
Parametric Polymorphism for Software Component

Architectures and Related Optimizations

(Spine title: Parametric Polymorphism for Component Architectures)

(Thesis Format: Monograph)

by

Cosmin Eugen Oancea

Graduate Program

in
Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario
July, 2005

c© Cosmin Eugen Oancea 2005

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Stephen M. Watt Dr. Nigel Horspool

Supervisory Committee

Dr. Hanan Lutfiyya

Dr. Marc Moreno Maza

Dr. Martin Mueser

The thesis by
Cosmin Eugen Oancea

entitled

Parametric Polymorphism for Software Component Architectures

and Related Optimizations

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Dr. Paul Milnes

Date Chair of the Thesis Examination
Board

ii

Abstract

Parametric polymorphism has become a common feature of mainstream programming

languages, but software component architectures have lagged behind and do not sup-

port this feature. The immediate consequence is that applications cannot naturally

combine the functionality exposed by various parameterized modules, if it happens

that the implementation language differs. This significant problem surfaced first and

most acutely in the computer algebra community, where parametric polymorphism is

heavily used for the specification and enforcement of the algebraic interfaces and in the

implementation of algorithms that work over various coefficient rings or fields. Com-

plex, specialized mathematical libraries, servicing disjoint areas are implemented in

various languages and therefore they cannot yet work together to attack increasingly

difficult problems. This thesis examines the problem of accommodating parametric

polymorphism, and related optimizations in a multi-language, distributed setting.

We report on a first experiment, where we developed the Alma framework that

allows Aldor libraries to extend Maple in a effective and natural way, and constitutes

a new approach to structuring computer algebra systems. The motivation for this

experiment are twofold: First, we are interested in understanding the issues that arise

in matching the compile-time parametric polymorphism of Aldor’s dependent types

iii

with the dynamic parametric polymorphism of Maple’s module-producing functions,

and in matching the Aldor’s strongly type system with Maple’s dynamically typed

system. Second, we are interested in the practical problem of using Aldor as an

extension mechanism for the popular Maple computer algebra system.

The details of generics, templates or functors, as they are variously called, dif-

fer significantly in different programming languages. We investigated how to resolve

different binding times and parametric polymorphism semantics in a range of rep-

resentative programming languages, and identified a common ground that can be

suitably mapped to different language bindings.

We explore the possibility of a systematic solution for parametric polymorphism,

that should encompass many languages in a simple way. We present a generic com-

ponent architecture extension that provides support for parameterized components,

and can be easily adapted to work on top of various software component architectures

in use today: corba, jni, dcom. We have implemented and tested our extension on

top of corba.We present Generic Interface Definition Language (gidl), an extension

to corba-idl, supporting generic types, and our language bindings for C++, Java,

and Aldor. We describe our implementation of gidl, consisting of a gidl to idl

compiler and tools for generating linkage code under the language bindings.

gidl captures a very general notion of parametric polymorphism such that it

can meaningfully be supported by various languages, and has the power to model

the structure and semantics of system’s components. To test the effectiveness of

our model for generics, we have investigated how to expose C++’s STL and Aldor’s

BasicMath libraries to a multi-language environment, and discuss our mappings in

the context of automatic library interface generation.

iv

Our work in the context of exposing generic libraries to a multi-language, po-

tentially distributed environment has revealed several performance issues. First, as

different components are separately compiled, the traditional compiler optimizations,

such as inlining and parallelization, will fail to perform aggressively. Second, the over-

head introduced by the inter-process communication stalls can be quite significant.

Finally, this thesis explores speculative optimizations in the attempt to speed up the

application performance in distributed environments.

v

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisor, Professor

Stephen Watt, for his valuable guidance, continuous interest, and support for this

research work.

I wish further to express my sincere appreciation to Jason Selby and Professor

Mark Giesbrecht for the many hints, valuable discussions, comments and collaboration

related to the “Compiler Middleware” NSERC strategic grant projects.

I am very grateful to Professor Hanan Lutfiyya for carefully reading and sharing

her expertise in connection to three of my papers and for her helpful suggestions,

support and feedback.

I would like to thank my colleagues and faculty at the ORCCA lab, Western

Ontario University of whom many contributed to this thesis in one way or another.

I also express my heartfelt thanks to all Faculty, staff, and fellow graduate students

in the Computer Science Department.

Above all, I thank my family for their encouragements, support, and love during

all these years. A further special thanks goes to my mother, Lucia Baltag, for being

to me a model of determination, perseverance, and hard work, and to my wife Monica

Ulici for her patience and understanding during the course of my graduate studies.

vi

Chapters of this thesis are based on co-authored papers accepted to the 2005 Inter-

national Symposium on Symbolic and Algebraic Computation, the 2005 International

Conference on Object-Oriented Programming, Systems, Languages and Applications,

and the 2005 International Conference on Parrallel and Distributed Processing Tech-

niques and Applications. I thank again the co-authors Stephen Watt, Jason Selby,

and Mark Giesbrecht for the fruitful collaboration.

vii

Table of Contents

1 Introduction 1

2 Background and Related Work 7

2.1 An Early Experiment . 8

2.1.1 The Aldor Programming Language 8

2.1.2 C++/Aldor Interoperability . 10

2.2 Parametric Polymorphism Semantics 12

2.2.1 A Formal Introduction to Types Systems and

Parametric Polymorphism . 14

2.2.1.1 Informal Nomenclature for Typing, Execution Errors,

and Related Concepts 15

2.2.1.2 Concepts Related to Formalizing a Language 18

2.2.1.3 System F<: . 22

2.2.2 Parametric Polymorphism Semantics and

Implementation in Several Languages 28

2.2.2.1 Modula-3, C++, Ada 28

viii

2.2.2.2 Java, C# . 31

2.2.2.3 Standard ML and Related Languages 33

2.2.2.4 Concluding Remarks 35

2.3 Mainstream Software Component Architectures 36

2.3.1 Common Object Requests Broker Architecture 37

2.3.1.1 Interface Definition Language (IDL) 38

2.3.1.2 Overview of CORBA Architectural Components . . . 42

2.3.2 Microsoft Component Technology 45

2.3.2.1 Component Object Model (COM) 46

2.3.2.2 Distributed Component Object Model (DCOM) . . . 48

2.3.2.3 .NET Framework . 50

2.3.3 Java Native Interface (JNI) 53

2.4 Thread Level Speculation . 56

2.4.1 Related Work in Thread Level Speculation 59

2.4.2 Our Non-Distributed TLS Approach 61

3 ALMA 65

3.1 Chapter Introduction . 65

3.2 Example . 69

3.3 Aspects of Maple and Aldor . 71

3.4 Alma Design . 73

ix

3.4.1 Rationale of the Design . 74

3.4.2 Example of Correspondence 76

3.5 The Maple Stub . 79

3.5.1 Mapping Rules . 80

3.5.2 Foreign Object Layout . 85

3.5.3 Type Checking . 87

3.6 The C and Aldor Stubs . 88

3.7 Example Implementation . 91

3.8 Chapter Conclusions . 93

4 GIDL 95

4.1 Chapter Introduction . 95

4.2 Motivation and Design Point . 99

4.3 Generic IDL . 101

4.3.1 Rationale of the Design . 102

4.3.2 The GIDL Parametric Polymorphism Semantics 103

4.3.3 GIDL’s Grammar and Consistency Checks 107

4.3.4 Well-Formedness Type Rules 110

4.3.5 GIDL to IDL Transformation 113

4.4 High Level Ideas for Mapping

Qualified Generic Types . 115

x

4.4.1 Basic Ideas . 115

4.4.2 Mapping the Export-Based Qualification 117

4.4.3 Discussion . 121

4.5 The GIDL Base Application Architecture 123

4.5.1 The GIDL Extension Architecture 123

4.5.2 The User’s Perspective . 128

4.6 Language Bindings . 130

4.6.1 GIDL to C++ Mapping . 130

4.6.1.1 High-Level Mapping Ideas 131

4.6.1.2 Wrapper Stub Object Model 133

4.6.2 GIDL to Java Mapping . 135

4.6.3 GIDL to Aldor Mapping . 138

4.7 GIDL and Library Translations . 141

4.7.1 Accessing the C++ STL in a Multi-Language

Environment . 142

4.7.1.1 Key Features in the Design of STL 142

4.7.1.2 STL’s GIDL Specification 143

4.7.1.3 Implementation Issues 145

4.7.2 Accessing Aldor’s BasicMath Library in a

Multi-Language Environment 147

4.8 Chapter Conclusions . 153

xi

5 Distributed Models of Thread Level Speculation 155

5.1 Chapter Introduction . 155

5.2 Distributed Applications of

Thread-Level Speculation . 157

5.2.1 Overview . 158

5.2.2 Distributed Speculation Model 159

5.2.3 Distributed Speculative-Inlining Model 165

5.3 Results . 170

5.4 Chapter Conclusion . 174

6 Conclusions 176

References 179

7 Vita 186

xii

List of Tables

5.1 Distributed TLS 1st Architecture (overlapping communication)

Nr = client thread pool size,

G = “remote” method granularity (instructions)

nMc speed-up compared to sequential.

n = no. machines, c = client version

nMcR as above, but with 1% rollback rate. 171

5.2 Distributed TLS 2nd Architecture (“inlining”-like speculation)

G = “remote” method granularity (instructions)

SS = slave sequence size,

nMc speed-up compared to sequential.

n = no. machines, c = client version

nMcR as above, but with 1% rollback rate. 172

xiii

List of Figures

2.1 Aldor category/domain example . 9

2.2 Three examples of type rules . 21

2.3 Type derivation example . 22

2.4 Judgments for type systems with subtyping 23

2.5 Syntax for a language with support for bounded parametric polymor-

phism . 24

2.6 Type rules . 25

2.7 Type rules for recursive types . 27

2.8 Example of a C++ templated class (Stack) 29

2.9 The validity of templated types is context dependent 30

2.10 Ada generic Swap program . 31

2.11 Example of a Java generic class (Stack) 32

2.12 SML example: map, find, and reverse functions 35

2.13 A simple IDL specification for a bank server application 40

2.14 Part of the C++ implementation of the BankServer 41

xiv

2.15 A simple Java client using the bank server 42

2.16 Main components of the CORBA architecture 43

2.17 Example of a COM class (MyObject) 47

2.18 Client holding a reference to an object 48

2.19 Client using a remote object via DCOM 49

2.20 Main components of the DCOM architecture 49

2.21 Main components of the .NET framewok 50

2.22 Example of defining and using native methods in Java 54

2.23 The generated C++ header file for the native methods declared in Fig-

ure 2.22 . 55

2.24 The structure of a speculative variable:

Shadow Data Vector: stores the variable values for different iterations

Original Value: safe point value – usually the value before speculation

has started

Load Vector: if entry with index i is set then thread i has “read” the

variable

Store Vector: if entry with index i is set then thread i has “written”

the variable

Lock Variable: is used to avoid race conditions 62

3.1 A Maple session computing a GCD in (R[x]/Sat(mx))[z, y]

using the Alma framework 70

3.2 A Maple module and its use . 71

xv

3.3 An Aldor category/domain example 72

3.4 High-level architecture overview:

white arrows mean “generates,”

normal arrows mean “uses,”

