7. FUSION

Ly expression e, we shall say UNFUSIBLE(e) to refer to the infusible set
produced by e. For example:

UNFUSIBLE(let x = mapT(f,a) in

let y = mapT(g,a) in {x,y}) = {a},

because a is used twice, and hence fusing its producer into £ and g would
cause work duplication. To simplify the example, f and g are ignored
when computing the infusible set, although as we shall see below, this is
not the case in practice.

arrInputs : Exp — Name — Labels. A mapping from arrays to a set of the
SOACs that use the array as input. This is modelled as a set of pairs,
each pair consisting of an array name and a SOAC name. We shall refer
to the mapping generated by a given expression e as ARRINPUTS(e). For
example,

ARRINPUTS(mapT(f, z, y, 2))={(z,{¢}), (y,{{}), (=, {¢})},

where ¢ is the label of the mapT-SOAC.

We define an associative and commutative operation U to combine multiset
mappings by taking the union of values (in the case of ARRINPUTS, sets
of labels, s) of corresponding keys (for ARRINPUTS, variable names, v),
as follows.

{('Ula 51)7 RN} (Unv Sn)} U {('Un—&-l, 3n+1)7 RN} (Un+mv 8n+m)} =

{(1}7;, U sj)}7

(vi,85),0<j<n+m

Intuitively, x Uy is a mapping that contains the union of the keys in z
and y, with the value for a key v being the union of the values for v in
2 and y (or just an untouched value, if v was only present in one of the
mappings).

Similarly, we use M to denote a similar mapping, except taking the inter-
section of values.

{(Ula 31)7 ey ('Una Sn)} M {(Un-‘rla STL+1)7 ey (Un-i-nu Sn-‘rm)} =
{(Uiv ﬂ Sj)}a

(vi 385) ,0<j<n+m

consumed : Fxp — Label — NameSet. A mapping from the labels of SOACs
in an expression, to a set of the names that are consumed on the path to
that SOAC. The purpose of this mapping is to ensure that we do not fuse
in violation of the uniqueness rules. For example, if

consumed(e)[(] = {a}

then we cannot fuse any producer taking a as input with the SOAC
labelled ¢, as a is consumed on the execution path to £.

64

CHAPTER 7. FUSION

If more specific rules are not given, the data flows default to the following.

UNFUSIBLE(e) = U UNFUSIBLE(e’)

e’ €CHILDEXPS(e)

ARRINPUTS(€) = |_| e

e’ €CHILDEXPS(e)

SOACs(e) = U SOACs(e')

e’ €CHILDEXPS(e)

CONSUMED(e) = |_| CONSUMED(e')

e’ €CHILDEXPS(e)

Where CHILDEXPS(e) are the immediate children of e, e.g.

CHILDEXPS(if p(x) then t(y) else £(z))= {p(x),t(y),f(=)}.

Now for specific rules, based on the shape of the given expression.

Case e = v (v is a variable)

This rule is only applied when v is not an array input to a SOAC. This
implies that the producer of v cannot be fused, as its output v is used
here.

UNFUSIBLE(e) = {v}

Case e=vler, ..., e,l

If an element is retrieved from an array through indexing, we have no
choice but to manifest that array, thus forcing us to avoid fusion due
to our principle of avoiding duplication of computation. In many cases,
for example if the array v is the result of a map operation, it might be
beneficial to replace the index operation by an inlined copy of the map
function, and let the original map be fused. Duplicating computation of a
single element is likely acceptable, but not done in the general case by the
current implementation, and it is hard to determine the optimal choice
as long as Ly does not yet have a well-defined cost model. Nevertheless,
Section 9.2 will describe how we inline particularly simple cases.

UNFUSIBLE(e) = {v} U U UNFUSIBLE(e;)
1<i<n

Case ¢ = if e, then e; else ey

The UNFUSIBLE of a conditional consists of whatever is in the UNFUSIBLE

65

CHAPTER 7. FUSION

let b = map(f, a) in
if p(x) then map(g,b)
else map(h,b)

Figure 25: Fusion into branches acceptable

let b = map(f, a) in
if p(x) then concat(map(g,b),map(v,b))
else map(h,b)

Figure 26: Duplicating computation in one branch

let b = map(f, a) in
if p(map(v,b)) then map(g,b)
else map(h,b)

Figure 27: Duplicating computation in conditional

sets of its branches, plus any SOAC outputs that may be used multiple
times. Note that an output can be used in both the true and the false
branch, and it will still only have been considered to be used once, becase
only one of the true and false branch will be executed, never both.

ARRINPUTS(e) =
{(v,s") | (v,s) € ARRINPUTS(e;) U ARRINPUTS(ef)}
Where s’ is the set of all SOAC consumers of v in both e; and ef.

UNFUSIBLE(¢e) =
UNFUSIBLE(e.) U UNFUSIBLE(e;) U UNFUSIBLE(ey)
U (ARRINPUTS(e.) M ARRINPUTS(e;))
U (ARRINPUTS(e.) M ARRINPUTS(ef))

The reason for these rules can be illustrated by the following examples. In
Figure 25, it is clear that fusing computation of b with both map (g,b) and
map (h,b) will not cause duplicated computation, as the two consumers
are on separate control-flow paths. On the other hand, if even one branch
contains multiple uses, as in Figure 26, we should not fuse. Additionally,
if both the conditional expression and a branch consumes the same array,
as on Figure 27, then we should also not fuse.

Case e =1loop (p = e;) = for v < ey do e3 in ey
For loops, we add any arrays used as SOAC inputs in the loop body to
the infusible set. This is because fusing into the loop would duplicate
computation by re-evaluating the function in the consumer for every

66

CHAPTER 7. FUSION

let b = map(f, a) in

loop (v) = for i < n do
let ¢ = map(g, b) in
h(v,c) in

Figure 28: Fusing the producer into the consumer in the loop body would duplicate
computation

iteration of the loop — see Figure 28 for an example of this. This is similar
to how we ban fusing into SOAC-functions.

Note that any use of an array for another purpose than as SOAC input
results in that array name being present in UNFUSIBLE(e3) already, thus
banning fusion.

UNFUSIBLE(e) =
UNFUSIBLE(e1) U UNFUSIBLE(e2) U UNFUSIBLE(e3) U UNFUSIBLE(e4)

U{v | (v,s) € ARRINPUTS(e3)}

Case e = let {vs} = soac in e
The big question here is whether soac can be fused as producer with
something in SOACS(ep). In the following, ¢, is a fresh name. Let

¢= U ARRINPUTS(ep, v)

vEVS

be the set of the labels of all SOACs that contain at least one of our
outputs in their input set.

For all £¢ € ¢, we find the corresponding triple (€5, vs$, soacs) in SOACS(ep).
We can check whether fusion is possible by determining whether the fol-
lowing judgement is derivable.

v c
soac ~ soac;
= soacy

In total, the following four conditions must all be upheld before we can
fuse:

1. There must be at least one consumer soac{ with which we can
fuse. Note that even if there are more than one, we do not end up
duplicating computation, as they would belong to different branches.

2. For each consumer soac{, we must be able to fuse and and get some
soac;. If we could only fuse with some, we would be unable to
remove the producer from the resulting program, thus duplicating
computation.

67

CHAPTER 7. FUSION

3. None of s are in the infusible set. That is,
s N UNFUSIBLE(ep) =

This rule also helps avoiding duplicate computation.

4. Fusion must not bring an array past a point where it is consumed.
Formally, we must have that,

CONSUMED(e3)[¢5] N (The array inputs of soac) =
for all £¢. Violating this rule would create an invalid program.

If the four conditions are true: In this case, we are fusing soac with
several SOACs soac§, each with a corresponding label ¢5, and fused
as soac; . In the following, let ey be the body of the function in soac.

SOACs(e) =
(SOACs(ep)\C)
USOACS(ey)

U {(4, (vs, soac})) | for each soacy}

ARRINPUTS(€) =
(ARRINPUTS(ep) with all mappings to each £ removed)

U{(v,£;) | for all array inputs v in each soacf}

UNFUSIBLE(e) =
UNFUSIBLE(ey,)
U{v | (v,s) € ARRINPUTS(ef)}

If they are not: We cannot fuse with soac as a producer, and we must
add it as a kernel by itself. It may be fused as the consumer at some
later stage of the algorithm, however. To the UNFUSIBLE set, we first
add every array variable used as a SOAC input in the body of soac.
We also also insert every array variable used both as input to soac,
but also to some SOAC in e,. The rationale is that fusing whichever
SOAC (if any) outputs this variable would duplicate computation,
as we have at least two consumers.

68

CHAPTER 7. FUSION

UNFUSIBLE(e) =
UNFUSIBLE(ey,)
U{v | (v,s) € ARRINPUTS(ef)}
U{v | v is used as input to soac but is also in ARRINPUTS(ep)}

ARRINPUTS(€) =
ARRINPUTS(ep)
U ARRINPUTS(e)

U {(61’ {EP})v LR (em {gp})}

SOACs(e) = SOACs(ep) U {(p, (vs, soac))}

Case e =1let v; = vy with [eq,...,e,] <= ¢, in e
For any soac £ in the body e;, we note that the aliases of vy are consumed
on the path to /.

CONSUMED(e) =
{(¢, aliases(v2) U CONSUMED(ep)[¢]) | (¢, e, e¢) € CONSUMED(ep)}

69

Chapter 8

Fusion-enabling SOAC
Transformations

The fusion rules in Section 7.3 cover only simple cases, where the output of
the producer is used directly by the consumer, without any intermediary steps.
This means that the following program, where the output of the producer is
first passed through transpose, cannot be fused.

let {b} = mapT(f, a) in
mapT(fn [int] ([int] r) => mapT(g, r), transpose(b))

However, it is actually possible to fuse this case by first moving the transposition
to after the consumer instead:

let {b} = mapT(f, a) in
transpose(mapT(fn [int] ([int] r) => mapT(g, r), b))

After this transformation, the simple map-map fusion rule applies. When moving
around transformations such as transpose (and, later, reshape), remember
that we think of them as having a delayed representation, and hence moving
them will not influence the cost model of the program.

In many cases, such rewriting of a producer-consumer pair is necessary before
the simple fusion rules can apply. Indeed, one might consider the FUSE-MAP-
REDOMAP rule a particularly simple example of such a rewriting. Fortunately,
these rewriting schemes can be incorporated into the existing fusion framework
simply by considering them as additional inference rules. The rewriting above
can be defined as follows (using the nested map notation from Figure 29):

mapT(la,ea)fgmapT2<lb,Eb)
=soac

- (FUSE-MAP-TRANSPOSE-MAP-SINGLE)
mapT (I, , e,,,)vgmapT2 (I ,transpose(ep))
=-transpose(soac)

Of course, this rule is far too specific - it covers only map-producers and
-consumers, and with a single output and input respectively. In the next section,
we will see a more general treatment of when we can fuse across arrays.

Furthermore, we will need to extend the SOAC notation we use for express-
ing fusion judgements. The FUSE-MAP-TRANSPOSE-MAP-SINGLE rule uses

70

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

mapTl(f, ai, ... , ag) =

mapT(f, a1, ..., ag)

mapT”'H(f, ai, ..., ag) =

mapT(fn {[511, ..., [Bd} (Lol x1, ..., [oxl xx)) =>
mapT" (f, x1, ..., X&)

Figure 29: Nested map notation

let {b} = mapT(f, a) in let {b} = mapT(f, a) in
let {c} = transpose(b) in mapT(g, transpose(b))
mapT(g, c)

(a) Before inlining (b) After inlining

Figure 30: Inlining transposition

transpose in places where we have previously considered only plain variables
and SOAC expressions. Their meaning is as follows:

o Whenever we use transpose (or, later, reshape) around a SOAC, the
intent is that we transpose every output of the SOAC. Thus, even though
transpose (mapT(...)) is technically not type-correct Ly, since mapT
returns a tuple, the intended meaning is that every output is transposed.

e When we enclose inputs to a SOAC in transpose or reshape, as in for ex-
ample mapT (f,transpose(€s)), the intended meaning is to apply trans-
pose to every input, i.e. mapT(f, transpose(e;), ..., transpose(e,)).

Conceptually, we integrate transpose and reshape into the consumers by
inlining them in the input positions prior to fusion. This is illustrated on
Figure 30

We add the following two ancillary fusion rules for fusing with a consumer
whose output is transposed or reshaped.

os
80a.C,~>80aCe
=soac,

(FUSE-TRANSPOSED-CONSUMER)

os
soacp~>transpose (soac.)
—-transpose(soac,.)

os
SOanWSOaCC
=soac,

— (Fuse-RESHAPED-CONSUMER)
soacp~~>reshape(shape, soac.)
=reshape(shape, soac,)
The intuition behind these rules is that fusion is not sensitive to what
happens with the output of the consumer.
We will need a judgement to determine which SOAC inputs are simply
transformations of an origin array. The judgement

R(e) =v

71

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

let {b} = map(f, a) in let {b} = map(f, a) in
map? (g, transpose(b)) transpose (map? (g, b))
(a) Unfusible (b) Fusible

Figure 31: Pushing transposition past consumer

let b = map>(f, a) in let b = map®(f, transpose(a)) in
map(g, transpose(b)) map(g, b)
(a) Unfusible (b) Fusible

Figure 32: Pulling transposition before producer

means that e is an application of transpose or reshape (possibly both, or
several in sequence) of the array-typed variable v. For example e, may be
transpose (v). Valid judgements are defined by the following inference rules.

R(e) = v
R(transpose(k,n,e)) =v

R(e) =v
R(reshape(shape,e)) = v

If v is a variable

R(v) =w

When R(e) = v, we will say that the source array of e is v.

8.1 Fusing across transpose

In the general case, transpose acts like a fusion blocker - if the output of a
producer is transformed before being fed to the consumer, then most likely fusion
cannot take place. In some instances, we can perform a local transformation,
either pushing the transposition past the consumer, or pulling it to before the
producer. An example is seen on Figure 31 - on Figure 31a, the transposition
blocks fusion, but by pushing the transpose operation to the return value
of the consumer, as on Figure 31b, we expose map-map-fusibility. Figure 32
demonstrates same concept, but by pulling instead of pushing the transposition.

To get an intution for the validity of these transformations, we employ the
concept of transpose depth. A standard textbook transposition interchanges
the outer two dimensions - hence we say that it has a depth of 2, as those are
the dimensions that are affected. If a SOAC does not directly access the two
outermost dimensions, as for example a mapT? does not, we can interchange
them without modifying the values that are seen by the body of the SOAC. This
can also be generalised to support the generalised (k, n)-transposition described
in Section 2.3.

72

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

k+n n>0
D(k’n):{k n <0

Figure 33: Transposition depth

transpose ! (k,n,e) = transpose(k+n,-n,e)

Figure 34: Inverse transpose

Specifically, mapT™ accesses the element at index [i1,...,i,], but we are free
to transpose the indices i1,...,i,_1. Of course, the order of the results will
be different, which is why we need to perform an inverse transposition on the
result. To this end, Figure 33 defines a function for determining the transpose
depth of a (k,n)-transpose, and Figure 34 defines a notation for the inverse of
a transposition.

Note the crucial property transpose_1 (k, n, transpose(k, n, e)) = e.

Our presentation will assume that transpositions are inlined as part of the
inputs to the consumer, as on Figure 31.

8.1.1 Pushing transpose

To get an intution for how the transformation works, let us look at a slightly
more complicated example:

let {b} = mapT(f, a) in
mapD(k’") (g, transpose(k, n, b), c)

The consumer takes two inputs, and only one of them is from the producer.
Our goal is to remove the transpose from b - we do not care about whether
the algorithm will eventually try to fuse c as well. Observe that by applying an
inverse transposition to both inputs, we would remove the transposition sur-
rounding b, thus obtaining inputs b and transpose ! (k, n, c), and thereby
exposing map-map-fusibility between the producer and consumer. Of course,
we still have to transpose the output of the new consumer. This solution also
works only when all inputs coming from the producer are transposed in the
exact same way, as otherwise applying the inverse transposition would not cause
the transpositions to go away.

To define fusion rules that fit into the framework established in Chapter 7,
we will need a bit of machinery. First, we define a judgement for determining
whether the outputs of a producer are transposed by the consumer:

transposed(os,€s) = (k,n) ‘

Here, 0os must be the outputs of a producer, and €s are the inputs of the
consumer. The judgement produces (k,n) if one of the outputs are transposed
in €s, defined by the following inference rules:

73

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

Re)=v (v€os)

transposed(os, transpose (k,n,e),€5) = (k,n)

R(e) =v transposed(os,es) = (k,n) (v ¢ o0s)
transposed(os, e,€3) = (k,n)

We also need a judgement for checking whether all inputs coming from the
producer are transposed the exact same way, and if so, produce a modified
input list with inverse transpositions applied:

transpose ! (k, n, 0s,5) = es’

This judgement states that all inputs in €s whose underlying array is in
0s is (k,n)-transposed. Furthermore, the result of applying an inverse (k,n)-

transposition to every input in es is es’. The judgement is defined by the
following inference rules:

transpose ™! (k, n, 0s, transpose (k,n,e)) = e

(e is not a transposition)

transpose 1 (k,n,0s,e) = ¢

R(e) =v transpose !(k,n,0s,€5) = es’ (v € 0s)

transpose ™! (k, n, 0s, transpose(k, n, e),es) = e, es’

R(e) =v transpose !(k,n,0s,€3) = es’ (v € 0s)

transpose ! (k, n, 0s, transpose(k,n, e),e5) = e, es’

R(e) =v transpose !(k,n,o0s,e3) = es’ (v & 0s)

transpose ! (k, n, 0s, e,e5) = transpose ' (k, n, e),es

We can now define a fusion rule for pushing transpose past mapT operations
of sufficient nesting. The general outline is as follows: First, determine whether
an output of the producer is (k, n)-transposed by the consumer. Then, check
whether all of the producer outputs used by the consumer are (k, n)-transposed,
and if so, apply the inverse transposition to every input, obtaining es’. Finally,
attempt to fuse the result.

transposed(os, es) = (k,n)
transpose ! (k, n, 0s, es) = es’

soacpsimapTD(k’") (f,es”)
=soac,

(PUSH-TRANSPOSE)

soacpgimapTD(k'") (f,es)
=transpose(k, n, soac,)

74

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

8.1.2 Pulling transpose
Consider the following program:

let {b1l, b2} = maprxk””(f, al, a2) in
reduceT(g, transpose(k, n, bl), transpose(k, n, b2), c)

We can only push transpositions past sufficiently deeply nested mapTs, and
in this case the consumer is a reduceT. However, since all of the inputs derived
from outputs of the consumer are (k,n)-transposed, we can instead transform
the producer itself by (k,n)-transposing its inputs. This produces the following
program, where mapT-reduceT fusion is possible:

let {b1l, b2} = mapTD(h">(f, transpose(k, n, al), transpose(k, n, a2)) in
reduceT(g, bl, b2, c)

Again, this relies on the fact that the body of the producer is invariant with
respect to the outer D(k,n) dimensions.
Again, we will need an ancillary judgement.

untranspose(k, n, 0s,€s) = es’

This judgement checks that all inputs in €s that use an input from os
are (k,n)-transposed, and produces a new sequence of inputs es’ where such
transposes are removed. It is defined by the following inference rules.

untranspose(k, n, os, transpose (k,n,e)) = e

(e is not a transposition)

untranspose(k, n, 0s,e) = e

R(e) =v untranspose(k,n,0s,es) = es’ (v € 0s)

untranspose(k, n, 0s, transpose(k, n, e),es) = e, es’

R(e) =v untranspose(k,n,o0s,e3) = es’ (v ¢ 0s)

untranspose(k, n, 0s, e,es) = e, es’

We can now define a fusion rule for pulling transpositions past mapT producers
of sufficient nesting. The general outline is as follows: First, determine whether
an output of the producer is (k, n)-transposed by the consumer. Then, check
whether all of the producer outputs used by the consumer are (k, n)-transposed,
and if so, strip those transpositions and (k,n)-transpose the inputs to the
producer instead. Finally, attempt to fuse the result.

transposed(os,es;) = (k,n) untranspose(k,n,0s,es;) = es’,
mapT?(*™) (f,transpose (k ,n,85p)) “SmapT(g, es.)
=>Ssoacy,

mapTD(k’") (f,esp) S3mapT(g, €s¢)
=>soac,

(PULL-TRANSPOSE)

()

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

8.2 Fusing across reshape

The idea behind fusing across reshape operations is similar to the one covering
transpose, although less well-developed. We support solely pulling reshape
prior to mapT producers taking single-dimensional arrays as input. For example,
we can fuse the following program:

let {b} = mapT(f, a) in // a is one-dimensional
reduceT(g, reshape((ei, ..., ey), b))

Conceptually, the producer applies the function £ to every element in a. We
reshape a to be n-dimensional and change the producer to be a depth-n nest:

let {b} = mapT"(f, reshape((e;, ..., ep) a)) in
reduceT(g, b)

In the resulting program, mapT-reduceT-fusability is exposed.
Again, we need ancillary judgements. These are entirely analogous to the
“transposed” and “untransposed” judgements.