dashed boxes are user source code,

light boxes are generated code. 74

3.5 User-Alma interaction.

Lines starting “>” are user input; the others are Maple output . . . 77

3.6 Part of the MapleExampleStub.mpl file 81

3.7 Part of the MapleExampleStub.mpl file – continuation 82

3.8 Aldor specification . 86

3.9 Foreign object layout. The Aldor expressions in the first column are

defined in Figure 3.8 . 87

3.10 C stub mapping . 89

3.11 Aldor stub mapping . 90

3.12 Aldor specification used as input to the Alma framework 91

3.13 Maple wrapper used in Figure 3.1 . 92

4.1 Generic interfaces with different generic type qualifications 105

4.2 Export-based qualification example 106

4.3 Adding support for parameterized interfaces to the idl grammar . . . 108

4.4 Scopes and type-checking . 109

xvi

4.5 Type rules for two varieties of qualification 111

4.6 The generated idl specification . 114

4.7 Extend-based qualification mapping to C++ 116

4.8 MSGA example . 117

4.9 The result of the MSGA algorithm 119

4.10 More MSGA issues . 120

4.11 Incorrect C++ mapping of the export-based qualification 122

4.12 gidl architecture for corba

circle – user code

hexagon – gidl component

rectangle – corba component

dashed arrow – is compiled to

solid arrow – method invocation flow 124

4.13 gidl code for a simple priority queue 128

4.14 Code excerpt from a C++ client . 129

4.15 Nested structures . 132

4.16 Excerpt of C++ wrapper stub code 134

4.17 Java wrapper stub mapping . 137

4.18 Mapping gidl qualifications to Aldor 140

4.19 Export-based qualification for iterators 144

4.20 gidl specification for stl algorithms 145

4.21 Excerpt from Aldor Integer and List 148

xvii

4.22 GIDL for Aldor exports of Figure 4.21 149

4.23 GIDL for Aldor exports of Figure 4.21 – continuation 150

5.1 An example of a simple object-oriented client program. 158

5.2 GIDL specification. Lines marked with * denote TLS support 160

5.3 Two client code regions which are rich in speculative parallelism. . . . 161

5.4 Part of the server-side speculative code for ContainerPackage::Vector 163

5.5 The interaction between the speculative threads and the thread manager164

5.6 “Inlining” - like speculative model. This figure presents the interaction

between the master/slave threads and the slave thread manager . . . 167

5.7 GIDL specification support for the inlining speculative model 169

xviii

List of Definitions

1 Type . 15

2 Statically Typed/Dynamically Typed Languages 15

3 Type System . 16

4 Trapped/Untrapped Errors . 16

5 Safe Program . 16

6 Forbidden Errors . 16

7 Well Behaved Program . 16

8 Strongly Checked Language . 16

9 Weakly Checked Language . 17

10 Sound Type System . 18

11 Judgment . 20

12 Type Rules . 20

13 Type Derivation . 21

14 Type Inference . 21

15 Folding/Unfolding a Recursive Type . 26

xix

Glossary

CLR Common Language Runtime

CORBA Common Object Request Broker Architecture

CTS Common Type System

COM Component Object Model

DCOM Distributed Component Object Model

DTLS Distributed Thread Level Speculation

GIDL Generic Interface Definition Language

IDL Interface Definition Language

JNI Java Native Interface

MSIL Microsoft Intermediate Language

OMG Object Management Group

SCA Software Component Architecture

SML Standard ML

STL Standard Template Library

TLS Thread Level Speculation

xx

1

Chapter 1

Introduction

This thesis studies mechanisms by which software components can take advantage of

the code structuring benefits of parametric polymorphism, in a multi-language, po-

tentially distributed environment. We introduce two component-based architectures

that are well suited to combine generic modules and naturally extend general-purpose,

lower level interoperability solutions. To test our frameworks, we have conducted sev-

eral experiments to translate comprehensive parts of existing generic libraries across

language boundaries. This work has revealed several performance issues, especially

in a distributed setting, and consequently, we have investigated speculative-based

optimizations to reduce the observed overhead. Before describing the objectives of

this thesis in detail, we briefly describe what parametric polymorphism is, where its

application is most beneficial, and why we think it is important to investigate it in

the context of software component architectures.

Parametric polymorphism is a programming language mechanism that allows

generic programs to be written, and later on specialized by supplying specific val-

ues for the type-parameters. For example, templates in C++ can be used to provide

2

a module that sorts arrays of elements of any type T for which there is an ordering

operation <: T × T → T . The generic sorting module can then be instantiated with

T being the type int, float, or double.

Computer algebra provides a compelling application of parametric polymorphism,

where various algebraic constructions, such as polynomials, series, matrices, vector

spaces, etc, are used over various different coefficient structures, which are typically

rings or fields. This has led to the appearance of many generic mathematical libraries,

implemented in various languages, such as: the ntl library for number theory [68],

the Linbox library for symbolic linear algebra [21], the Sumit library for differential

operators [4], the Triade [46] and Basic Math [26] libraries for triangular sets, to

restrict ourselves to just a few.

A significant problem however is that there is virtually no re-use of these libraries

outside of their original language. On one hand, the programmer finds that to com-

pose these heterogeneous pieces of software is difficult and rather unsafe. On the

other hand, the library developer finds that much of the programming effort is spent

in implementing functionality corresponding to common mathematical structures and

operations, already in other libraries. These libraries attempt to service different

problems from the same or disjoint mathematical areas, but the point is that their

functionalities significantly overlap.

When we examine what issues prevent the software components from being eas-

ily combined, we find that parametric polymorphism, which has become a common

feature of mainstream programming languages, is not yet well supported by current

technologies for software component architecture. One reason for this is that the

semantics of generics and the binding time models they use differ substantially in

3

various programming languages. It is thus important, from both a research and prac-

tical perspective, to investigate what should be the attributes of a generic model that

can successfully expose parametric polymorphism across language boundaries.

Our work in this context was inspired by an experiment from the frisco project,

where two languages with very different binding times and parametric polymorphism

models were made to interoperate [11, 12]. The experiment used C++ with compile-

time template instantiation, and Aldor [77, 76] with run time higher-order functions

producing dependent types.

We started our work with an experiment in which we have studied a method to use

compiled, strongly typed Aldor domains in the interpreted, expression-oriented Maple

environment. Our framework, Alma, proposes a non-traditional approach to struc-

turing computer algebra software: using an efficient, compiled language, designed for

writing large complex mathematical libraries together with a top-level system based

on user-interface priorities and ease of scripting. Alma allows Aldor functions to run

tightly coupled to the Maple environment, able to directly and efficiently manipulate

Maple data objects. Our solution builds on top of several low-level foreign function

interfaces: Aldor to C, and C to Maple. Since the computational models of Maple

and Aldor differ significantly, we employ new run-time code to implement a non-

trivial, high-level semantic correspondence between the two languages. In particular,

we must match up different flavors of parametric polymorphism: Aldor’s statically-

checked dependent types with Maple’s modules-producing functions. In general, we

provides a mechanism to safely interoperate a statically vs. a dynamically typed

language.

4

The Aldor/C++ interoperability experiment proved that one can overcome the

inter-language semantic gap, and motivated us to explore the possibility of a system-

atic solution for parametric polymorphism that should encompass more languages in

a simpler way. It was a natural idea to enhance an existing specification language,

corba’s idl [56], with a bounded parametric polymorphism system, and to develop

tools to generate mappings to a set of representative languages: C++, Java, Aldor.

This covers a comprehensive range of parametric polymorphism semantics and bind-

ing time models. We have dubbed this Generic IDL or gidl for short. To test our

architectural design, we have exposed part of C++’s Standard Template Library (stl)

and Moreno Maza’s library for triangular set decomposition to use across the gidl

and Alma frameworks respectively.

The gidl framework, presented in Chapter 4, is based on a generic-type erasure

technique, and consists of a gidl to idl compiler that performs the erasure, and tools

to automatically generate skeleton/stub wrappers for C++, Java, and Aldor languages

to recover the lost generic information. The Aldor skeleton/stub is currently being

implemented by Michael Lloyd, and the main mapping ideas, in which I was involved,

are also mentioned here. Our component architecture “extension” does not assume

a homogeneous environment: a common intermediate representation to which the

languages are compiled, like Sun’s bytecode and Microsoft’s common intermediate

language. gidl’s design allows it to be easily adapted to work on top of other software

component architectures (jni, dcom, etc) – corba is just our working study case.

In Generic idl, we have tried to capture a very general notion of parametric

polymorphism such that it can be meaningfully supported by various languages, and

has the power to model the structure and semantics of system’s components. To test

our architectural design we have constructed a clean mechanism to expose part of

5

one generic library (stl) to a multi-language environment (Section 4.7). We found

gidl to be better suited to express the stl’s semantics, as our specification is self-

explanatory and self-constrained: it does not need free language annotations as in

the C++ case.

The Alma framework is presented in Chapter 3. Since the language models of

Maple and Aldor differ, the interface code implements various semantic correspon-

dences: Aldor’s features like run-time domain types, overloading, dependent types,

and mapping types are mapped at the Maple level. We are thus implicitly perform-

ing a language extension. The key for the translation of these features is to create,

via the Maple stub, dynamic types corresponding to the hierarchy of available Al-

dor types, and to design a dynamic type-checking mechanism for the foreign Maple

objects. We found that Alma can foster a richer connectivity between the two lan-

guages considered, compared to adding Maple to the gidl framework, as several high

level concepts (closures, transparent casting) and related optimizations could not be

directly supported by gidl.

Our work in the context of exposing generic libraries to a multi-language, po-

tentially distributed environment has revealed several performance issues. First of

all, as different components are separately compiled, static compiler optimizations,

such as inlining, parallelization, cannot be performed aggressively. Secondly, in the

distributed case, the overhead introduced by the inter-process communication can be

quite significant. Chapter 5 introduces a novel application of thread-level speculation

to a distributed heterogeneous environment, in which we propose and evaluate two

speculative models that attempt to address the previously mentioned performance-

related issues. The first model effectively reduces the method call overhead associated

with distributed objects by overlapping the client-server communication with useful

6

computation performed on the server side under the form of speculation. The second

model simulates “procedural inlining”, it is more aggressive and yields better speed-

ups than the first, however security concerns associated with code migration may in

some cases prevent its use.

This thesis is organized as follows: Chapter 2 summarizes the necessary back-

ground and related work. It reviews the interoperability experiment between C++

and Aldor that served as motivation for our work, summarizes the parametric poly-

morphism semantics in several languages, reviews the mainstream component tech-

nologies in use today, and looks into the current approaches and applications of thread

level speculation (tls). Chapters 3 and 4 introduce the Alma and gidl frameworks

respectively, while Chapter 5 proposes two distributed tls optimizations that may

be employed to effectively speed-up distributed computations.

We are currently unaware of any other effort, besides ours, aimed at endowing

software component architectures with parametric polymorphism in a heterogeneous,

multi-language environment, or at exploring the specific optimizations that should be

applied in such a context. While many special-purpose programming languages have

supported parametric polymorphism for some time, it has really only been C++ which

has been in mainstream use for any significant time. Now, with the availability of

generics in Java, it is rather important that we understand how to support generics

in a multi-language setting.

7

Chapter 2

Background and Related Work

This chapter is organized as follows: Section 2.1 reviews an early experiment in

which two languages with very different semantics, namely Aldor and C++, were

made to interoperate. The experiment motivated part of the work encompassed in

this thesis, in which we investigate a more general and systematic approach to unifying

the different flavors of parametric polymorphism and binding time semantics across

language boundaries.

Section 2.2 lays out the context of the work, summarizing the parametric poly-

morphism semantics in various languages and the design point we desire to satisfy

(Section 2.2.2), together with a brief introduction to the (formal) theory of type

systems with emphasis on parametric polymorphism (Section 2.2.1).

Section 2.3 reviews the component technologies in use today, and observes that out

of all of these, only Microsoft’s .NET provides support for parametric polymorphism,

and only in the context in which all mapped languages implement the same semantics

and binding time models. The study of these architectures has revealed some common

points, that have allowed us to develop a generic extension solution for parametric

polymorphism in heterogeneous systems (described in Chapter 4).

8

Finally, section 2.4 looks into the current approaches and applications of thread

level speculation (TLS), and helps to understand what should be the characteristics

of such a system that targets a distributed environment.