‘reshaped(os,ﬁ) = (k,n) ‘

Re)=v (v € os)
reshaped(os, reshape (shape,e)) = shape

R(e) =v reshaped(os,es) = shape (v ¢ o0s)

reshaped(os, e, €s) = shape

unreshape(shape, 0s,€s) = es’

unreshape(shape, os, reshape (shape,e)) = e

(e is not a reshaping)

unreshape(shape, 0s,e) = e

R(e) =v unreshape(shape,0s,e5) = es’ (v € 0s)

unreshape(k, n, 0s, reshape(shape, €),€3) = e, es’

R(e) =v unreshape(shape,os,es) = es’ (v ¢ 0s)

unreshape(shape, 0s, e, €3) = e, es’

The fusion rule is also extremely similar to PULL-TRANSPOSE.

reshaped(os, es;) = (e§,...,e5) unreshaped((e],...,e?),0s,€5,) = es’,
— mapT™ (f, reshape((e],...,e’), €55))“mapT(g, es’)
(All of &5, have rank 1) Saman 5P

mapT(f, esp)zimapT(g, €5c)
=>Ssoac,

(PULL-RESHAPE)

76

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

scanT(fn [real] ([reall x, [reall y) => transpose (
mapT(op +, %, y), mapT (fn [real]l ([real] x) =>
{0.0, ..., 0.0}, a) scanT(op +, 0.0, x),
transpose(a)))
(a) Unfusible (b) Potentially fusible

Figure 35: Interchange Scan With Inner Maps

8.3 ISWIM - Interchange Scan With Inner Maps

The fusion algebra for scanT is quite poor — in particular, it can never be
fused as a producer. In some cases however, we can rewrite scanT to expose
producer-fusibility. This section presents a high-level transformation that may
enable fusion of scanT. Specifically, when the body of a scanT operation consists
of a nested mapT, we can interchange the two loops and transpose both input
and output. A simple example to demonstrate the intuitive idea is illustrated
on Figure 35. Using Haskell-like notation, a scan operation on a matrix in
which the binary associative operator is zipWith ® has the same semantics as
transposing the matrix, mapping each of the rows, i.e., former columns, with
scan O and transposing back the result.

In principle, this transformation interchanges the scanT with the inner mapT,
hence ISWIM, with the result that the transformed code can be executed as a
segmented scan [9], i.e., exploiting both levels of parallelism. With scanT on the
outside, we would have to choose between the parallel scanT and the parallel
mapT. Furthermore, pushing the least parallel construct, i.e., scanT, at the
innermost position might reveal a deeper mapT-nest, e.g., if the original scanT
was inside a mapT itself, thus increasing the depth of parallelism. Finally, if the
created mapT nest exhibits enough parallelism, then the scanT can be executed
sequentially rather than in parallel. In this way, the ISWIM transformation is
not solely about enabling fusion, but is worthwhile on its own.

Two fusion rules are defined. One where ISWIM is applied to the producer,
and one where it is applied to the consumer.

os
soacp~>transpose (mapT(scanT(f), {e7,...,ep},el,...,ep))
=soacy
soacp~3scanT(mapT(f),{eV,....ep } el ..,ef)
=>Ssoacy,

(FUse-ISWIM-CONSUMER)

transpose (mapT(scanT(f), {e7,..., e }, e ..., eZ))gﬁ;soacc
=>soac,

scanT(mapT(f) {e} s }ef sonnvel) Ssoace
=>soacy,
(FUSE-ISWIM-PRODUCER)

ISWIM depends critically on the fusion algorithm being able to fuse through
transpose. There is also a further generalisation for ISWIM, illustrated on
Figure 36, which permits the inner mapT to be arbitrarily nested, but it has not
yet been implemented in the £y compiler.

7

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

scanT(fn ([[py1011], ..., L0 nt10k]])
([1[.4,n+1a1]] X%, ceey [1[.4.n+1ak]] Xllg,
GLont101]1] x5, oo, GLonpiokl] x3) =
mapT" T (@, xi,..., x5, x3,..., x2),
(nes, , neg), ai, ..., ag)
let (..., ret, ...) = (..., mapp4+1(replicate(1), net), ...)

// Replicate dimension m + 1 of neutral elements so mapT sizes match

let (y1, ..y y&) =

mapT(fn ([[.py104]1], vovy Lilingy10411)
C Llng10a1] 1, ooo, Llngrorl]l e) =>
mapT" (fn (a1, ..., Q)
(a1 e1,...,0k ek,
a1 X1,...,0k Xk)
=>scanT(P, e1[0],...,ex[0], x1,...,XK),
rei, ..., T€k, X1, ..., Xk),
transpose(1l,n+l,a;), ..., transpose(l,n+l,a))

in (transpose(n+l, qi-(nt+1), y1), ., transpose(nt+l, qir-(n+1), yi))
// transpose back the result; q; is the dimension of oy

Figure 36: Arbitrary-depth generalisation of ISWIM

8.4 Fusing A Transposed Producer

While an input program will never contain a producer of the form transpose (k,n, soac),
the ISWIM transformation may create them. To fuse these, we first move the
transpositions to the inputs of the consumer.

We need yet another ancillary judgement:

transpose(k, n, 0s,es) = es’

This judgement wraps every input in €s whose source array is in os in an
(k, n)-transposition, producing es’. It is defined by the following inference rules:

Re)=v (v €os)
transpose(k, n, 0s, e¢) = transpose(k,n,e)

Re)=v (v¢os)

transpose(k, n,0s,¢e) = e

R(e)=v (v€os) transpose(k,n,os,e,es) = es’

transpose(k, n, 0s, e, €5) = transpose (k,n,e),es’

Re)=v (v&os) transpose(k,n,os,e,€s5) = es’

transpose(k, n, 0s, e,e8) = e, es’

We can now define a fusion rule. First, we extract the array inputs of the
consumer (not formalised), then transpose those whose source arrays come

78

CHAPTER 8. FUSION-ENABLING SOAC TRANSFORMATIONS

from the producer, producing es’. Finally, we attempt fusion where we have
substituted the original array inputs in the consumer with es’.

Inputs of soac. is € transpose(k,n, 0s,€5) = es’
soacpgisoacC with inputs es’
=>soac,

os
transpose(k, n, soacp)~>soac.
=soac,

(FUSE-TRANSPOSED-PRODUCER)

79

Chapter 9

Hindrance Removal

The fusion algorithm presented in previous chapters assumed an input program
with a structure that made any possibilities for fusion as explicit as possible.
The most obvious such structure is the normalised input program and the use
of tupleless SOACs, but there are other transformations we can do in order to
enable more possibilities for fusion.

In particular, recall that the fusion algorithm is very strict about never
duplicating computation, and hence multiple uses of the output of a SOAC may
easily block any fusion of the SOAC. We call such a use a hindrance, with an
example shown on Figure 37a. In some cases, the hindrances are unavoidable,
but in other cases, a pre-fusion transformation of the program can remove some
unnecessary hindrances.

Section 9.1 will cover cases where we can rewrite size-expressions that ref-
erence a SOAC output. Although primarily concerned with increasing fusibility,
Section 9.1.3 will describe how removing hindrances can also enable hoisting,
particularly of bounds checks. Section 9.2 will describe inlining of index expres-
sions where the index array is the result of a map operation. This inlining may
duplicate a small amount of computation.

An important detail is that neither of the presented transformations should
be considered optimisations per se. Rather, their purpose is enable the fusion
optimisation to apply more often.

Both transformations are run completely independently (and in advance) of
fusion. This results in greater conceptual and technical simplicity, but at some
cost in precision. In particular, the rewriting of size-expressions can in fact
inhibit fusion in some cases.

let b = map(f, a) in let b = map(f, a) in
size(0,b) + reduce(op +, 0, b) size(0,a) + reduce(op +, 0, Db)
(a) Hindrance blocking fusion (b) Hindrance removed

Figure 37: Typical case of size-hindrance

80

CHAPTER 9. HINDRANCE REMOVAL

9.1 Size Hindrance Removal

Consider the program shown on Figure 37. The output of the map producer,
b, is used in two places - as input to a consumer reduce, and as argument to
a size expression. This means that fusing the two SOACs would duplicate
computation, as we be unable to remove the original map expression.

Fortunately, in this case, we can exploit a property of map to rewrite the size
expression. Specifically, the outer size of the array output from a map expression
is equal to the outer size of its array inputs. In the context of Figure 37,
this means that the expression size(0,b) will always give the same value as
size(0,a). Hence, we can rewrite the program as shown on Figure 37(b),
which has now become fusible.

At first glance, removing size hindrances may appear to rarely be useful,
but in fact, it is crucial to making the fusion algorithm perform well in practice.
The reason is that the assertions described in Section 4.2 check the dimensions
of various arrays via size expressions. Hence, after the transformation from
external to internal Ly, we will have generated several size expressions, many
of which may act as hindrances to fusion. As an example, consider this simple
program:

fun [int] main([int] a, [int] b) =
let a2 = map(op+(1), a) in
let b2 = map(op+(2), b) in
map (op+, zip(a2, b2))

After transformation to internal Ly, we obtain the following (slightly denor-
malised for readability):

fun [int] main([int] a, [int] b) =
let {a2} = mapT(op + (1), a) in
let {b2} = mapT(op + (2), b) in
let a2_sz size(0, a2) in
let b2_sz = size(0, b2)) in
let zip_assert = assert(a2_sz = b2_sz) in
let {res} = <zip_assert>mapT(op + a2, b2) in
res

Two size-hindrances are present. Since a2 and b2 are the outputs of
mapping over a and b respectively, we can rewrite size(0,a2) to size(0,a)
and size(0,b2) to size(0,b), thus removing the nuisances and turning the
program fusible.

Our chosen approach is quite simple: Traverse the program, and whenever
an expression of the form size(k,v) is encountered, see if it can be rewritten
to a “better” form. In most cases, we will have several alternative expressions
to choose from, and hence we need a way to determine the best replacement.

For our purposes, we will want the expression that has the least chance
of being a hindrance to fusion. As noted in the introduction to this chapter,
hindrance removal is done outside of the fusion module, and hence we do not have
access to precise information about whether a candidate replacement expression

81

CHAPTER 9. HINDRANCE REMOVAL

fun [int] main([int] a) =
let b = map(op + (1), a) in
let ¢ = map(op + (2), b) in
let n = size(0, c) in
let d = map(op + (n), ¢) in
d

Figure 38: Multiple potential hindrance replacements

removes a potential hindrance, or perhaps even moves it. Section 9.1.2 will
describe cases in which moving size-expressions may cause new hindrances to
appear.

It is conceptually simple to generate alternatives to the expression size (k,v).
During traversal of the program, we track the binding of all array-typed variables
in a symbol table mapping variable names to static size information. For
example, after seeing the binding let a = iota(e), we know that size(0,a)
can be rewritten to e. The details of size analysis are described in Section 9.1.1.
However, in some cases there may be several possible replacement expressions,
and we need a way to select the best one.