2.1 An Early Experiment

FRISCO (A Framework for Integrated Symbolic/Numeric Computation) [27] was a

three-year project that aimed at providing algorithmic and software tools for solving

complex polynomial systems.

Many research groups were involved and languages including C++, Fortran and

Aldor [77] were used. Several powerful mathematical libraries had been developed

in C++ using template programming. At the same time, developers of new alge-

braic libraries were quite interested in using Aldor, as the language proposed many

interesting features. We do not assume the reader to be familiar with the Aldor

language, therefore we briefly introduce it in Section 2.1.1. Interoperability between

these languages (C++, Aldor, Fortran) was a goal of the project. The Aldor language

already provides an interoperability layer with Fortran, and the difficult step was to

design a bi-directional semantic correspondence between Aldor and C++. This step

is succinctly presented in Section 2.1.2.

2.1.1 The Aldor Programming Language

Aldor [75, 77] is a strongly typed functional programming language with a higher

order type system and strict evaluation. Aldor has been used primarily in the area of

symbolic mathematics software. The type system has two levels: each value belongs to

9

Figure 2.1 Aldor category/domain example

1

2 define Module(R: Ring): Category == Ring with {

3 *: (R, %) -> %;

4 }

5

6 Monomial(R: Ring): Module(R) == add {

7 Rep == R;

8 import from Rep;

9 (r: R) * (x: %) : % == per(r * (rep x));

10 }

some unique type, known as its domain. Domains are (in principle) run-time values,

but they belong to type categories that are determined statically. Categories can

specify properties of domains such as which operations they export, and are used to

specify interfaces and inheritance hierarchies. We want to emphasize that throughout

this thesis, the term “category” refers to these type categories and not to categories as

in the mathematical field called category theory [36]. The biggest difference between

the two-level domain/category model and the single-level subclass/class model is that

a domain is an element of a category, whereas a subclass is a subset of a class.

This difference eliminates a number of deep problems in the definition of functions

with multiple related arguments. Dependent products and mapping types are fully

supported in Aldor. Generic programming is achieved through explicit parametric

polymorphism, using functions which take types as parameters and which operate on

values of those types, e.g.:

f(R: Ring, a: R, b: R): R == a * b - b * a .

An example of Aldor program is presented in Figure 2.1. It defines a parametrized

category Module(R), representing the mathematical category of R-Modules. Cate-

10

gories specify the requirements on parameters, and state the properties of the result;

domains belonging to Module(R) export the * (multiplication with scalar) operation,

which returns an element of the domain. In Aldor, within a domain-valued expres-

sion, the name % refers to the domain name being computed. This is fixed-pointed,

and can be used as a type name. A type Rep is defined for every domain to give a

representation for %, while rep and per are type conversion functions (rep:%->Rep;

per:Rep->%). In Figure 2.1 the Monomial domain is an element of the Module(R)

category having the dependent mapping type: (R: Ring)-> Module(R) that takes

one parameter R (which is a domain satisfying the Ring category), and produces an-

other R-Module. Static analysis can use the fact that R provides all the operations

required by Ring, thus allowing static resolution of names and separate compilation

of parameterized modules.

2.1.2 C++/Aldor Interoperability

Initial work in using modules with parametric polymorphism across a language bound-

ary arose in the FRISCO project, the ESPRIT Fourth Framework project LTR 21.024.

The two main background items brought into the project were (1) a complex C++ li-

brary, PoSSo, for the exact solution of multivariate polynomial equations over various

coefficient fields, and (2) an optimizing compiler for the higher-order programming

language, Aldor, used in computer algebra. One of the specific objectives of the

project was to allow Aldor programs to make use of the PoSSo library.

From this very practical problem arose an interesting challenge in programming

languages. On one hand we had a complex library making heavy use of C++ templates.

On the other, we had a programming language in which types could be created at

run time by user-defined functions.

11

The first step was to define a correspondence between the two languages. Both

languages provide a set of low-level types, e.g. fixed size integers and floating point

numbers, strings, etc, and the correspondence between these low-level types was

straightforward.

To use a C++ class from Aldor, a proxy Aldor domain/category pair was created.

The category specified the public interface, and the domain provided the implementa-

tion. The domain would have exports corresponding to the non-private methods and

fields of the C++ class. Because Aldor is not based on classes, the exported operations

would all have one extra parameter corresponding to the implicit “self” parameter

of the C++ methods. When many C++ classes were used, the inheritance among the

Aldor proxy categories would match the inheritance among the C++ classes. The

Join operation on categories would be used when multiple inheritance was required.

To use Aldor categories and domains from C++, proxy objects would similarly

be generated: For each category, a C++ abstract base class would be generated, and

for each domain, a C++ class. In both cases (Aldor calling C++ and vice versa), the

wrapper proxy would perform their operations through a C foreign function interface.

To use a C++ template class from Aldor, a pair of proxy functions would be

created: one function returning a domain value, and the other a category. For the

domain-producing function to behave completely natively, it was necessary that it

could be called at run-time with any suitable parameter. To achieve this effect, it

was necessary to generate an additional small C++ file. A suitable base class was

generated for each template parameter, and the C++ template was instantiated over

these. Then all the instantiations which an Aldor program would generate at run-time

could be created through inheritance on this one prototypical instantiation. Because

12

the uses of the C++ template were arising from Aldor code, it was always possible to

wrap the parameter types suitably.

To use an Aldor domain-producing function from C++, a proxy template class

was generated, and each distinct instantiation of the template would correspond to a

different result of the Aldor domain-producing function.

A detailed account of this work is given elsewhere [11, 12], but the salient conclu-

sions are that:

• we can produce the proper binding time semantics by prototypic instantiation

of templates,

• we can match generic programming between programming languages with very

different base concepts: objects and type-categories,

• we can produce lightweight proxies to make hierarchies available on either side

of the language interface,

• the special purpose interface between languages with parametric polymorphism

is much more complicated than that between languages not supporting generic

types.

With this experience we were motivated to develop a more general solution, that

could encompass more languages in a simpler way.

2.2 Parametric Polymorphism Semantics

Theoretical work on the type theory and semantics of parametric polymorphism goes

back at least to the work of Girard in 1972 on the context of proof theory in logic [24].

13

He was the first to formulate the now well known System F type system that sup-

ports universal types. A little later, in 1974, Reynolds developed independently a

type system with essentially the same power, and named it polymorphic lambda cal-

culus [64, 65].

The ML-style of let polymorphism was first introduced by Milner in 1978 [44]. It

constitutes a less general form of parametric polymorphism than that of System F, but

has other advantages such as it effectively employs type-reconstruction to compute

the principal type: the most general type possible for every expression and declaration

[18]. This problem is known to be undecidable for System F.

Bounded quantification is a means to type-check functions that operate uniformly

over all subtypes of a given type. The first language to support a type-safe bounded

quantification appears to have been CLU [38](1981). Cardelli and Wegner formulated

in 1985 SystemF<: [8] that combines polymorphism and subtyping, increasing both

the expressive power of the system and its complexity. Section 2.2.1 briefly presents

a subset of the SystemF<: type system.

Extensions of the SystemF<: relax the context scope rules: F-bounded quantifi-

cation [6] allows the type variable to appear in its bound (as in λX <: {a : Bool, b :

X} .t). The Generic Java type system [54] permits mutual recursion between type

variables via their upper bounds. Parametric polymorphism is also a common feature

of higher-order systems with dependent types; these issues were explored early on in

the context of the Russell language [20].

Parametric polymorphism is one of the mechanisms that have proved most useful

in the programming language field over the last decade. It increases the flexibility,

re-usability, and expressive power of the programming environment, avoids the need

14

for down-casting, and allows a compiler to find more programming errors. There have

been many special-purpose programming languages that have supported parametric

polymorphism for some time (Ada, Modula3, ML, Aldor), but it has really only been

C++ which was in mainstream use. Recently, with the availability of generics in

Java and C#, one may claim that it has become a common feature of mainstream

programming languages.

There are quite a few popular programming languages with support for parametric

polymorphism, albeit with differing semantics. Section 2.2.2 summarizes a few, to

give an idea of the range a general facility must be able to map on to. The salient

conclusion (Section 2.2.2.4) is that a mechanism to combine modules in different

programming languages must be able to support both compile-time and run-time

instantiation of modules, and both qualified and non-qualified type variables.

2.2.1 A Formal Introduction to Types Systems and

Parametric Polymorphism

This section is intended as an introduction to type-system theory, and presents part of

the Cardelli and Wegner SystemF<: [8]. The material presented here closely follows

some of the ideas described in two well-known works: the “Type Systems” article

of Luca Cardelli [7] and the Benjamin Pierce book “Types and Programming Lan-

guages” [59], and is provided to make this background section self-contained.

A type system provides conceptual tools used in the definition of a typed-language

to prove that certain types of execution errors will not occur during the running of a

well formed program (i.e. a program that complies with the rules of the type system).

15

The type-rules of a programming language are specified in a way independent

of the particular typechecking algorithms used for implementation. The reasons are

twofold: First, this enforces a separation of concerns between the process of defining

a language, which is achieved in a formal way through specifying a type system, and

the implementation of that language (through a compiler). Second, it is better and

easier to explain the typing aspects of a language via a type system, rather than by

the algorithm a compiler uses as different compilers may use different typechecking

algorithms.

2.2.1.1 Informal Nomenclature for Typing, Execution Errors,

and Related Concepts

Definition 1 The type of a variable is the upper-bound of the range of values the

variable can assume during the execution of a program. 2

In practice, these types also provide representation and interpretation for data.

For example, the pair of machine words (w1, w2) could be interpreted either as a

complex number with integer coefficients or as a double word integer, and in both

cases all possible values for the words w1 and w2 would be admitted. However, from

a theoretical point of view, we wish to view types as providing bounds on a set of

values without reference to their representation.

Definition 2 Languages where variables can be given non-trivial types are called

statically typed languages. Languages that do not restrict the ranges of variables are

called dynamically typed languages: they do not have types or, equivalently, have a

single universal type that contains all values. 2

16

Definition 3 A type system is that component of a typed language that keeps track

of the types of all expressions in a program (variables included). 2

Definition 4 A trapped error is an execution error that causes the computation to

stop immediately (eg: division by zero, accessing an illegal address). An untrapped

error is an execution error that may go unnoticed for a while and later cause arbitrary

behavior (eg: improper access of a legal address, jumping to the wrong address,

accessing data past the end of an array in the absence of run-time bounds checks). 2

Definition 5 A program fragment is safe if it does not cause untrapped errors to

occur. Languages where all program fragments are safe are called safe languages. 2

Dynamically typed languages may enforce safety by performing run-time checks.

Statically typed languages may enforce safety by statically rejecting all programs that

are potentially unsafe; they may also use a mixture of run-time and static checks.

Although safety is an important property of programs, it is usually the case that

statically typed languages aim to rule out large classes of trapped errors in addition

to the untrapped ones.

Definition 6 The forbidden errors of a language are a set of the possible execution

errors that include all of the untrapped errors, plus a subset of the trapped errors. 2

Definition 7 A program fragment is well behaved if it does not cause any forbidden

errors to occur. The contrary is to be ill behaved. 2

Definition 8 A language where all of the legal programs are well behaved is called

strongly checked. 2

From the above definitions it follows that a strongly checked language has the

following properties:

17

• no untrapped errors occur.

• none of the trapped errors designated as forbidden occur.

• other trapped errors may occur; it is the programmer’s responsibility to avoid

those.

Statically typed languages enforce good behavior by performing compile time

checks. These languages are statically checked. The checking process is called type-

checking; the algorithm that performs this checking is called typechecker. A program

passing the typechecker is said to be well typed, otherwise it is ill typed. Statically

checked language (Pascal, ML) usually need to perform run-time tests to achieve

safety (array bounds must in general be tested dynamically).