We define a heuristic determining the quality of a candidate expression e as
follows: For every free variable v; in e, determine the data-flow path from v;
to either a constant or a function parameter. The quality of the expression is
inversely proportional to the number of nodes in this path, exluding nodes that
are simply copies or indexing. That is, the expression with the lowest number
is best. The idea behind this heuristic is to choose the expression that we can
move the furthest up the program, ideally preceding all SOACs.

For example, for the program shown on Figure 38, the hindrance size(0,
¢) can be replaced with either size(0, b) or size(0, a). We pick the latter,
because its single free variable can be traced directly to a function parameter
(a), whereas the free variable in the former can only reach a function parameter
through the binding for b.

In the £y compiler, size hindrance removal is implemented as part of the
Rebinder introduced in Section 6.3. Array sizes are tracked by inspecting
bindings during the traversal of the syntax tree, as described in the next
section. Whenever we encounter a binding of a size-expression, we use the size
information to obtain candidate replacements, then use the quality heuristic to
determine the best replacement.

9.1.1 Size analysis

To aid in rewriting size expressions, the Rebinder maintains a symbol table
mapping variables to size information. The size analysis presented in this
section is an entirely ad hoc mechanism focused solely on the removal of size
nuisances. More sophisticated size analysis, which could be used to optimise
memory allocation in the code generator, is left as a future project.

The size information we store takes the form of a sequence of sets of
expressions, with the set at index ¢ representing the various expressions that
evaluate to the size of that dimension. For example, we may have the following

82

CHAPTER 9. HINDRANCE REMOVAL

mapping in the symbol table:
a — ({10},0, {size(0,b),size(1,0) }]

This indicates that the the first dimension of a has size 10, we know nothing
of the second dimension, and the size of the third dimension is equal to the
first dimension of b or the second dimension of ¢. If the symbol table contains
bindings for b and ¢, we can look them up recursively and find even more
accurate size information.

If a mapping refers to an array variable with n dimensions, the mapping
may contain less than n sets. This implicitly means that we know nothing (i.e.
() about the excess dimensions.

The mappings generated by different bindings are given below. Note that
not all bindings generate a mapping; this means that the symbol table does not
necessarily include size information for all variables in scope.

let a = iotal(e)

a ({e})

let a = replicate(e,, €,)
We know that the number of rows in a is e,, but we also know that the
size of dimension d of a will be the size of dimension d + 1 in e,. This is
reflected in the size binding;:

a— ({en}, {size(0,e,)},...,{size(n,e,) }), where n is the rank of e,.

let {a,b} = split(e,, €,)
The semantics of split(e,, e,) is that the first returned array contains
the initial e,, elements, while the remaining size(0,e,)-e, are in the the
second returned array. This leads to the following size bindings:

a— ({en}, {size(1,e,)},...,{size(n,e,))
b ({size(0,e,) — ey, en}, {size(l,e,)}, ..., {size(n,e,))
Where n is the rank of e,.

let a = concat(e;, ey)

a— ({size(0,e;)+size(0,e,) }, {size(l,e,),size(l,e,) },..., {size(n,e;),size(n,e,)),
where n is the rank of e, and e, (the same, according to the type rules of
Lo).

let a = bleg,...,e,]

a— ({size(n+1,b)},...,{size(m,b)}), where m is the rank of b.

let a = transpose(e)
a— ({size(1,e)},{size(0,e)},{size(2,e)},...,{size(n,b) }), where
n is the rank of b.

let @ = b with [...] <-e
a— ({size(0,b)},...,{size(n,b)}), where n is the rank of b.

let {ay,...,ax} = mapT(En t (p1,...,Pn) => €, €1, ..., €y)
Within the body of the SOAC function (e), the symbol table will map the
parameters to row slices of their corresponding arrays:

83

let

let

CHAPTER 9. HINDRANCE REMOVAL
p1 — ({size(1, e },...,{size(m, e;)}), where m is the rank of e;.

pn — ({size(l, e,)},...,{size(m, e,)}), where m is the rank of e,.

Additionally, we know by the semantics of mapT that the outer size of any
a; must match the outer size of any e;. This gives rise to the following
mappings:

a1 — ({size(0, ¢;) |1 <j<n}).
ar — ({size(0, ¢e;) | 1 <j < n}).

Similar rules apply to the other SOACs, but a few are interesting enough
to be mentioned explicitly.

{ai,...,a;} = mapT¢(fn t (p1,....pn) => €, €1, ..., €n)

We create the same bindings as above for the function parameters, but the
interesting fact is that since we are dealing with a d-deep mapping, the
outer d dimensions of the output correspond to the outer d dimensions of
the input. This gives rise to the following mappings:

a; — ({size(0, ¢;) |1 <j<mn},...,{size(d, ¢;) |1 <j<n}).
ag — ({size(0, e;) |1 <j<n},...,{size(d, ¢€;) |1 <j<n}).

{ai,...,ap} =
scanT(fn ¢ (pY,...,pp, DY,...,02) => e, {vi,...,v}, €1, ..., €n)

Within the body of the SOAC function (e), the symbol table will map the
parameters to row slices of their corresponding arrays. Additionally, by
the semantics of scanT, we know that the inner size of e; must be equal
to the outer size of v;:

py — ({size(1,e1),size(0, v1)},...,{size(m,e1),size(m —1, v1)}),
where m is the rank of e;.

pe — ({size(l,e,),size(0, vy)},...,{size(m,e,),size(m —1, v,)}),
where m is the rank of e,,.

Additionally, we also know by the semantics of scanT that the outer size
of any a; must match the outer size of any e;. This gives rise to the
following mappings:

a; — ({size(0, e;) | 1 <j<n}).

an + ({size(0, ¢;) | 1 <j < n}).

84

CHAPTER 9. HINDRANCE REMOVAL

There is no rule for the binding of array literals - this is handled by the
constant folder presented in Section 5.3. Furthermore, a size expression
depending on an array literal binding will not ever inhibit fusion.

9.1.2 Accidentally Adding Hindrances

In some cases, our aggressive rewriting of size expressions may in fact create,
rather than remove hindrances. Consider the following program:

let b = map(f, a) in
let ¢ = map®(g, b) in
let k = size(1,c) in
h(k,c)

Here, there is a clear opportunity for fusing the two maps. Note that the
function £ is opaque, and we cannot know the size of the arrays it returns. Since
c is the result of a mapmyindu2 operation, the Rebinder can change size(1,c)
to size(1,b), resulting in the following program:

let b = map(f, a) in
let k = size(1,b) in
let ¢ = map®(g, b) in
h(k,c)

The size expression is now a nuisance preventing fusion. One possible
solution, and the one taken in the current £y compiler, is a preliminary fusion
stage, prior to executing the Rebinder, then run the Rebinder and re-run fusion.
A more precise solution would be to integrate nuisance removal into the fusion
algorithm, but this requires careful engineering in order to keep the resulting
compiler code complexity under control. Alternatively, it may be possible to
tweak the rules in the Rebinder to remove the possibility of creating fusion
hindrances, although this has not been investigated in depth.

9.1.3 Size Hindrance Removal as a Hoisting Enabler

This section has been solely concerned with size nuisance removal as a trans-
formation to enable fusion. However, it is equally useful in enabling hoisting.
Consider the following program:

mapT(fn {[int]} ([int] ar, [int] br) =>
let ¢ = assert(size(0,ar) == size(0,br)) in
mapT<c>(op +, ar, br),
a, b)

Size analysis will reveal that size(0,ar) can be rewritten to size(1,a),
and size(0,br) to size(1,b), which can then be hoisted out of the loop. This
results in the following program:

let ¢ = assert(size(l,ar) == size(1,br)) in
mapT(fn {[int]} ([int] ar, [int] br) =>
mapT<c>(op +, ar, br),
a, b)

85

CHAPTER 9. HINDRANCE REMOVAL

Not only does this result in removing the assertion from the inner loop, but
the result is a perfect map nest, potentially permitting fusion across transpose.

9.2 Inlining of indexing

The fusion algorithm presented in Chapter 7 is very strict about never duplicat-
ing computation, to the point where otherwise beneficial fusion is prevented.
For example, consider this program:

let b = map(f, a) in
reduce (min, b[0], b)

Fusion is not possible, as b is used in multiple places. If duplication of
computation were acceptable, we could rewrite b[0]) as £(a[0]), and get the
following program:

let b = map(f, a) in
reduce (min, f(a[0]), b)

We could then perform map-reduce fusion and obtain a fully fused re-
domap expression. If f is cheap, it is very likely that the small duplication of
computation is worthwhile.

Similarly to size hindrance removal, we can implement this as a transfor-
mation performed before running the fusion algorithm. Specifically, when we
find an expression of form b[i], where b is the result of an expression map(f,
a) and f is cheap (see below), we rewrite b[i] to f(a[i]), essentially inlining
part of the map operation.

A function is considered cheap if its body executes in constant time - notably,
no SOACs. We must also be careful not to inline into a loop, as this would
duplicate more than a constant amount of computation. This implies that every
such instance of inlining at most results in duplicating a constant amount of
work.

86

Part 111

Evaluation

87

Chapter 10

Optimisation Results

It is difficult at this point to quantitatively report the impact of fusion and our
other optimisations, because the compiler does not yet produce quality parallel
code. There are three main problems:

1. The optimisation is “incomplete”, in the sense that we are still too con-
servative about duplicating trivial computation. In addition, we have no
heuristics for avoiding fusion in cases where the added memory traffic
becomes a detriment (as outline Section 7.1.3).

2. There is not yet a way to execute Ly code in an efficient manner. The L,
compiler has an interpreter, but its performance characteristics are very
different from parallel hardware — for example, variable bindings carry
great overhead.

The compiler also has a code generator which generates strictly sequential
C code. The resulting C code uses very naive memory management,
however. In particular it copies arrays very often when executing SOACs,
although this might put the fusion optimisation in a better light, as it
will reduce the number of distinct SOAC expressions in the program.

3. Finally, fusion, which is our primary optimisation, does not really reduce
the number of discrete computation steps necessary to execute the program.
The purpose of our fusion optimisation is to increase parallelism and reduce
the number of discrete GPU kernels, which is not something that will
benefit the sequential code generated by our code generator.

Nevertheless, this chapter presents an evaluating the impact of the fusion
optimisation. This will primarily be in the form of manual inspection of program
structure before and after optimisation, with comments on the quality of the
result. The reader can be assured that said inspection of hundreds of lines of
machine-generated code was enormously tedious.

Six programs will be used for evaluation: three relatively simple, artificial
benchmarks, and three real-world financial programs that have been manually

88

CHAPTER 10. OPTIMISATION RESULTS

translated from C++ to what we consider “idiomatic” £o'. We present run-time
statistics for these programs in Section 10.1.