Several languages provide mechanisms to perform sophisticated dynamic tests.

An example in this sense is the Modula-3’s typecase construct that discriminates

based on the run-time type of an object. These languages are still considered statically

checked because the dynamic tests for type-equality are compatible with the algorithm

used by the typechecker to determined type equality at compile time.

Dynamically typed languages can enforce good behavior (including safety) by

means of detailed run-time checks that rule out all forbidden errors. The checking

process in this languages is called dynamic checking. For example, Lisp is a dy-

namically typed language that is strongly checked even though it has neither static

checking, nor a type system. It is also the case that most dynamically typed lan-

guages are strongly checked by necessity, otherwise programming in such a language

would be quite frustrating.

Definition 9 A language for which the set of forbidden errors does not include all

the untrapped errors is called weakly checked. 2

18

For example the C language has many unsafe and widely used features such as

pointer arithmetic and casting. Modula-3 supports unsafe features, but only in mod-

ules that are explicitly marked unsafe, while Pascal is unsafe when untagged variant

types and function parameters are used. The choice between a safe and unsafe lan-

guage is ultimately related to the tradeoff between development time and execution

time. It seems that the trend is away from weak typing. This is confirmed by the

appearance of mainstream programming languages like C++ and Java that alleviate

some of the problems caused by weak typing in C.

We have seen that type systems are used to define the notion of well typing,

which is itself a static approximation of good behavior. Formal type systems are the

mathematical characterizations of the informal type systems, which are described in

the languages manuals, and their role is to prove that the type rules of a language do

not accidentally allow ill behaved programs to slip through. To prove this, one has to

prove a type soundness theorem stating that well-typed programs are well behaved.

Definition 10 A type system is said to be sound if all the well typed programs of a

statically typed language are well behaved. 2

2.2.1.2 Concepts Related to Formalizing a Language

This section describes the steps involved in formalizing a type system, and conse-

quently a programming language. The first step is to describe the syntax, and this

usually reduces to describing the syntax of its types, which describe static knowledge

about programs, and its terms, which express the algorithmic behavior (statements,

expressions).

The next step is to define the scoping rules of a language that bind a use of an

19

identifier with its definitions. The scoping needed for the typed languages is usually

statical, in the sense that the bindings are determined before run-time. When the

binding locations are determined purely based on the syntax of the language it is said

that the language uses lexical scoping. The lack of statical scoping is called dynamic

scoping. Scoping is formally specified by defining the set of free variables of a program

fragment, and this involves specifying how variables are bound to declarations.

Further on, the type rules of a language are defined. These describe has-type

relations, of the form M : A, which means that the type of the term M is A. Some

languages also require a subtype-of relation, of the form A <: B between types, which

specifies that the range of values defining the type A is a sub-set of the one for the

type B. In many cases, it is also required to define a type equivalence relation, of the

form A = B, which indicates type equivalence. Another fundamental concept that

appears in type rules, and is not reflected in the language syntax is the static typing

environment. This is used to record the types of free variables corresponding to a

program fragment, and closely resembles the compiler’s symbol table associated with

the typechecking phase. For example, the type rule describing a has-type relation is

written in full as: Γ `M : A, meaning that M has type A in environment Γ.

The collection of all the type rules of a language forms its type system. Conse-

quently, a language that has a type system is called typed. Finally, the last step in

formalizing a language is to define its semantics as a has-value relation between terms

and a collection of results. This is the essence of the soundness theorem: the type

of a term and of its result are the same. This final step bounds the type system to

the semantics of the corresponding programming language. However, the fundamen-

tal notions of the type system are applicable to virtually all computing paradigms

(functional, imperative), and individual type rules can often be adopted unchanged.

20

For example, the basic type rules for functions are independent of the calling mecha-

nism: call-by-name, call-by-value, or call-by-value-result. In what it follows we shall

describe the type systems independent of semantics.

The description of a type system starts with a collection of judgments.

Definition 11 A typical judgment has the form: Γ ` = where = is an assertion, and

the free variables of = are declared in the environment Γ. The relation reads Γ entails

=. 2

In the definition above Γ is a static typing environment, and it usually consists of

an ordered list of variable-types pairs: φ, x1 : A1, ..., xn : An, where φ is the empty

environment. The collection of variables declared in Γ is indicated by dom(Γ), and

all the free variables of = must be declared in Γ. The most important judgment is

the typing judgment of the form: Γ ` M : A that asserts that the type of term M is

A with respect to a static typing environment Γ for the free variables of M . Another

common judgment simply asserts that an environment is well-formed, and has the

form: Γ ` �. Any given judgment is valid, as in Γ ` true : Bool or invalid, as in

Γ ` true : Nat. (Here Bool is the type of booleans, while Nat is the type of natural

numbers.)

Definition 12 Type rules assert the validity of certain judgments on the basis of

other judgments that are already known to be valid. 2

Each type rule is written as a number of premise judgments Γi ` =i above a

horizontal line, with a single conclusion Γ ` = below the line. If all the premises are

valid, the conclusion must hold. Each value has a name, where the first word of the

name is the kind of the conclusion judgment. Conditions that restrict the applicability

21

Figure 2.2 Three examples of type rules

(Val n) (n = 0, 1, . . .) (Val +) (Env φ)
Γ ` �

Γ ` n : Nat

Γ `M : Nat Γ ` N : Nat

Γ `M +N : Nat φ ` �

of a rule, together with the abbreviations used within the rule are annotated next

to the rule name or the premises. A collection of type rules is called a formal type

system. They are used to carry out step by step deductions concerning the typing of

a program.

Figure 2.2 shows three type rules whose conclusions are value typing judgments.

The first one states that any natural number is an expression of type Nat, in any

environment Γ. The second states that two expressions M and N , both of type Nat

can be combined in a larger expression M +N , which also is of type Nat. Moreover,

the environment Γ for M and N carries over to the expression M +N . The last rule

states that the fundamental environment is well formed, with no assumptions.

Definition 13 A type derivation in a given type system is a tree of judgments (with

leaves at the top) where each judgment is obtained from the one immediately above

it via type rules of the system. A valid judgment is one that can be obtained as the

root of a derivation where the type rules of the system are correctly applied. 2

Definition 14 The process of finding a derivation, and hence a type, for a term is

called type inference. 2

22

Figure 2.3 Type derivation example

φ ` �
by (Env φ)

φ ` �
by (Env φ)

φ ` 2 : Nat
by (Val n)

φ ` 4 : Nat
by (Val n)

φ ` 2 + 4 : Nat
by (Val +)

For example the derivation presented in Figure 2.3 establishes that φ ` 2+4 : Nat

is a valid judgment. If a valid derivation with respect to a term does not exist, we

say that the term is ill typed, or that it has a typing error.

2.2.1.3 System F<:

This section presents a simplified F<: type system with support for higher order

functions, recursive types, sub-typing, and type parametrization. This is part of

the system introduced by Luca Cardelli in his well-known “Type Systems” article [7].

Type parametrization is a second order feature, leading to a second order type system;

the other mentioned features are considered to be first order.

The specification of the type system uses the second-order typed lambda calculus.

The second order lambda calculus, or polymorphic lambda calculus as it is variously

called, corresponds, via the Curry-Howard correspondence [28][17] to the second-order

intuitionistic logic, which allows quantification not only over terms (individuals), but

also over types (predicates). The main difference with respect to the untyped λ

calculus is the addition of type-annotations for λ-expressions. Thus, in λx : A.M , x

is the function parameter, A is x’s type, and M is the body of the function. It also

may express polymorphism: λX <: A.M indicates a programM that is parameterized

23

Figure 2.4 Judgments for type systems with subtyping

Γ ` � Γ is a well-formed environment
Γ ` A A is a well-formed type in Γ
Γ ` A <: B A is a subtype of B in Γ
Γ `M : A M is a well-formed term of type A in Γ

by the type X bounded to be a subtype of A. Also, terms that differ only in their

bounded variables such as λx : K.x and λy : K.y are called syntactically identical.

Figure 2.4 presents the judgments of the type system. Figure 2.5 shows the syn-

tax used for describing the type system of a simple language that supports bounded

parametric polymorphism. In the case of untyped λ calculus, the context free syntax

describes exactly the legal programs. For typed calculi it is the type system respons-

ability to decide whether a term is well-typed or not. The context free syntax is still

needed to describe the scoping rules of the language (i.e. the free/bounded variables).

In Figure 2.5, λX <: A.M stands for a program M that is parameterized with the

type variable X bounded to be an arbitrary subtype of A. Similarly, ∀X <: A.B con-

structs a quantified type from a type variable X, bounded to be a subtype of A, and

a type B where X may occur. This qualification can also be seen as a generalization

of the unbounded parametric polymorphism: the term λX.M can be written in our

system as λX <: Top.M where Top is a supertype for all possible types.

The validity of the judgments in Figure 2.4 is defined through the type rules in

Figure 2.6. The rule (Env φ) is the only axiom of the system; it states that the empty

environment is valid. The rule (Env x) is used to extend an environment Γ to a larger

one that also contains the variable x of type A, provided that A is a valid type in Γ,

and that there is no other variable named x in Γ. The rule (Type Arrow) constructs

the functional type: given that both types A and B are well-formed in Γ, it follows

24

Figure 2.5 Syntax for a language with support for bounded parametric polymor-
phism

A,B ::= types
X type variable
Top the biggest type
A→ B function type
∀X <: A.B bounded universally quantified type

M,N ::= terms
x variable
λx : A.M function
MN application
λX <: A.M bounded polymorphic abstraction
MA type instantiation

that the type of functions with domain in A and codomain in B is well-formed in Γ.

The rule (Val x) expresses that a variable named x can be used inside a well-formed

environment that contains a definition of the variable: x : A. The rule (Val Fun)

gives the type A→ B to a function, provided that the function body M has type B,

and that the formal parameter has type A. The rule (Val Appl) refers to function

application: if a function (M) of type A → B is applied on a parameter of type A,

the result will have type B.

The rules (Env X <:), (Type X <:), and (Sub X <:) are similar with (Env x),

and (Val x), only that they refer to a type variable bounded to be a sub-type of a

given type. Subtyping is a common feature of object oriented languages and captures

the notion of inclusion between types. It behaves much like set-inclusion, while type

membership is seen as set membership. The expression A <: B denotes that type A

is a subtype of B, and the subsumption rule (Val Subsumption) states that in this

case, a term/program/expression of type A is also of type B. Subtyping is defined

in Figure 2.6 as a reflexive (Sub Refl), and transitive (Sub Trans) relation, that

25

Figure 2.6 Type rules

(Env φ) (Env x) (Env X <:)

φ ` �

Γ ` A x 6∈ dom(Γ)

Γ, x : A ` �

Γ ` A X 6∈ dom(Γ)

Γ, X <: A ` �

(Type X <:) (Type Arrow) (Type Forall<:)
Γ′, X <: A,Γ′′ ` �

Γ′, X <: A,Γ′′ ` X

Γ ` A Γ ` B

Γ ` A→ B

Γ, X <: A ` B

Γ ` ∀X <: A.B

(Val x) (Val Fun) (Val Appl)
Γ′, x : A,Γ′′ ` �

Γ′, x : A,Γ′′ ` x : A

Γ, x : A `M : B

Γ ` λx : A.M : A→ B

Γ `M : A→ B Γ ` N : A

Γ `MN : B

(Sub Trans) (Sub Refl) (Type Top)
Γ ` A <: B Γ ` B <: C

Γ ` A <: C

Γ ` A

Γ ` A <: A

Γ ` �

Γ ` Top

(Sub Top) (Sub X <:) (Sub Arrow)
Γ ` A

Γ ` A <: Top

Γ′, X <: A,Γ′′ ` �

Γ′, X <: A,Γ′′ ` X <: A

Γ ` A′ <: A Γ ` B <: B′

Γ ` A→ B <: A′ → B′

(Val Subsumption) (Sub Forall<:)
Γ ` a : A Γ ` A <: B

Γ ` a : B

Γ ` A′ <: A Γ, X <: A′ ` B <: B′

Γ ` (∀X <: A.B) <: (∀X <: A′.B′)

(Val Appl2<:) (Val Fun2<:)
Γ `M : ∀X <: A.B Γ ` A′ <: A

Γ `MA′ : [A′/X]B

Γ, X <: A `M : B

Γ ` λX <: A.M : ∀X <: A.B

contains a maximal element Top (Type Top), which represents the supertype of all

the well-formed types (Sub Top), or equivalently the type of all the well-formed terms.