The code for the artificial benchmarks can be found in Part IV, as well as
the programs resulting from optimisation, but are summarised here:

PO Black-Scholes[7] pricing computation. 34 SLOC (Source Lines Of Code -
ignoring comments and blank lines).

P1 Matrix multiplication written in a functional style (i.e, no use of loop and
let-with). 13 SLOC.

P2 Shortest path algorithm written in a functional style. 27 SLOC.
The real world benchmarks are as follows.

RO A stochastic option pricing engine. The optimisation of this program has
previously been studied in the literature[33]. 344 SLOC.

R1 A program for doing stochastic volatility calibration, i.e., given a set of
(observed) prices of contracts, we identify the parameters of a model
of such prices, as a function of volatility (unknown), time and strikes
(known), and unobserved parameters like alpha, beta, nu, etc.

In this program, the volatility is modelled as a system of continuous
partial differential equations, which are solved via Crank-Nicolson’s finite
differences method[15].

172 SLOC.

R2 A dynamic evolution model method, i.e., genetic algorithm, for calibrating
the interest rate based on a known history of swaption prices.

Briefly, the interest rate is modelled as a sum of two stochastic processes,
which gives four unknown (real) parameters, and in addition the two
processes are assumed correlated as well, i.e., a fifth parameter.

These five (unknown) parameters appear in the formula that computes
the swaption’s price, i.e., numerical integration via hermitian-polynomials
approximation.

The genetic algorithm is used to find the five parameters that best fit the
(known) history of swaption prices.

798 SLOC.

The structure of the artificial benchmarks are shown on Figure 39. PO, being
a straightforward sequence of four maps, fuses well. P1 also fuses well - the main
loop becomes a two-dimensional tmap, with the dot product at each location
being computed in a redomap. Although not visible in the data flow diagram, it
is worth remarking that hoisting has moved all assert expressions (originating
in the use of zip) out of the main loop, which can thus be evaluated with no
bounds checking - or indeed, any branching at all.

LOr at least as much as it makes sense to talk about an “idiomatic” style for a language
whose sole users are also its designers.

89

CHAPTER 10. OPTIMISATION RESULTS

PO P1 P2
Before After Before After After
;
i mapT
mapT lIcpil mapT
f T
}
mapT maipT i
mapT mapT [mapT |
mapT | | [mapT | |redomapIT | | |[mapT ‘ |

Figure 39: Artificial benchmark dataflows, before and after optimisation

There is clearly a missed opportunity for fusion, though, the reason for
which becomes clear when we inspect the code around the unfused map:

let untuple_13 =
mapT(fn {[[int]]} ([int] param_0_8) =>
// tmp_repl_11 aliases param_0_8
let tmp_repl_11 = replicate(N_2, param_0_8) in
{tmp_repl_11},
x_0) in
let tmp_size_14 = size(2, untuple_13) in
... // untuple_13 is eventually input to main loop.

The size analyser is not smart enough to rewrite the size expression, and
untuple_13 is thus used several times, blocking fusion. The most reasonable
solution is to improve the size analyser, for which a potential approach is
outlined in Section 11.2. P2 suffers from the same problem, although again the
main loop is fully fused.

When illustrating the dataflow for the real-world benchmarks, I performed
some minor simplifications. Specifically, prologue and epilogue code has been
removed in order to emphasise the main loop.

Of the real-world benchmarks, R0, whose dataflow is illustrated on Figure 40,
benefits the most from optimisations. The program is turned into a big redomapT
that runs over an array of a thousand elements. The body of the redomapT
runs three loops in sequence. The two first could in principle be fused, but we
are again foiled by limitations of the size analyser. In this case, the use of an
explicit loop prevents the size analyser from determining the column size of
the two-dimensional array returned by the mapT. The fusion of RO also requires
fusing across transpose and reshape.

For R1, the gains are more muted. The overall structure is a sequential,
iterative main loop, which of course limits what we can do, but the body of
this loop can in principle be parallelised. The unoptimised and optimised loop

90

CHAPTER 10. OPTIMISATION RESULTS

mapT | [_mapT |
mapT
mapT
map
[filterT | [reduceT | redomapT
[—

¥

\

- - :
mapT
reduceT |«—m

—_

Figure 40: RO benchmark dataflow, before and after optimisation

loop
mapT o mapT
mapT ‘r mapT
[=
mapT
mapT
loo
— U P 5
o) P
1 mapT mapT
pi [e
[]
[loop ‘\ [Toop |

bodies can be seen on Figure 41. At first sight, two possible avenues for further
fusion are possible:

1. The first mapT could be fused into its two consumers. While this would
surely duplicate computation, perhaps it is worthwhile in this case. Inspect-
ing the code, which is shown in Figure 42, we find that the computation
that would be duplicated for each element is approximately four primitive
arithmetic operations, and two calls to exponent and logarithm functions.
Such duplication would likely be acceptable in this case, as it enables an
instance of fusion.

2. The reason for why the two latter mapTs are not fused is more tricky.
Although not expressed in the diagram, the input to the rightmost mapT is
transposed, and we have no fusion rule capable of handling a transposition
in this case, as neither consumer nor producer is a map nest.

It is not immediately clear how this could be solved.

91

CHAPTER 10. OPTIMISATION RESULTS

mapT (fn {*[reall, *[reall, *[real], *[reall} (real xi_481) =>

let tmp_call_488 = lo
let bop_493 = 0.5 * t

g(xi_481) in
mp_call_488 in

let {soac_v_506, soac_v_507, soac_v_508, soac_v_509} =

mapT(fn {real, real
let bop_496
let bop_498
let val_504
let tmp_call
{0.0, tmp_ca

, real, real} (real yj_495) =>
bop_493 + yj_495 in

bop_496 - bop_477 in

2.0 * bop_498 in

_505 = exp(val_504) in

11_505, 0.0, 0.36},

untuple_247) in

{soac_v_506, soac_v_5
untuple_130)

07, soac_v_508, soac_v_509},

Figure 42: Unfused map in R1

mapT

mapT

M loop :
oo

[mapT] \redqceT] [reduceT

Y

reduceT

I
T nspT]
[mapT][mapT | [Result |

Y

loop : § :
mapT T

[reduceT | [reduceT

reduceT

[_mapT | [mapT |
[_mapT][mapT | [reduceT | [reduceT

%

loop i]
mapT .

reduceT

redomapT

mapT

Y
Y
mapT }444]
Al '] 2
[redomapT |[redomapT | [mapT |

1]
reduceT reguceT

wy : :
T :

M mapT

¥ v ¥ v
p{redomapT |[redomapT |[mapT |
— []

ult

mapT

] [] ¥
HredomapT |[redomapT |[_mapT |

5 S | i
Iiﬁﬂﬁﬁaﬁml U

Figure 43: R2 benchmark dataflow, before and after optimisation

92

CHAPTER 10. OPTIMISATION RESULTS

let {soac_v_685, soac_v_686} =
mapT(fn {real, real} (real arg 675, real arg 676, real arg 677, real arg_678) =>
let baix_679 = arg_675 * mux_239 in
{arg_677 * exp(-baix_679),
(arg_678 - baix_679) / arg_676},
soac_v_669, soac_v_670, soac_v_671, soac_v_672) in
let {untuple_690} =
reduceT(fn {real} (real x_687, real y_688) =>
{x_687 + y_688%,
{0.0}, soac_v_685) in
let {untuple_695} =
reduceT(fn {real} (real param_0_691, real param_1_692) =>
if param_0_691 < param_1_692
then {param_1_692}
else {param_0_691},
{-1000. 0%},
soac_v_686) in

Figure 44: Unfused loops in R2

R2 is easily the most complex benchmark, and also the one for which fusion
has the smallest impact on the data flow graph. As shown on Figure 43, the
body of the main loop contains three independent (but near-identical) loops
whose results are combined using a non-fusible series of reductions (summarised
as a single node). The optimised structure is virtually identical: the only
optimisation is a few instances of map-map and map-reduce fusion. However, it
is worth noting that there are instances where we take advantage of our fusion
algorithms ability to fuse just part of the input to a SOAC.

As in R1, each of the three inner loops have a case where multiple uses of
the output of a mapT SOAC prevents us from fusing it into a reduceT. Again,
it is worth inspecting the code to see whether our reluctance to duplicate
computation is again too conservative. The code in question (slightly simplified
for readability) is shown on Figure 44.

Again we see that that a relatively cheap mapT operation cannot be fused
without duplicating computation. This case is particularly interesting, because
the mapT conceptually computes two distinct arrays, with only the computation
of baix_679 (a single multiplication per element) being shared. This structure
was also present in the original program. In a future elaboration of the fusion
algorithm, it may be worthwhile to split SOACs apart to make the representation
of shared computation even more precise.

10.1 Runtime results

The real-world benchmarks were repeatedly passed through the £ optimisations
until no further optimisation was achieved, then compiled with a code generator
generating sequential C code.

The resulting programs were compiled with GCC 4.8.2 using maximum

93

CHAPTER 10. OPTIMISATION RESULTS

‘ Unoptimised ‘ Optimised ‘ Speedup

RO 0.430s 0.292s 46%
R1 0.098s 0.057s 71%
R2 0.061s 0.047s 31%

Figure 45: Benchmark runtimes

optimisation (-03) on an Intel Core i7-2630QM CPU running at 2.00GHz. Each
program was executed one thousand times and the run-times averaged. The
results are shown on Figure 45

It is hard to determine how much of the speedup is due to fusion in isolation
and how much is due to other optimisations, as they all interact to enable each
other. However, given that the C programs were compiled with full optimisation,
it is likely that the C compiler performed much hoisting and most of our simpler
optimisations itself.

Again, it must be emphasised that most of the speedup is likely due to
the code generator copying all input arrays upon executing a SOAC. With
this behaviour, fusion reducing the number of discrete SOAC expressions will
likewise reduce the number of expensive memory copies.

94

Chapter 11

Conclusions

This chapter summarises the result of our work. Section 11.1 compares our
fusion algorithm with fusion in other data-parallel programming languages, as
well as looking at other approaches to uniqueness typing. Section 11.2 outlines
a number of possible future improvements to £y and the compiler. Section 11.3
provides a final summary of the results of this thesis.

11.1 Related Work

Our approach to performining fusion, via rewrite rules, is not unique by itself,
as this is the approach used in e.g. Data-Parallel Haskell [12] (DPH). What
sets us apart is the fact that our rewriting rules are defined on the dataflow
graph, and not the program itself. While DPH obtains good results, its rewrite
rules are quite limited — they are an inherently local view of the program,
and would be unable to cope with limitations in the presence of in-place array
updates, and whether the result of an array operation is used multiple times.
The Glasgow Haskell Compiler itself also bases its list fusion on rewrite rules
and cross-module inlining [23, 17].