The rule (Sub Arrow) defines the functional subtyping: co-variant return types, and

contra-variant argument types. Note that one may extend the type system with

type rules for records (products) and variant types (union), and to define additional

subtyping rules for these type constructor (which will work componentwise).

26

The remaining type rules in Figure 2.6 refer to the bounded universal quantifier:

(Type Forall<:), (Sub Forall<:), (Val Appl2<:), (Val Fun2<:). Rule (Type Forall<:)

constructs a quantified type ∀X <: A.B from a type variable X bounded to be a

subtype of A, and a type B where X may occur. Rule (Sub Forall<:) defines the

subtyping relation for the quantified types (types in which bounded type variables

might occur). Rule (Val Fun2<:) builds a type-parameterized function (a polymorphic

abstraction), and finally, (Val Appl2<:) instantiates a polymorphic abstraction to a

given type: [A′/X]B is the substitution of A′ for all the free occurrences of X in B.

The final aspect of the type system we described is the set of rules corresponding to

recursive types. Recursive types are formally introduced with the notation µX.A that

denotes the solution of the equation X = A, where X may occur in A. Recursive types

are important for both practical and theoretical reasons. From a practical perspective,

they allow the other type constructors to create complex and useful types, among

which the most common example is List. From a theoretical perspective, the use

of recursive types allows one to write a well-typed implementation of the fixed-point

combinator

fixT = λf : T → T.(λx : (µA.A→ T).f(xx))(λx : (µA.A→ T).f(xx)),

fixT : (T → T) → T ,

and further on, to embed the whole untyped lambda-calculus (in a well-typed way)

into a statically typed language with recursive types [59].

Definition 15 The unfolding of a recursive type µX.T is the type obtained by re-

placing all the occurrences of X in the body T by the whole recursive type [X 7→

(µX.T)]T . The folding of a recursive type is the reverse operation.

unfold[µX.T] : µX.T → [X 7→ µX.T]T

fold[µX.T] : [X 7→ µX.T]T → µX.T

27

Figure 2.7 Type rules for recursive types

(Val Fold) (Val Unfold)
Γ `M : [µX.A/X]A

Γ ` foldµX.AM : µX.A

Γ `M : µX.A

Γ ` unfoldµX.AM : [µX.A/X]A

(Type Rec) (Sub Rec)
Γ, X <: Top ` A

Γ ` µX.A

Γ ` µX.A Γ ` µY.B Γ, Y <: Top,X <: Y ` A <: B

Γ ` µX.A <: µY.B

These primitive operations are used in conjunction with the iso-recursive approach

that considers a recursive type and its unfolding as different, but isomorphic types.

2

The coercions defined above do not have any run time effect, since

unfold(fold(M)) = M and fold(unfold(M ′)) = M ′. They are usually omitted from

the syntax of practical programming languages, but their existence makes the formal

treatment easier. Figure 2.7 presents additional type rules that allow recursive types

to be a supported feature of the system. The (Sub Rec) rule, also known as the

S-Amber rule states that in order to show that µX.A <: µY.B it suffices to show that

A is a subtype of B under the additional assumptions that X is a subtype of Y . The

assumption helps when finding matching occurrences of X and Y in A and B, as long

as they are in co-variant contexts.

The presence of recursive types has lead to two interesting flavors of parametric

polymorphism, associated with different scope rules for type variables. The first is

the F-bounded parametric polymorphism which corresponds to a scoping rule that

makes the following legal:

Γ ` X <: {a : Nat, b : X} or Γ ` X <: Iterator < Integer,X > (Java style generics).

In these cases, the scope of the binding for X includes its own upper bound. The

28

second flavor permits mutual recursion between type variables via their upper bounds,

as in: Γ ` X <: Comparable < Y >, Y <: Comparable < X >. Both flavors are

supported in Java version 1.2 (see [54] for details).

2.2.2 Parametric Polymorphism Semantics and

Implementation in Several Languages

There are quite a few popular programming languages with support for parametric

polymorphism, albeit with differing semantics.

2.2.2.1 Modula-3, C++, Ada

In Modula-3 [48], generics are confined to the module level: generic procedures and

types do not exist in isolation. A generic module is a template in which some of

the imported interfaces are regarded as formal parameters, to be bound to actual

interfaces via type instantiation. In Modula-3 there is no separate type-checking

associated with generics, but instead, the implementations will expand the generics

and type-check the result. This is a non-homogeneous approach: the source code is

reused, but the compiled code is different for different instances.

The templates in C++ [14, 69], much like in Modula-3, are expanded at the com-

pile time of the client; the same template call may or may not generate a compile

time error, depending on the instantiation. However, the generic parameters can be

substituted by any C++ type —they are not confined to be a class type as in Modula-3.

Figure 2.8 presents a class that implements a generic stack. The Stack class is

templated with a type parameter T, which represents the type of the stack elements,

29

Figure 2.8 Example of a C++ templated class (Stack)

1

2 template<T, int MaxDepth> class Stack {

3 private:

4 T* store;

5 int top;

6

7 public:

8 Stack() { store = new T[MaxDepth]; top = -1; }

9 ~Stack() { delete store; }

10 void print() {

11 for(int i=top; i>-1; i--) {

12 /* ... */

13 printObject(store[i]); //store[i].print();

14 /* ... */

15 }

16 };

17

18 void push (T t);

19 T pop ();

20 /* ... */

21 }

and with an integer value MaxDepth, which specifies the maximal permitted stack

depth. The semantics of the C++ templates allows a uniform manipulation of objects,

with no discrimination for those belonging to universally quantified types. This is

because the type checking is performed only after a complete expansion of the generic

types. For example, one can create an array of elements belonging to a generic

type (see line 8: new T[MaxDepth]), and also new objects belonging to a generic

type (for eg: new T()). The validity of the printObject call (line 13) depends

on the instantiation of the generic type T, and also on the environment in which

this instantiation takes place. Figure 2.9 shows a valid and an invalid instantiation

for T: Stack<int, 50> is a valid type because the environment contains the void

30

Figure 2.9 The validity of templated types is context dependent

1

2 void printObject(int i){ /* ... */ };

3

4 int main() {

5 Stack<int, 50> valid_stack = new Stack<int, 50>(); // OK

6 /* ... */

7 Stack<char*, 50> invalid_stack = ...; // type-checking error

8 }

printObject(int) function, as requested by line 13 in Figure 2.8. A similar line of

reasoning concludes that the type Stack<char*, 50> will not be found valid by the

type-checker.

In ADA [37], a generic subprogram or package is defined by a generic declaration,

containing a generic part (which may include the definition of generic formal param-

eters), and by a generic subprogram/package. Generic type definitions may be array,

access or private type definitions. Within the specification and body of the generic

program unit, the operations available on values of a generic formal type are those

associated with the corresponding generic type definition, together with any given

by generic formal subprograms. That is, when a template is established (instanti-

ated), all names occurring within it must be identified in the context of the generic

declaration. This restriction allows Ada generics to be independent with respect to

the instantiation environment (as opposed to C++). The implementation is similar to

that of C++ and Modula-3.

Figure 2.10 presents the generic program Swap that squares and then swaps vari-

ables of any type. The program specification is preceded by the generic formal part

that consists of the generic keyword together with a list of generic formal (type)

parameters, and functions (lines 1, 2, and 3). In order to use Swap it is necessary to

31

Figure 2.10 Ada generic Swap program

1 generic

2 type T is private; -- Generic formal type parameter

3 with function "*" (X, Y: T) return T; -- formal operator *

4 procedure Swap (X, Y : in out T);

5 procedure Swap (X, Y : in out T) is

6 Temporal : T;

7 begin

8 Temporal := X;

9 X := Y * Y; -- the formal operator *

10 Y := Temporal * Temporal; -- the formal operator *

11 end Swap;

12

13 -- ...

14 with Matrices;

15

16 procedure Instance_Swap is new Swap

17 (T => Float, "*" => "*");

18 procedure Instance_Swap is new Swap

19 (T => Matrices.Matrix_T, "*" => Matrices.Product);

create instances for the wanted type. If the same identifier is used in the instantiation,

each declaration overloads the procedure (see lines 16-19 in Figure 2.10).

2.2.2.2 Java, C#

Java version 1.5 introduces a generic type mechanism inspired by the Generic Java

(GJ) extension. As the Java Virtual Machine has no support for parametric polymor-

phism, the GJ extension [53] needs to compile away polymorphism through translation

strategies. The GJ [54] type system is based on a combination of Hindley-Milner type

inference [18], F-bounded quantification[6] and type-classes [31]. It uses a homoge-

neous implementation approach based on a type erasure mechanism that preserves

both backward (through row types) and forward (through retrofitting) compatibility.

32

Figure 2.11 Example of a Java generic class (Stack)

1 public interface Printable { public void print(); }

2

3 public class Stack<T extends Printable> implements Printable {

4 private T[] store;

5 private int top; private int maxDepth;

6

7 public Stack(T[] arr)

8 { maxDepth = (arr==null)? -1 : arr.lenght; store = arr; }

9

10 public void print() {

11 for(int i=top; i>-1; i--) {

12 store[i].print();

13 /* ... */

14 }

15 }

16

17 void push (T t) { /* ... */ }

18 T pop () { /* ... */ }

19 /* ... */

20 }

The main drawback of the approach is that some operations involving type variables

are forbidden: one cannot apply the new operator on a generic type or on an array

type whose signature involves a generic type. Also, the Java objects carry at run-time

only the erased type information, the reflective mechanisms losing precision. Other

proposed extensions for parametric polymorphism in Java (e.g. NextGen [9]) preserve

the run-time information of the type variables and impose fewer restrictions than GJ,

but feature a weaker compatibility with legacy code.

Figure 2.11 shows part of the Java implementation for the Stack generic class.

There are couple of differences with respect to the C++ version, which was presented

in Figure 2.8. First, the type-parameter T is bounded to implement the Printable

interface: T extends Printable (line 3), and thus it is known to contain the void

33

print() method. Otherwise the typechecker would have reported an error upon ver-

ifying the correctness of the store[i].print() instruction (line 12). The F-bounded

parametric polymorphism of Java allows type-checking of generic definitions inde-

pendently of the instantiation environment. Second, the Stack constructor receives

an array as parameter, while in the C++ case the array was elegantly constructed

locally. This is because, in Java, certain operations such as calling constructors or

static methods on generic types are forbidden. It is thus illegal to create an array

of objects whose type is the generic type T (new T[50]; is illegal). If a reference to

a non-null object of type T is available, there is a workaround that uses the Java’s

reflective features:

Class Tclass = obj T.getClass();

store = (T[]) java.lang.reflect.Array.newInstance(Tclass, maxDepth);

C# [78] semantics for generics are similar to those of Java. The implementation,

however, is not through an erasure technique. Instead, the .net 2.0 Beta Common

Language Runtime (clr) provides support for F-bounded parametric polymorphism.

To implement its F-bounded quantification, the CLR uses a combination of a homo-

geneous approach (for reference type instantiations) and macro-expansion (for basic

type instantiations).

2.2.2.3 Standard ML and Related Languages

Other programming languages provide parametric polymorphism through higher or-

der functions. Standard ML (SML) and Haskell provide functors [39] operating

on module structures as its form of parametric polymorphism. In addition, the sup-

ported let polymorphism [44] allows a single part of a ML program to be used with

34

different types in nested let scopes. In contrast, Aldor [76, 75, 77] is a functional

language, with a higher order type system with dependent types and type categories.

Aldor has been used in the area of Computer Algebra, where an expressive type sys-

tem is required to capture the relationships among abstract mathematical objects.

Parametric polymorphism is provided by type-producing functions that accept and

produce types belonging to declared type categories at run time. In Aldor, type vari-

ables may be qualified by means of named category-subtyping, or by means of a list

of exports. This section concentrates on SML, as the Aldor language was already

described in Section 2.1.1.

Functional languages such as Standard ML (SML), Haskell, and Miranda support

the Hindley-Milner type system [44] that naturally encapsulates polymorphic types

and generic code. These functional languages expose some polymorphic types that

are strictly more general than others, in the sense that the latter can be derived from

the former via a suitable substitution (unifying the two type expressions will give the

less general type). For example ’a list is more general than ’bool list since ’a

stands for any type, and unifying the two types yields ’bool list.

There are two main properties of the Hindley-Milner type system: First, every

well-typed expression is guaranteed to have a unique principal type, and second, the

principal type can be inferred automatically. The expression’s principal type is, in-

tuitively, “the least general type that contains all instances of the expression”. For

example, in Figure 2.12, the principal type for the map function is (’a -> ’b) -> (’a

list) -> (’b list), and not (’a -> ’b) -> (’c list) -> (’d list). The lat-

ter is more general than the former, but does not recognize that the second argument

is a list of elements whose type needs to be the same as the domain of the function f

received as first parameter, and that the return type is a list of elements whose type

is the same as the co-domain of f.

35

Figure 2.12 SML example: map, find, and reverse functions

1 fun map f nil = nil

2 | map f (hd::tl) = f(hd) :: map f tl

3 map : (’a ->’b) -> (’a list) -> (’b list)

4

5 fun find (nil, _) = false

6 | find (hd::tl, tofind) = tofind = hd orelse find(tl, tofind

)

7 find : ’a list * ’a -> bool

8

9 fun reverse l =

10 let fun rev(nil, y) = y

11 | rev(hd::tl, y) = rev(tl, hd::y)

12 in

13 rev(l, nil)

14 end

15 reverse: ’a list -> ’a list

Finally, the Hindley-Milner type system requires that every expression is properly

typed, but the languages themselves (SML, Haskell) do not provide methods for

providing additional type constraints. This sometimes leads to unexpected behavior

of a polymorphic function that is used in relation with an unsuitable type.

2.2.2.4 Concluding Remarks

We note that programming languages with separate compilation for generic mod-

ules and dynamic binding time (Java, Aldor) usually provide support for parametric

polymorphism with qualifications. (Here we use qualification as a synonym for quan-

tification.) This allows them to statically type-check the generic code. We also note

that they also usually employ a homogeneous approach to implementation. Other

programming languages (C++ and Modula-3) rely on their static binding time to

implement parametric polymorphism. In these cases, the type-checking has to wait

36

until the generic type is instantiated, thus the implementation approach is usually a

non-homogeneous one.

We conclude that a mechanism to combine modules in different programming

languages must be able to accommodate both compile-time and run-time instantiation

of modules and both qualified and unqualified type variables. Our approach has been

to design a qualification-based generic type model to accommodate programming

languages that support it, and to enforce these qualifications in our mappings for

the programming language which do not. Our model also allows generic types to be

unqualified, in which case any gidl type is a valid candidate for instantiation.

2.3 Mainstream Software Component Architectures

This thesis investigates a way in which software component architectures (SCAs)

can be extended with the parametric polymorphism feature. Among the mainstream

software component architectures today, besides un-qualified, one can list CORBA,

JNI, Microsoft’s DCOM, and the more recent .NET architecture.

Among these architectures, only .NET effectively supports parameterized com-

ponents, but in a homogeneous environment: the semantics of the generic model is

defined by the intermediate language (MSIL) to which all the supported languages

compile. A generic mechanism adapted from the one described in Chapter 4 can be

employed in a straightforward way to add genericity to DCOM, and JNI component

architectures, as discussed in Section 4.5, while preserving the backward compatibil-

ity with non-generic applications written for the underlying SCA. This is a direct

consequence of the type-erasure mechanism that implements our generic model.

37

This section presents the structure of these architectures as follows: Section 2.3.1

introduces the CORBA architecture and its interface specification language, which

will be the study case for our generic extension mechanism. Section 2.3.2 reviews the

Microsoft component technology (COM, DCOM, .NET), and finds that the DCOM

architecture is largely similar to CORBA: for example it also uses a specification

language to describe the component interface. Finally, Section 2.3.3 briefly describes

the Java Native Interface (JNI), which allows Java code to call native methods and

the reverse.

2.3.1 Common Object Requests Broker Architecture

The Object Management Group (OMG) is a non-profit organization that promotes

the use of component technology in heterogeneous, distributed computing systems.

OMG pursues this goal through developing standards which allow the distributed

object oriented applications to be portable and to interoperate.

The Common Object Request Broker (CORBA) [57] is an OMG open standard,

which defines an implementation independent architecture for building and seamlessly

interconnecting multiple systems involving distributed objects, in a way transparent

for the user. In practice, CORBA applications may have some vendor dependency.

CORBA applications are composed of objects, individual units of running software

that combine functionality and data. Their design is based on the OMG Object

Model. The OMG Object Model defines common object semantics for specifying

the externally visible characteristics of objects in a standard and implementation-

independent way. In this model clients request services from objects (which will also

be called servers) through a well-defined interface. This interface is specified in OMG

IDL (Interface Definition Language) [56].

38

This allows the framework to be platform and language independent, in the sense

that the client interfaces (to the objects), and the server implementations (of these

object interfaces) can be specified in any programming language. A client accesses

an object by issuing a request to the object. The request is an event, and it carries

information including an operation, the object reference of the service provider, and

actual parameters (if any). The object reference is an object name that defines an

object reliably.

The remaining of this section briefly presents the IDL language (Section 2.3.1.1),

and succinctly describes the components of the CORBA architecture (Section 2.3.1.2).

2.3.1.1 Interface Definition Language (IDL)

In order to achieve interoperability and portability, the CORBA standard requires

the use of the IDL to describe the interfaces of remote objects. The interface is the

syntax form of the promise the server object makes to the clients invoking it. This

fixes the operations that will be performed and the parameters (input and output) for

each. The IDL interface definition is independent of the programming language used

for implementation, OMG having standardized mappings to popular programming

languages like: C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python[56].

IDL is a declarative language whose syntax was constructed from a subset of

C++ and Pascal instructions. It defines basic types (short, byte, float, double,

string, etc.), structured types (struct, sequence, array, module), and provides

signatures for interface types, fully specifying each operation’s parameters. Mul-

tiple inheritance among interfaces is supported, but recently adopted features like

function/operator overloading, and parametric polymorphism are not. However, since

39

it targets distributed objects, IDL forces the user to specify additional information

with respect to the object interface, such as which method arguments are input-only,

output-only, or two-way data transfers. This is achieved using additional keywords

on method arguments, before their type specifications: in, out, and inout.

The remainder of this subsection presents an example of an IDL specification to-

gether with a C++ server implementation, and a Java client that accesses the server

functionality. The reasons are twofold: First, we want to convey to the reader the

“look and feel” of creating a multi-language application in an existing software com-

ponent architecture (SCA). We are using CORBA in this case but the process is quite

similar for DCOM, while for .NET it is even simpler (as it does not support “remote”

objects). Second, and most importantly, we want the reader to “feel” the difference

between a SCA and a foreign function interface. The latter usually leads to difficult

and complex applications, as the programming style specific to a given language is

disrupted by numerous calls to “special” kernel functions. It also leads to a rather

un-safe program, as very little from what is “foreign” can be statically type-checked.

We hope that our example shows that the SCAs are relatively easy to use, and safe, as

they usually enforce statical type-checking of the foreign calls. Moreover, they are a

better solution to the multi-language interoperability problem: in order to accommo-

date n languages, a usual SCA (one that uses an IL) would require O(n) translators,

while a solution based on foreign function interfaces would require O(n2) interfaces.

Figure 2.13 shows an IDL interface for a simplified bank account server. According

to the specification, a BankServer object has three methods: one to verify a PIN

number against an account, one to get specifics about an account, and one to process

a transaction against an account.

40

Figure 2.13 A simple IDL specification for a bank server application

1

2 module Examples {

3

4 interface Transaction {

5 // ...

6 }

7

8 interface BankServer {

9

10 boolean verifyPIN(in long acctNo, in long pin);

11

12 void getAcctSpecifics(in long acctNo, in string

customerName, out double balance, out boolean isChecking);

13

14 boolean processTransaction(in Transaction t, in long acctNo);

15 }

16

17 }

In the BankServer interface, the two arguments to the verifyPIN method are

declared as in parameters, since they are only used as input to the method and don’t

need to be read back when the method returns. The getAcctSpecifics method

has two in parameters and two out parameters. The two out arguments are read

back from the server when the method returns as output values. An inout argument

is both fed to the method as an input parameter, and read back when the method

returns as an output value [22]. When the IDL interface is compiled into a client stub

and a server skeleton, the input/output specifiers on method arguments are used to

generate the code to marshal and unmarshal the method arguments correctly.

Figure 2.14 presents part of the C++ server that implements the BankServer inter-

face. On line 1, our implementation (BankServer Impl) inherits from the IDL skele-

ton class POA Example::BankServer that has been automatically generated when the

41

Figure 2.14 Part of the C++ implementation of the BankServer

1 class BankServer_Impl : public virtual POA_Example::BankServer,

2 public virtual ::PortableServer::RefCountServantBase {

3 private:

4 int* pin_arr; int* balance_arr; int* account_nr_arr;

5

6 int findAccountIndex(int acctNo) { /* ... */ }

7

8 public:

9 BankServer_Impl(int* pin, int* bal, int* acctNo) { /* ... */ }

10

11 virtual CORBA::Boolean verifyPIN(int acctNo, int pin)

12 throw(CORBA::SystemException) {

13 int index = findAccountIndex(acctNo);

14 return (pin == pin_arr[index])? 1 : 0;

15 }

16 // ... further implementation

17 };

IDL specification in Figure 2.13 was compiled. Thus, it is “linked” to the CORBA

framework. Note that the programmer’s job is fairly simple, the code being very close

to the one written for a single-space, C++ implementation of the bank server.

Figure 2.15 shows a Java client that uses the functionality of the C++ bank server

implemented in Figure 2.14. The client assumes that the BankServerObj.ior file

contains a string representation of the bank server object (line 6), together with type

information and whatever is required to access the remote reference (machine address

and port number). This string is parsed and a remote object interfacing to the server

is created on line 12. On line 16 the object is “coerced” to its proper type (serv is

of type BankServer). Finally, the server serv can be used as if it is local and it is

implemented in Java. Lines 22 and 23 present the execution of two remote operation.

Our bank server is required to verify a pin number against an account, and if proved

valid, to perform a transaction.