The Repa [24] approach to fusion is based on a delayed representation of
arrays, which models an array as a function from index to value. With this
representation, fusion happens automatically through function composition,
although this can cause duplication of work in many cases. To counteract
this, Repa lets the user force an array, by which it is converted from the
delayed representation to a traditional sequence of values. The pull arrays of
Obsidian [14] use a similar mechanism. This approach puts the onus on the
programmer to specify points where the manifestation of arrays is beneficial,
even though this may be a low-level consideration that depends on details of the
target hardware. We therefore consider this a job better suited for the compiler.

Accelerate [29] uses an elaboration of the delayed arrays representation from
Repa, and in particular manages to avoid duplicating work. All array operations
have a uniform representation as constructors for delayed arrays, on which fusion
is performed by tree contraction. Accelerate supports multiple arrays as input
to the same array operation (using a zipWith construct). Although arrays are
usually used at least twice (once for getting the size, once for the data), it does

95

CHAPTER 11. CONCLUSIONS

not seem that they can handle the difficult case where the output of an array
operation is used as input to two other array operations.

NESL has been extended with a GPU backend [5], for which the authors
note that fusion is critical to the performance of the flattened program. The
NESL approach is to use a form of copy-propagation on the intermediary code,
and lift the resulting functions to work on entire arrays. This approach only
works for what we would term map-map fusion, however.

Our uniqueness attributes have some similarities to the “owning pointers”
found in the impure language Rust [22], albeit there are deep differences. In Rust,
owning pointers are used to manage memory — when an owning pointer goes
out of scope, the memory it points to is deallocated — while we use uniqueness
attributes to handle side effects. In addition, we allow function calls to consume
arrays passed as unique-type parameters, whereas in Rust this causes a deep
copy of the object referenced by the owning pointer.

A closer similarity is found in the pure functional language Clean, which con-
tains a sophisticated system of uniqueness typing [4]. Clean employs uniqueness
typing to re-use memory in cases where a function receives a unique argument,
but also (and perhaps more importantly) to control side effects including arbi-
trary I/O. As in Ly, alias analysis is used to ensure that uniqueness properties
are not violated. A notable difference is that the Clean language itself does
not have any facilities for consuming unique objects, apart from specifying a
function parameter as unique, but delegate this to (unsafe) internal functions,
that are exposed safely via the type system. Furthermore, a unique return value
in Clean may alias some of the parameters to the function, which is forbidden
in L£y. We have found that this greatly simplifies analysis, and allows it to be
fully intraprocedural.

11.2 Future Work

A very important immediate goal is the implementation of a code generator
targeting GPU execution. Furthermore, a number of other avenues for further
research and development of L ae available.

11.2.1 Size Information in Type System

The size analysis presented in Chapter 9 is quite restricted, and was designed
and extended on an ad-hoc basis in order to enable fusion of the real-world
benchmarks. Considering the great importance of accurate size information in
not only doing high-level optimisations, but also generating efficient low-level
code, it appears very worthwhile to integrate tracking of array sizes into the
language itself.

We suggest a type system extension inspired by dependent types, although
much simpler. As an example, let us look at how we would like to be able to
define matrix multiplication:

fun [[int,N],P] matMult([[int,N],M] a, [[int,M],P] b) =

96

CHAPTER 11. CONCLUSIONS

This function declares that it takes two int array arguments, the first of
size N X M and the second of size M x P, and returns an integer array of size
N x P. Any caller of matMult must first prove to the type system that the
arguments have the correct size, while matMult itself must prove that its body
always returns an array of the appropriate size.

Such a proof could be provided through a mechanism much like the current
assert, which allows us a sort of “escape hatch” for when we cannot statically
guarantee the size of our data - for example, when it is given to us as input
from the outside world, or the result of a filter. As the current £y compiler is
already able to optimise and hoist many assertions away, this would be useful
by itself.

However, this would not solve the problem encountered in Chapter 10, when
the inability to transform a size expression prevented fusion in program RO.
The problematic part of RO has this essential structure (where N is some variable
in scope):

let b = map(fn [real] (int x) =>
let xa = replicate(N,x) in
loop (xa) = for i < N do
let xa = f(xa) // Does not change size of xa
in
xa,
a) in
let n = size(1,b) in
map(g(n), b)

The current ad-hoc size analyser is not smart enough to figure out the inner
size (N) of the array b. Integrating size information into the type system would
allow us to annotate the return type of the anonymous function as follows:

let b = map(fn [real,N] (int x) =>

a) in

We now statically promise that the inner size of b will always be N, possibly
backed by an assertion within the body of the map. The intent is that this
promise can be checked by the type-checker. Presumably, for the body of the
function to be type-correct, the function £ would have been defined to return
an array of the same size as its input.

It is not yet clear exactly how we should deal with cases where the size of
an array dimension cannot be statically known, or where it is the result of a
complex expression. It is not desirable to support the full power of dependent
types, nor to include a full theorem prover in Lg, as this could make it very
cumbersome to use Ly as a compiler target language. In the end, it is important
to remember that our primary motivation is to improve size tracking for the
benefit of optimisation and code generation.

97

CHAPTER 11. CONCLUSIONS

11.2.2 Improved Aliasing Analysis

The system of uniqueness types presented in Chapter 3 hinges crucially on
tracking potential sharing between arrays. However, the current model of
aliasing is very coarse-grained, as it cannot describe sharing at a more precise
level than entire arrays. For example, assume that we have the following
function:

fun *[int] replace(*[int] arr, int i, int x) =
let arr[i] = x in arr

The result of replace(a,i,x) is the array a with the element at index i
replaced by x. We may want to use this function to replace an element within
a slice of an array, like so':

let b = a with [j] <- replace(aljl, j, x) in

Unfortunately, this code will be refused by the compiler: The call to replace
consumes the array a, because a[j] is aliased with a, yet a is used as the source
in a let-binding. Making a separate binding for the call to replace may make
things more clear:

let r
let b

replace(aljl, j, x) in // Consumes a
a with [j] <- r in

As far as the type system is concerned, both the call to replace and the
let-with expression consume the entirety of a, hence causing a compile-time
double-consumption error. The only solution is to use copy:

let r
let b

replace(copy(aljl), j, x) in // Consumes a
a with [j] <- r in

It is clear to us however, that the call to replace only modifies the memory
associated with the jth row of a. Furthermore, when a is next accessed (and
consumed), the jth row is replaced anyway. Thus, it should be possible to
perform this entire operation in O(1) space.

We could of course make a specialised variant of replace for two-dimensional
arrays, but this leads to unnecessary code bloat. Thus, we believe that more
precising tracking of sharing would be worthwhile. The problem is not easy,
however, as the expression for the array index may be arbitrarily complicated.

11.2.3 Array Views

Array indexing in Lg is quite limited - only entire dimensions can be extracted.
With split, we can get slightly more control, but extracting e.g. the inner

98

CHAPTER 11. CONCLUSIONS

fun [[int]] inner([[int]] a) = def inner(a):
let n = size(0,a) in al1:-1, 1:-1]
let m = size(1,a) in
let {_,a2} = split(l,a) in

let {rows,_} = split(n-2,a2) in
map(fn [int] ([int] row) =>
let {_, row2} =
split(1l,row) in
let {res, _} =
split(m-2,row2) in
res,
rows)

(a) Lo (b) Numpy

Figure 46: Removing the outer elements of a 2-dimensional array

elements of a 2-dimensional array is an enormously clumsy affair, as illustrated
on Figure 46a.

The primary reason for this is that split only slices the outer dimension. In
other systems, such as the Python library Numpy [34], it is comparatively much
simpler to simultaneously slice on every dimension of an array, as illustrated on
Figure 46b.

As an array-oriented programming language, £ should have similar con-
venient support for slicing arrays. It is not only practical when writing code,
but the resulting slice expressions are much easier to analyse than a dense
expression using size and split.

More radically, many operations in Lg are operationally just transformations
of the index space of an underlying array. Transpositions, reshape, replicate,
and even array indexing, merely provide different views of underlying data.
Thus, perhaps the best solution would be to provide a language construct that
can express this mapping directly. We can envision a syntax like the following:

fun [[int]] transpose([[int]] a) =
arrange a as
size (n,m) => (m,n) // Determine size of output array
elem [i,j] => [j,i] // Map position (i,j) in output to position (j,i) in input

A crucial property is that every element of the output array maps directly
to some element in the input array, which means that at compile time, we can
remove the arrange intermediary and access the original array directly. This
design is very similar to the delayed arrays of Repa [24], which represent arrays
as a function from the index space to the value space. The built-in replicate
could be reformulated as follows:

fun [[[int]]] replicate(int k, [[int]] r) =
arrange r as

LOf course, in this contrived example, we could just use let-with rather than a separate
function.

99

CHAPTER 11. CONCLUSIONS

size (n,m) => (k,n,m)
elem [i,j,p] => [j,p]

We can also express entirely novel transformations, such as a rearrangement
that repeats every element of its input array twice:

fun [int] dupElem([int] a) =
arrange a as
size (n) => (n)
elem (2*i) => [i]
elem (2*i+1) => [i]

A large potential problem with a construct such as arrange is whether the
compiler will be able to recognise “known” transformations. For example, we
demonstrated in Chapter 8 that the fusion algorithm depends on being able to
recognise and rewrite transpose expressions, which it must be able to do, even
if they are formulated in terms of arrange. Hence, it would be important that
every arrange can be reduced to a canonical form that uniquely represents the
transformation it performs.

11.2.4 Software Engineering

The world already has plenty of papers and theses stuffed with long listings of
Haskell code, and we have therefore tried to shy away from talking too much
about the software architecture of the £y compiler. While the overall code base
is healthy and well-structured, there are still several instances of technical debt
that should be paid off:

e While the compiler is nicely divided into discrete passes, the order in which
said passes should be invoked is a bit unclear. As it stands, programs are
passed through every pass several times, simply to ensure that they get
optimised fully. This requires some bit of re-engineering, probably also
involving changing some passes (particularly the fusion module) to be less
sensitive as to the shape of the input program.

e For this thesis, £y has been divided into an external and internal language.
In the compiler, both of these are included in the same abstract syntax
tree definition, with most passes either silently ignoring or loudly crashing
if they encounter a construct that belongs to the external language. This
creates undue complexity, and should be resolved by splitting the language
more clearly, even if the cost is some code duplication (for example, we
might need separate but very similar parsers).

e Somewhat related to the previous issue, the £y syntax tree definition does
not statically enforce normalisation. Again, compiler passes either ignore
them or crash when an un-normalised term is encountered.

e Many optimisations depend on every variable in the program posessing a
unique name. This property is ensured by tagging each input name with a
unique integer, then passing around a counter that can be used to generate

100

CHAPTER 11. CONCLUSIONS

fresh, globally unique integers. Unfortunately, many transformations (e.g.
inlining) end up duplicating bits of code, which then have to be entirely
renamed in order to preserve uniqueness. Furthermore, passing the counter
around is cumbersome, even if packaged in a state monad. An alternative
approach to handling name binding, based on de Bruijn indices [28], is
being considered. Such an approach would allow us to get rid of the
counter, while still being able to cheaply avoid unwanted name capture.