42

Figure 2.15 A simple Java client using the bank server

1 static int run(org.omg.CORBA.ORB orb)

2 throws org.omg.CORBA.UserException {

3

4 org.omg.CORBA.Object obj = null;

5 try {

6 String refFile = "BankServerObj.ior";

7

8 java.io.BufferedReader in =

9 new java.io.BufferedReader(new java.io.FileReader(refFile));

10 String ref = in.readLine();

11

12 obj = orb.string_to_object(ref);

13

14 }catch(java.io.IOException ex) { return -1; }

15

16 Examples.BankServer serv = Examples.BankServerHelper.narrow(obj);

17 Example.Transaction trans = ...; //create a transaction object

18

19 int acctNo = 1211356256;

20 int pin = 2145;

21

22 if(serv.verifyPIN(acctNo, pin))

23 serv.processTransaction(trans, acctNo);

24 }

2.3.1.2 Overview of CORBA Architectural Components

This section follows the “A Brief Tutorial in CORBA” work of Kate Keahey [33].

Figure 2.16 shows the main components of the ORB architecture and their intercon-

nections.

The central component of CORBA is the Object Request Broker (ORB). The ORB

is the middleware that establishes the client-server relationships between objects. It

encompasses all of the communication infrastructure needed to identify and locate

objects, handle connection management and deliver data. Using an ORB, a client

43

Figure 2.16 Main components of the CORBA architecture

can transparently invoke a method on a server object, which can be on the same

machine or across a network. The ORB intercepts the call and is responsible for

finding an object that can implement the request, pass it the parameters, invoke its

method, and return the results.

It is important to emphasize that both the client and the server of CORBA objects

use an ORB to talk to each other (they both have an object manager associated with

them), and this leads to the fact that any agent in a CORBA system may act as

both a client and a server of remote objects. In general, the ORB is not required to

be a single component; it is simply defined by its interfaces (see ORB interface in

44

Figure 2.16). The ORB Core is the most important part of the ORB as it handles

the communication of requests.

Given an IDL specification, the IDL compiler will generate IDL stub/skeleton code

(not presented in Figure 2.16). The stub will act as an interface for the remote object

while the skeleton will provide the implementation. To perform a remote operation,

the client transfers a request to the ORB Core via the IDL stub or through the

Dynamic Invocation Interface (DII). The IDL stub represents the mapping between

the implementation language of the client and the ORB core. It follows that the client

can be written in any language as long as the implementation of the ORB supports

this mapping. The ORB Core then transfers the request to the object implementation

which receives the request as an up-call through either an IDL skeleton, or a dynamic

skeleton [33].

The Object Adapter (OA) is the architectural component responsible for the com-

munication between the object implementation and the ORB core. It handles services

such as generation and interpretation of object references, method invocation, secu-

rity of interactions, object and implementation activation and deactivation, mapping

references corresponding to object implementations and registration of implementa-

tions. POA is one of the CORBA standard object adaptors (see Figure 2.14, line

1).

There are two ways to specify the object interfaces: through an IDL specification,

or by directly adding them to the Interface Repository (IR) – a database which

provides persistent storage of object interface definitions. The Dynamic Invocation

Interface (DII) enriches the CORBA object with reflective features: it allows the

client to specify requests to objects whose definition and interface are unknown at

45

the client’s compile time. To use DII, the client composes a request (in a standard

way to all ORBs) that contains the object reference, the name of the operation to be

invoked, and a list of parameters. The object services are retrieved from the IR and

the proper operation is invoked.

2.3.2 Microsoft Component Technology

This section briefly presents Microsoft’s approach to structuring the software into

components that can be combined together to create single process or distributed

applications.

Section 2.3.2.1 and Section 2.3.2.2 introduce the Component Object Model (COM)

and the Distributed COM (DCOM) respectively. The two encompass a set of Mi-

crosoft concepts and program interfaces in which client program objects can request

services from server program objects (written in various programming languages) on

other computers in a network. From a high level perspective, their design is similar to

CORBA’s, in the sense that every COM object is associated with an interface (written

in an intermediate language like IDL), and the only way to access a COM object is

through its interface (which, once published, is immutable). It is important to under-

score that parametric plymorphism is not a supported feature of the COM interface

definition language, and thus, components are not allowed to be type-parameterized.

The newly defined .NET framework is described succinctly in Section 2.3.2.3. The

approach taken was to define a Common Language Runtime (CLR for short) that

provides a common type system, and a common intermediate language (MSIL) that

facilitates interoperability between programs written in the supported programming

languages [34]. Starting with version 2.0 Beta, .NET’s MSIL provides support for

46

bounded parametric polymorphism (and so does C #). The extension has been pro-

posed by Kennedy and Syme in [34]. However, the semantics is fixed by the definition

of the MSIL, and all the “managed” languages must conform to it.

2.3.2.1 Component Object Model (COM)

Component Object Model (COM) is a Microsoft component technology that builds

on the notion of interface and enables software components to be developed and

used from any COM aware languages and environments. It encompasses most of

the languages supported by Microsoft Visual Studio: C/C++, Visual Basic, .NET

languages, etc.

COM [43, 72] defines and implements a common communication protocol for ob-

jects originating from various programming environments to interact with each other.

The communication is achieved via abstract interfaces. This allows the implementa-

tion details to be hidden from the client, as there is no formal way to gain access to

the internal implementation of the client code.

Each object satisfies a number of public interfaces. A client can query an object

for the interfaces it supports, and can invoke the functionality described in these

interfaces. COM infrastructure also supports some other features such as location

transparency, and life time management.

Much like in the CORBA case, each interface is defined in an abstract interface

definition language (IDL). All programming languages that are able to interpret the

meaning of those abstract definitions (mostly the languages fostered by Microsoft) and

for which there is a language mapping are able to fully utilize COM. This mechanism

makes COM language independent. Interfaces are used as contracts between objects

and their clients, therefore they are considered immutable after publishing.

47

Figure 2.17 Example of a COM class (MyObject)

1

2 /** IDL Specification of the IMath interface **/

3 Interface IMath : IUnknown

4 Factorial

5

6 /** C++ implementation of the MyObject class **/

7 /** MyObject satisfies the IMath interface **/

8 class MyObject : public IMath

9 {

10 public:

11 // IUnknow functions

12 //

13 HRESULT Factorial(long val, long* retval);

14 };

All COM interfaces are derived from the IUnknown base interface. IUnknown

contains the functionality needed by clients to manage and use COM objects: it

provides methods for dynamic binding, life time management, etc. A COM class

(coclass) is a named implementation of a an interface, and it can be represented by

any concrete data type that satisfies one or more interfaces (i.e. it is not necessarily

a class in the object oriented sense). Figure 2.17 presents the definition of the IMath

interface and part of the implementation of the MyObject C++ class that satisfies the

IMath interface. One can notice that Microsoft definition language is weaker than

OMG’s IDL (see the specification of the Factorial function).

Client code is able to obtain a reference to a COM object by invoking proper

methods on the COM runtime and by providing proper arguments. Figure 2.18

shows a client accessing the MyObject object through its IMath interface.

To use a COM object, one has to obtain a reference to an instance of a coclass.

This is similar to CORBA’s “object reference”. Now, the client owns the object and

48

Figure 2.18 Client holding a reference to an object

client
IMath

IUnknown

MyObject

I

is free to request services from it by using some of the custom interfaces supported by

the object (for eg. the IMath interface in Figure 2.18). Every COM object supports

resource management and once all the client references to it have been released the

object will clean up and destroy itself freeing the memory.

2.3.2.2 Distributed Component Object Model (DCOM)

DCOM [43] is an extension to the COM based component technology. It allows

COM components and objects to be accessed remotely over the LAN, WAN or even

over the Internet. When client and component reside on different machines, DCOM

simply replaces the local interprocess communication with a network protocol (see

Figure 2.19). DCOM infrastructure takes care of marshalling all the data and com-

munication requests over the network without requiring any client interaction. In

essence the DCOM provides an object-oriented RPC mechanism and object lifetime

management infrastructure on top of COM.

Figure 2.20 shows the overall DCOM architecture: The COM run-time provides

object-oriented services to clients and components and uses RPC and the security

provider to generate standard network packets that conform to the DCOM wire-

protocol standard.

49

Figure 2.19 Client using a remote object via DCOM

client
DCOM IMath

IUnknown

MyObject

ServerClient

Figure 2.20 Main components of the DCOM architecture

Security
Provider

DCE RPC

COM
run−time

Protocol Stack

Security
Provider

DCE RPC

COM
run−time

Protocol Stack

DCOM network−

protocol

ComponentClient

One may notice that, from a high-level perspective, the designs of DCOM and

CORBA are quite similar: “remote” objects are accessed based on some interfaces

they implement, and these interfaces are described through a specification language.

What differs is the network and the remote invocation protocol, the memory deallo-

cation discipline: reference counting or manual for CORBA vs. distributed garbage

collection for DCOM, etc. The programmer has to provide the component specifica-

tion, the “server” implementation, and the “client” program, which combines different

components to form an application. The rest (linking code) is generated/provided

automatically by the CORBA/DCOM architecture.

50

Figure 2.21 Main components of the .NET framewok

2.3.2.3 .NET Framework

The approach taken by .NET was that rather than having a framework that stan-

dardizes the ways in which components can be defined and used in/from different

programming languages, it is perhaps easier and more natural to encapsulate these

mechanisms in the implementation of the supported languages by means of a common

virtual machine. More precisely they designed a Microsoft Intermediate Language

(MSIL for short) to which all the supported programming languages compile to, and

a Common Language Runtime (CLR), that will dictate the run-time behavior of the

MSIL code. This makes the .NET component model largely implicit: developers use

standard language syntax to create, export, and use components.

As presented in [40], .NET is tiered, modular, and hierarchical. The architectural

51

layout of the .NET Framework is illustrated in Figure 2.21. Each tier of the .NET

Framework is a layer of abstraction:

.NET languages They are the top tier and the most abstracted level.

The Common Language Runtime CLR is the bottom tier, the least abstracted,

and closest to the native environment. This is because it is the layer that works

closely with the operating system to manage .NET applications.

Common Language Specification CLS is a set of specifications or guidelines defin-

ing a .NET language. Shared specifications promote language interoperability.

For example, CLS defines the common types of managed languages, which is a

subset of the Common Type System (CTS). This removes the issue of marshal-

ing, a major impediment when working between two languages.

Common Type System CTS is a catalog of .NET types such as System.Int32,

System.Decimal, System.Boolean, etc. Developers are not required to use these

types directly, as they are the underlying objects of the specific data types

provided in each managed language.

.NET Framework Class Library FCL is a set of managed classes that provide

access to system services (file input/output, sockets, database access, remoting,

XML). All the .NET languages rely on the same managed classes for the same

services.

ASP.NET, Windows Forms, Console ASP.NET is used to create dynamic Web

applications and is the successor to ASP. Windows Forms is primarily a code

generator, generating managed classes for graphical user interface elements

52

(forms, buttons, text boxes, menus). Console applications are useful for log-

ging, instrumentation, and other text-based activities.

ADO.NET, .NET Remoting ADO.NET offers managed providers for Microsoft

SQL and OLE DB databases. It accentuates disconnected data manipulation,

integrates open standards, and is perfected for Web application development.

.NET Remoting provides a way of defining and using remote objects in .NET.

It allows the developer to set the specification of the remoting interface (trans-

mission protocol, data protocol, data port, etc).

Starting with version 2.0 Beta, .NET’s MSIL provides support for parametric

polymorphism (and so does C #). The extension has been proposed by Kennedy and

Syme in [34]. However, .NET framework implements a homogeneous environment

in which all the “managed” languages implement the same semantics for parametric

polymorphism: the one defined in the definition of the MSIL, and moreover shares the

same implementation (the one of the CLR). More than this, it is not clear to us if the

generics semantics are unified across the managed (eg. C#) and the un-managed (eg.

C++) .NET’s supported languages: what would happen if one is trying to instantiate

a C# parameterized class making use of bounded type parameters on some invalid

types from within C++?