11.3 Conclusion

In this master’s thesis, we have presented the design of a pure functional
data-parallel language, with a design that enables both (i) a degree low-level
imperative programming, as well as (ii) supporting high-level structural transfor-
mations such as loop fusion. The language contains a type system for in-place
modification and aliasing of arrays and array slices that ensures referential
transparency, which in turn supports equational reasoning.

Previous work on fusion has taken two main directions: Either fusion is
performed aggressively, and the programmer is provided primitives to inhibit
fusion, for example by forcing array to materialise, or fusion is performed via
rewriting rules on the syntax tree. The latter approach relies tightly on the
inliner engine, and its applicability is limited to the case when each fused array
is consumed by one array combinator.

This thesis has presented a program-level, structural-analysis approach to
fusion that handles the difficult case in which an array produced by a second-
order array combinator (SOAC), such as map, is consumed by several other
SOACs (if the SOAC producer-consumer dependency graph is reducible). This
essentially allows fusion to operates across zip/unzip.

Furthermore, we have shown a compositional algebra for fusion that includes
array combinators, such as map, reduce, filter, scan, and redomap, and other
built-in functions that would otherwise hinder fusion applicability, such as size,
transpose, and reshape. This algebra also includes transformations that in
come cases allow fusion with scan as both consumer and producer.

101

Part IV

Closing Credits

102

Bibliography

(1]
(2]

(3]

(4]

(5]
(6]
[7]
(8]
(9]
(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

AHO, ALFRED V. et al. Compilers, Principles, Techniques, and Tools. Pearson Addison
Wesley, 2007. 1SBN: 0-321-49169-6.

ALLEN, RANDY and KEN KENNEDY. Optimizing Compilers for Modern Architectures.
Morgan Kaufmann, 2002, p. 790. 1SBN: 1-55860-286-0.

BARENDSEN, ERIK and SJAAK SMETSERS. “Conventional and Uniqueness Typing in Graph
Rewrite Systems”. In: Found. of Soft. Tech. and Theoretical Comp. Sci. (FSTTCS).
Vol. 761. LNCS. 1993, pp. 41-51.

BARENDSEN, ERIK and SJAAK SMETSERS. “Uniqueness Typing for Functional Languages
with Graph Rewriting Semantics”. In: Mathematical Structures in Computer Science
6.6 (1996), pp. 579-612.

BERGSTROM, LARS and JOHN REPPY. “Nested Data-Parallelism on the GPU”. In: Procs.
of Int. Conf. Funct. Prog. (ICFP). ACM. 2012, pp. 247-258.

BIrD, R. S. “An Introduction to the Theory of Lists”. In: NATO Inst. on Logic of
Progr. and Calculi of Discrete Design. 1987, pp. 5—42.

BrAck, F. and M. SCHOLES. “The Pricing of Options and Corporate Liabilities”. In:
The Journal of Political Economy (1973), pp. 637-654.

BLELLOCH, GUY. “Programming Parallel Algorithms”. In: Communications of the ACM
(CACM) 39.3 (1996), pp. 85-97.

BLELLOCH, GUY E. “Scans as Primitive Parallel Operations”. In: Computers, IEEE
Transactions 38.11 (1989), pp. 1526-1538.

BLUME, WILLIAM and RUDOLF EIGENMANN. “Symbolic range propagation”. In: Parallel
Processing Symposium, 1995. Proceedings., 9th International. IEEE. 1995, pp. 357-363.

BLUME, WILLIAM and RUDOLF EIGENMANN. “The Range Test: A Dependence Test for
Symbolic, Non-Linear Expressions”. In: Procs. Int. Conf. on Supercomp. (ICS). 1994,
pp. 528-537.

CHAKRAVARTY, MANUEL M. T. et al. “Data Parallel Haskell: A Status Report”. In: Int.
Work. on Decl. Aspects of Multicore Prog. (DAMP). 2007, pp. 10-18.

CHAKRAVARTY, MANUEL M.T. et al. “Accelerating Haskell Array Codes with Multicore
GPUSs”. In: Int. Work. on Declarative Aspects of Multicore Prog. (DAMP). 2011, pp. 3—
14.

CLAESSEN, KOEN, MARY SHEERAN, and BO JOEL SVENSSON. “Expressive Array Con-
structs in an Embedded GPU Kernel Programming Language”. In: Work. on Decl. As-
pects of Multicore Prog DAMP. 2012, pp. 21-30.

CRANK, J. and P. NICOLSON. “A practical method for numerical evaluation of solutions
of partial differential equations of the heat-conduction type”. English. In: Advances
in Computational Mathematics 6.1 (1996), pp. 207—226. 1sSN: 1019-7168. DOI: http:
//dx.doi.org/10.1007/BF02127704. URL: http://dx.doi.org/10.1007/BF02127704.

CZARNECKI, KRZYSZTOF et al. “DSL implementation in MetaOCaml, Template Haskell,
and C++". In: Domain-Specific Program Generation. Springer, 2004, pp. 51-72.

GILL, ANDREW, JOHN LAUNCHBURY, and SIMON L PEYTON JONES. “A Short Cut to
Deforestation”. In: Procs. of Int. Conf. on Functional Prog. Lang. and Computer Arch.
ACM. 1993, pp. 223-232.

103

http://dx.doi.org/10.1007/BF02127704
http://dx.doi.org/10.1007/BF02127704
http://dx.doi.org/10.1007/BF02127704

(18]

(19]

20]

(21]

(22]

(23]

(24]
25]
[26]

27]

(28]

29]
(30]

31]

(32]

(33]

(34]
(35]

CHAPTER 11. CONCLUSIONS

GRELCK, CLEMENS and SVEN-BopO ScHoOLZ. “SAC - A Functional Array Language for
Efficient Multi-Threaded Execution”. In: International Journal of Parallel Programming
34.4 (2006), pp. 383-427.

HALL, MARY W. et al. “Interprocedural Parallelization Analysis in SUIF”. In: Trans.
on Prog. Lang. and Sys. (TOPLAS) 27(4) (2005), pp. 662-731.

HAN, T1ANYI DAVID and TAREK S. ABDELRAHMAN. “Reducing Branch Divergence in GPU
Programs”. In: Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units. GPGPU-4. Newport Beach, California: ACM, 2011, 3:1-3:8.
ISBN: 978-1-4503-0569-3. DOI: http://dx.doi.org/10.1145/1964179.1964184. URL:
http://doi.acm.org/10.1145/1964179.1964184.

HENRIKSEN, TROELS and COSMIN EUGEN OANCEA. “A T2 Graph-reduction Approach to
Fusion”. In: Proceedings of the 2Nd ACM SIGPLAN Workshop on Functional High-
performance Computing. FHPC ’13. Boston, Massachusetts, USA: ACM, 2013, pp. 47—
58. ISBN: 978-1-4503-2381-9. DOI: http://dx.doi.org/10.1145/2502323.2502328. URL:
http://doi.acm.org/10.1145/2502323.2502328.

HOARE, GRAYDON. The Rust Programming Language. June 2013. URL: http://www.
rust-lang.org/.

JONES, SIMON PEYTON, ANDREW TOLMACH, and TONY HOARE. “Playing by the Rules:
Rewriting as a Practical Optimisation Technique in GHC”. In: Haskell Workshop.
Vol. 1. 2001, pp. 203-233.

KELLER, GABRIELE et al. “Regular, Shape-Polymorphic, Parallel Arrays in Haskell”. In:
ACM Sigplan Notices 45.9 (2010), pp. 261-272.

KOHLBECKER, EUGENE et al. “Hygienic macro expansion”. In: Proceedings of the 1986
ACM conference on LISP and functional programming. ACM. 1986, pp. 151-161.

KRISTENSEN, MADS RB et al. “Bohrium: Unmodified NumPy Code on CPU, GPU, and
Cluster”. In: ().

MAINLAND, GEOFFREY. “Why it’s nice to be quoted: quasiquoting for haskell”. In:
Proceedings of the ACM SIGPLAN workshop on Haskell workshop. ACM. 2007, pp. 73—
82.

McBRIDE, CONOR and JAMES MCKINNA. “Functional Pearl: I Am Not a Number-I Am
a Free Variable”. In: Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell.
Haskell ’04. Snowbird, Utah, USA: ACM, 2004, pp. 1-9. 1sBN: 1-58113-850-4. DOI:
http://dx.doi.org/10.1145/1017472.1017477. URL: http://doi.acm.org/10.1145/
1017472.1017477.

McDONELL, TREVOR L. et al. “Optimising Purely Functional GPU Programs”. In:
Procs. of Int. Conf. Funct. Prog. (ICFP). 2013.

Nvipia, CUDA. “Cublas library”. In: NVIDIA Corporation, Santa Clara, California
15 (2008).

OANCEA, CosMIN E. and LAWRENCE RAUCHWERGER. “A Hybrid Approach to Proving
Memory Reference Monotonicity”. In: Int. Lang. Comp. Par. Comp. (LCPC’11).
Vol. 7146. LNCS. 2013, pp. 61-75.

OANCEA, CosMIN E. and LAWRENCE RAUCHWERGER. “Logical Inference Techniques for
Loop Parallelization”. In: Procs. of Int. Conf. Prog. Lang. Design and Impl. (PLDI).
2012, pp. 509-520.

OANCEA, COSMIN et al. “Financial Software on GPUs: between Haskell and Fortran”.
In: Funct. High-Perf. Comp. (FHPC’12). 2012.

OLIPHANT, TRAVIS E. A Guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

SABRY, AMR and MATTHIAS FELLEISEN. “Reasoning About Programs in Continuation-
passing Style.” In: SIGPLAN Lisp Pointers V.1 (Jan. 1992), pp. 288-298. 1sSN: 1045-
3563. DOI: http://dx.doi.org/10.1145/141478.141563. URL: http://doi.acm.org/
10.1145/141478.141563.

104

http://dx.doi.org/10.1145/1964179.1964184
http://doi.acm.org/10.1145/1964179.1964184
http://dx.doi.org/10.1145/2502323.2502328
http://doi.acm.org/10.1145/2502323.2502328
http://www.rust-lang.org/
http://www.rust-lang.org/
http://dx.doi.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
http://dx.doi.org/10.1145/141478.141563
http://doi.acm.org/10.1145/141478.141563
http://doi.acm.org/10.1145/141478.141563

(36]

CHAPTER 11. CONCLUSIONS

UFFE, ET AL. “Almene Teoridannelser om generisk programmering af numeriske lgsninger
til ssedvanlige og partielle differentialligninger, med specielt henblik pa anvendelse af
Standard Fortran 76, og dennes henvisninger til Turings artikel, "Uber die Wesen
des Primtalalgorimus des kvadratischer Bubblesort anno 1943” - bilag F. Fgr, nu og i
fremtiden!” In: DIKURevy (2007).

105

Artificial Benchmark Programs

PO

fun real horner (real x) =
let {c1,c2,c3,cd,ch5} =
{0.31938153,-0.356563782,1.781477937,-1.821255978,1.330274429}
in x * (c1 + x % (c2 +x * (c3 +x * (cd + x * cb))))

fun real abs (real x) = if x < 0.0 then -x else x

fun real cnd0 (real d) =
let k 1.0 / (1.0 + 0.2316419 * abs(d)) in
let p horner(k) in
let rsqrt2pi = 0.39894228040143267793994605993438 in
rsqrt2pi * exp(-0.5%d*d) * p

fun real cnd (real d) =
let ¢ = cnd0(d)
in if 0.0 < d then 1.0 - c else ¢

fun real go ({bool,real,real,real} x) =
let {call, price, strike, years} = x in

let r = 0.08 in // riskfree

let v = 0.30 in // volatility

let v_sqrtT = v * sqrt(years) in

let di = (log (price / strike) + (r + 0.5 * v * v) * years) / v_sqrtT in
let d2 = dl - v_sqrtT in

let cndD1 = cnd(dl) in

let cndD2 = cnd(d2) in

let x_expRT = strike * exp (-r * years) in

if call then
price * cndDl1 - x_expRT * cndD2
else
x_expRT * (1.0 - cndD2) - price * (1.0 - cndD1)

fun [real] blackscholes ([{bool,real,real,real}] xs) =
map (go, xs)

106

ARTIFICIAL BENCHMARK PROGRAMS

fun [real] main () =
let days = 5*365 in
let a = map(op+(1), iota(days)) in

let a = map(toReal, a) in
let a = map(fn {bool,real,real,real} (real x) =>
{True, 58.0 + 4.0 * x / toReal(days), 65.0, x / 365.0%},
a) in
blackscholes(a)

PO — optimised

fun [reall] main() =
let {untuple_141} =
mapT(fn {real} (int y_0) =>
let val_.1 =1 + y_0 in
let val_2 = toReal(val_1) in
let bop_9 = val_2 / 365.0 in
let bop_10 = 0.08 * bop_9 in
let val_11 = -bop_10 in
let tmp_call_12 = exp(val_11) in
let x_expRT_13 = 65.0 * tmp_call_12 in
let bop_14 = 0.125 * bop_9 in
let tmp_call_15 = sqrt(bop_9) in
let v_sqrtT_16 = 0.3 * tmp_call_15 in
let bop_17 = 4.0 * val_2 in
let bop_60 = bop_17 / 1825.0 in
let bop_61 = 58.0 + bop_60 in
let val_62 = bop_61 / 65.0 in
let tmp_call_63 = log(val_62) in
let bop_64 = tmp_call_63 + bop_14 in
let d1_65 = bop_64 / v_sqrtT_16 in
let bop_66 = d1_65 < 0.0 in
let negate_67 = -d1_65 in
let bop_68 = 0.5 * d1_65 in
let bop_69 = bop_68 * d1_65 in
let val_70 = -bop_69 in
let tmp_call_75 = exp(val_70) in
let bop_76 = 0.3989422804014327 * tmp_call_75 in
let bop_77 = 0.0 < d1_65 in
let d2_78 = d1_65 - v_sqrtT_16 in
let bop_83 = d2_78 < 0.0 in
let negate_84 = -d2_78 in
let bop_85 = 0.5 * d2_78 in
let bop_86 = bop_85 * d2_78 in
let val_87 = -bop_86 in
let tmp_call_88 = exp(val_87) in
let bop_90 = 0.3989422804014327 * tmp_call_88 in

107

ARTIFICIAL BENCHMARK PROGRAMS

let bop_91 = 0.0 < d2_78 in
let tmp_bop_94 =

if bop_83

then negate_84

else d2_78 in
let bop_96 = 0.2316419 * tmp_bop_94 in
let bop_97 = 1.0 + bop_96 in
let k_103 = 1.0 / bop_97 in
let bop_108 = k_103 * 1.330274429 in
let bop_109 = -1.821255978 + bop_108 in
let bop_110 = k_103 * bop_109 in
let bop_111 = 1.781477937 + bop_110 in
let bop_112 = k_103 * bop_111 in
let bop_113 = -0.356563782 + bop_112 in
let bop_114 = k_103 * bop_113 in
let bop_115 = 0.31938153 + bop_114 in
let p_116 = k_103 * bop_115 in
let c_117 = bop_90 * p_116 in
let bop_118 = 1.0 - c_117 in
let cndD2_119 =

if bop_91

then bop_118

else c_117 in
let bop_120 = x_expRT_13 * cndD2_119 in
let tmp_bop_121 =

if bop_66

then negate_67

else d1_65 in
let bop_124 = 0.2316419 * tmp_bop_121 in
let bop_125 = 1.0 + bop_124 in
let k_126 = 1.0 / bop_125 in
let bop_127 = k_126 * 1.330274429 in
let bop_128 = -1.821255978 + bop_127 in
let bop_129 = k_126 * bop_128 in
let bop_130 = 1.781477937 + bop_129 in
let bop_131 = k_126 * bop_130 in
let bop_132 = -0.356563782 + bop_131 in
let bop_133 = k_126 * bop_132 in
let bop_134 = 0.31938153 + bop_133 in
let p_135 = k_126 * bop_134 in
let c_136 = bop_76 * p_135 in
let bop_137 = 1.0 - c_136 in
let cndD1_138 =

if bop_77

then bop_137

else ¢c_136 in
let bop_139 = bop_61 * cndD1_138 in

108

ARTIFICIAL BENCHMARK PROGRAMS

let bop_140 = bop_139
{bop_140%},
iota(1825)) in
untuple_141

bop_120 in

P1

reduce(op +, 0, a)
map (redplusl, a)

fun int redplus1([int] a)
fun [int] redplus2([[int]] a)

fun [int] mull([int] a, [int] b)
fun [[int]] mul2([[int]] a, [[int]] b)

map(op *, zip(a, b))
map (mull, zip(a, b))

fun [[int]] replin(int N, [int] a) = replicate(N, a)

fun [[int]] matmultFun([[int]] a, [[int]] b) =

let N = size(0, a) in
let br = replicate(N, transpose(b)) in
let ar = map (replin(N), a) in
let abr = map (mul2, zip(ar, br)) in

map (redplus2, abr)

fun [[int]] main([[int]] x, [[int]] y) =
matmultFun(x, y)

P1 — optimised

fun [[int]] main([[int]] x_0, [[int]] y_1) =
let tmp_size_2 = size(l, x_0) in
let tmp_size_3 = size(0, y_1) in
let tmp_e_4 = tmp_size_2 = tmp_size_3 in
let zip_assert_5 = assert(tmp_e_4) in
let tmp_size_6 = size(l, y_1) in
let N_13 = size(0, x_0) in
let tmp_e_19 = N_13 = tmp_size_6 in
let zip_assert_27 = assert(tmp_e_19) in
// untuple_45 aliases x_0
let {untuple_45} =
mapT(fn {[int]l} ([int] param_0_33) =>
let {untuple_44} =
<zip_assert_27>
mapT(fn {int} ([int] arg_34) =>
let {untuple_43} =
<zip_assert_5>
redomapT(fn {int} (int x_35, int y_36) =>
let val_37 = x_35 + y_36 in
{val_37},

109

ARTIFICIAL BENCHMARK PROGRAMS

fn {int} (int x_38, int arg_39, int arg_40) =>

let val_41 = arg_40 * arg_39 in
let val_42 = x_38 + val_41 in
{val_42},

{0}, arg_34, param_0_33) in
{untuple_43},
transpose(y_1)) in
{untuple_44},
x_0) in

untuple_45

P2

fun

fun

fun

fun

fun
fun

fun

fun

fun

int MIN(int a, int b) = if(a<b) then a else b

[int] min1([int] a, [int] b) = map(MIN, zip(a, b))

int redminl([int] a)
[int] redmin2([[int]] a)

[int] plusi([int] a, [int] ©b)
[[int]] plus2([[int]l] a, [[int]l] b)

reduce (MIN, 1200, a)
map (redminl, a)

map(op +, zip(a, b))
map(plusl, zip(a, b))

[[int]] replin(int len, [int] a) = replicate(len, a)

[[int]] floydSbsFun(int N, [[int]] D) =

let
let
let
let

D3 = replicate(N, transpose(D)) in

D2 = map (replin(N), D) in
abr = map(plus2, zip(D3, D2)) in
partial = map(redmin2, abr) in

map (minl, zip(partial, D))

[[int]] main() =

let

arr = [[2,4,5], [1,1000,3], [3,7,1]1] in

floydSbsFun(3, arr)

P2 — optimised

fun [[int]] main() =
let arr_0 = [[2, 4, 5],

[1, 1000, 3],
(3, 7, 111 in

// untuple_37 aliases arr_0
let {untuple_37} =
mapT(fn {[int]} ([int] param_0_1) =>

let {untuple_36} =

110

ARTIFICIAL BENCHMARK PROGRAMS

mapT(fn {int} (int arg_2, [int] arg_4) =>
let {untuple_33} =
redomapT(fn {int} (int param_0_5, int param_1_24) =>
let bop_25 = param_0_5 < param_1_24 in
let val_26
if bop_25
then param_0_5
else param_1_24 in
{val_26},
fn {int} (int param_0_27, int arg_28,
int arg_29) =>
let val_30 = arg_28 + arg_29 in
let bop_31 = param_0_27 < val_30 in
let val_32
if bop_31
then param_0_27
else val_30 in
{val_32},
{1200}, arg_4, param_0_1) in
let bop_34 = untuple_33 < arg_2 in
let val_35
if bop_34
then untuple_33
else arg_2 in
{val_35},
param_O_1, transpose(arr_0)) in
{untuple_36},
arr_0) in

untuple_37

111

	Preface
	Introduction
	Language Design
	The L0 language
	Uniqueness Types
	Internal Representation

	Optimisations
	First Order Optimisations
	The Rebinder
	Fusion
	Fusion-enabling SOAC Transformations
	Hindrance Removal

	Evaluation
	Optimisation Results
	Conclusions

	Closing Credits
	Bibliography
	Artificial Benchmark Programs