Our approach for endowing software component architectures with support for

parametric polymorphism, described in Chapter 4, is higher level than the one in

.NET, in the sense that it does not require a homogeneous multi-language environ-

ment (a common intermediate language on which all the supported languages must

compile to), and “unifies” different semantics and implementations of parametric

polymorphism across language boundaries.

53

2.3.3 Java Native Interface (JNI)

Java Native Interface [70] (JNI) is a native programming interface that allows Java

code running inside a JVM to interoperate with applications and libraries written in

C, C++ and assembly code.

JNI imposes no restriction on the implementation of the underlying JVM, a native

application should work with all JVMs supporting JNI. A Java class that contains

some native methods, when compiled under JNI (javah utility), will produce a C/C++

stub header file, containing the signature of its native methods. The C/C++ developer

implements the functions, and links them to a shared library. A static initializer

of a Java class can load the created shared library (via the System.loadLibrary

method), and then the native methods may be called. In the other direction, a

C/C++ application can call Java code through a reflective-like invocation to JVM.

The JNI defines mapping types for basic types (jint, jfloat, ...), reference

types (jobject), plus its specializations for array types, Class, String, and Throwable

(jarray, jintArray, etc, jclass, jstring, jthrowable). One may observe that all

the Java reference types (eg: Integer, List<T>, etc.) are erased to the jobject JNI

type. It follows that the type-correctness of the invocation (in either direction) is

the programmer’s responsibility, and an incorrect invocation may result in arbitrary

undefined behavior (on the native side) or in a JVM exception (on the Java side). In

this regard, we would say that JNI is more than a foreign function interface, since it

automatically generates linking code for the native methods, but less than a software

component architecture as its type vocabulary is quite reduced, and type-correctness

is not enforced.

One can also observe that, as the JVM features no support for parametric poly-

54

Figure 2.22 Example of defining and using native methods in Java

1 import java.util.*;

2 public class HelloGenerics<T extends Iterable> {

3 public native List<T> foo1(T[] arr1);

4 public native List<List<T>> foo2(T[][] arr2);

5 public native void displayHelloWorld();

6

7 static {

8 System.loadLibrary("hellogenerics");

9 }

10 public static void main(String[] args) {

11 new HelloGenerics<List<Integer>>().displayHelloWorld();

12 }

13 }

morphism (it was “statically compiled away”), the JNI does not support parameterized

components. The example that concludes this section will make this trivial to see.

Figure 2.22 presents the definition of the HelloGenerics parameterized Java

class. The type parameter T is declared to implement the Iterable interface. The

HelloGenerics class declares three native methods: displayHelloWorld, foo1, and

foo2. It also declares a static initializer that loads the library (named hellogenerics)

that contains the implementation of the three native methods. The main method in-

stantiates the class and calls the displayHelloWorld native method.

Figure 2.23 presents the C++ header file obtained by compiling the class file cor-

responding to HelloGenerics with the javah tool. It is easy to see that the List<T>

and List<List<T>> types that appear in the defintion of the foo1 and foo2 meth-

ods have been erased to the jobject JNI type. Similarly, T[] and T[][] have been

erased to the jobjectArray JNI type. More than this, the signatures of foo1 and

foo2 appearing in the comments associated with these functions (lines 4 and 12) are

generic type erased. According to them, the type of the return is the same for both

55

Figure 2.23 The generated C++ header file for the native methods declared in Fig-
ure 2.22

1 /*

2 * Class: HelloGenerics

3 * Method: foo1

4 * Signature: ([Ljava/lang/Iterable;)Ljava/util/List;

5 */

6 JNIEXPORT jobject JNICALL Java_HelloGenerics_foo1

7 (JNIEnv *, jobject, jobjectArray);

8

9 /*

10 * Class: HelloGenerics

11 * Method: foo2

12 * Signature: ([[Ljava/lang/Iterable;)Ljava/util/List;

13 */

14 JNIEXPORT jobject JNICALL Java_HelloGenerics_foo2

15 (JNIEnv *, jobject, jobjectArray);

16

17 /*

18 * Class: HelloGenerics

19 * Method: displayHelloWorld

20 * Signature: ()V

21 */

22 JNIEXPORT void JNICALL Java_HelloGenerics_displayHelloWorld

23 (JNIEnv *, jobject);

methods. This shows that JNI cannot support parameterized components because

the types handled by the JVM are erased of any generic information.

Finally, if the C implementation corresponding to the displayHelloWorld native

method is printf("Hello world!"), and one runs the HelloGenerics Java applica-

tion, Hello world! will be printed on the screen. This concludes our JNI example,

and this section.

56

2.4 Thread Level Speculation

One of the main technique of increasing the performance of a single computation task,

besides reducing the memory latency and increasing the clock speed, has been the

attempt to exploit the application’s inherent parallelism. For scientific applications,

static (traditional) parallelization techniques, which usually involve data/control de-

pendence analysis together with various code transformations to eliminate the loop

carried dependencies, have proved to be a success. Non-numeric applications, how-

ever, tend to use irregular data structures and complex control flow, factors that in

most cases yield quite a “pessimistic” dependence analysis result. Code regions may

reveal a rich level of (hidden) parallelism, but the traditional techniques will usually

fail to guarantee a safe parallelization.

Thread level speculation (TLS) architectures are software/hardware mechanisms

that resolve at run-time the unknown dependencies that would otherwise prevent

parallelism from being extracted. This speculative execution of parallel threads has

proved to be a promising direction in achieving the awaited breakthrough for non-

scientific applications.

In a TLS framework, threads execute out of order, and use software/hardware

structures, referred as speculative storage, to record the necessary information to track

the inter-thread dependencies and to revert to a safe point and restart the computa-

tion upon the occurrence of a dependence violation (rollback recovery). To guarantee

correct execution, threads merge their changes into the global non-speculative storage

only when the speculation is verified, which is only when it is determined that the

locations it read from and wrote to do not generate a dependence violation.

One of the main shortcomings of TLS is that it features high inter-thread com-

57

munication costs. The emergence of chip multiprocessors (CMP) has alleviated this

problem to some degree. CMPs contain multiple tightly-coupled processor cores on

a single chip, which significantly reduce the costs of interprocessor communication.

Their emergence has come about as the cost-benefit ratio of parallelism offered by su-

perscalar VLIW processors has grown [55]. Even though commercial CMPs currently

exist in the market [71], the cache coherency mechanism needed for speculation is not

yet present.

TLS can be applied at the loop and method/function levels. At the loop level,

speculative threads concurrently execute iterations of a loop out of sequential order

even when these may contain a true dependence. The thread assigned to the lowest

numbered iteration of all is referred to as the master thread since it encapsulates

both the correct sequential state and control-flow. It is the job of the speculative

cache coherency mechanisms to detect the occurrence of inter-thread data depen-

dencies and initiate a rollback. In servicing a rollback the speculative state needs

to be cleared and the threads affected by the violation are restarted to carry out

the cancelled iterations. Method-level speculation overlaps the execution of a called

method with the code downstream from the call-site. The region following the call is

executed speculatively while the main thread executes the called method. In general,

the downstream speculative region is quite small since data dependencies will occur

between the parameters or return value of the two code segments. However, the

length of a speculative region can be expanded through the use of value prediction.

Simple, and efficient two-value and stride predictors can be applied to free up some

possible dependencies with good results [67].

The motivation of our study in TLS technologies originates in the area of au-

tomatic library translation across a multi-language, distributed system. In such an

58

environment, each component of an application is separately compiled, and is lo-

cally optimized, in the absence of any information regarding the other components

structures. The consequence is that conservative, traditional compiler optimizations

(inlining, tower type, parallelization) cannot be performed aggressively. Furthermore,

existent generic library design is usually secondary to the assumption that the ap-

plication operates in a single language/process space. This assumption no longer

holds when, using a “black box” type translation strategy (see section 4.7), we make

them available in a heterogeneous environment, greatly impacting the application’s

performance. For example, the running time of a client performing repeated calls to

lightweight functions of some remote component will be dominated by the network

overhead.

In the light of the above observations, Chapter 5 proposes two distributed TLS

models in the attempt to reduce the communication and dispatch overhead inherent

to distributed applications. Section 2.4.2 introduces a high-level all software-based

TLS framework, developed in collaboration with Jason Selby, Mark Giesbrecht and

Stephen Watt that served as the backbone for the two distributed TLS models. Since

this is still on-going research we shall present it at a high-level.

There is an extensive bibliography related to TLS. Section 2.4.1 summarizes a few

contributions that we have found most useful and have inspired us in the design of

our own TLS framework.

59

2.4.1 Related Work in Thread Level Speculation

The TLS related work reviewed in this section covers a variety of topics such as

speculative architecture proposals, thread partitioning mechanisms, and speculative

related optimizations. A good TLS framework needs to combine elements from all

these topics in order to obtain good optimization speed-up.

The paper “Reference Idempotency Analysis” by Kim et al. [35] formally de-

scribes the structure of the software and the execution model for two architectures:

hardware only speculation execution (HOSE), and compiler assisted speculative ex-

ecution (CASE), and proves the correctness of the two. In addition it discovers a

new program property called “reference idempotency” that allows it to reduce the

considerable performance loss caused by speculative storage overflow. These kinds of

references need not be kept in the speculative storage, thus reducing the demand for

speculation. The paper also investigates the necessary and sufficient conditions for

reference idempotency with respect to the CASE model.

Rundberg and Stenstrom [66] propose an all software approach to design a thread-

level data dependence speculation system targeting multiprocessor architectures. Loads

and stores that can produce data dependence violations at run time are wrapped in-

side checking code to ensure the correctness of the execution. Speculation is integrated

at a low level, as it involves only memory references and basic types. The paper claims

a speculative read/write operation overhead of less than ten instructions. Our TLS

approach, described in the next section, although inspired from this model, is higher-

level, in the sense that we also provide specialized speculative storage for containers,

objects, etc. Our approach is highly adaptive: the type of the speculative storage

support, and the parameters of the speculative execution are chosen in accordance

with the code properties and the available profiling information.

60

The paper “Master/Slave Speculative Parallelization” by Zilles and Sohi [80] pro-

poses a master/slave speculative parallelization model (MSSP). In MSSP, one pro-

cessor (the master) executes an approximate version of the program (“distilled pro-

gram”). In order to check its results, the master spawns, in program order, slave

threads that execute the original program. There are no requirements on the “dis-

tilled” program necessary to ensure a correct execution. However, in order to get

good speed-up, the “distilled” program should have a high prediction accuracy and

be fast. To accomplish this, control flow transformations (cold path elimination),

value-based (constant substitution for invariant values), and dependence-based (ig-

nore may-aliases for load-store pairs that rarely alias) approximations, optimizations

of writes with distant first uses may be applied. This work has inspired our second

distributed TLS model, described in Section 5.2.3.

Two works by Chen and Olukotun [10], and Kazi and Lilja [32] target specula-

tive architectures for the Java environment. The first article finds the Java virtual

machine to be an effective environment for exploiting method-level parallelism and

investigates how method-level speculation can speed up single-threaded, general pur-

pose Java programs. Specifically, if a method is marked as speculative then the

current processor executes the method, and a forked speculative task executes in

parallel starting from the method return point (continuation). The second article

proposes a speculative parallelization model (JavaSpMT) that combines control spec-

ulation with run-time dependence checking. Their thread model has three stages:

the continuation stage (compute and forward recurrence variables, and forks and ini-

tiates a successor thread), the target store address generation stage (TSAG stage –

computes the addresses of the write operations upon which successor threads may be

data dependent), and the computation stage. In their model, new threads are created

61

only from the beginning of the speculative thread, and threads are synchronized with

respect to the TSAG stage.

Bhowmik and Franklin [3], present a compiler framework for partitioning a se-

quential program into multiple threads for parallel execution in an speculative mul-

tithreading (SpMT) system. The proposed framework supports a variety of threads:

speculative, non-speculative, loop centric, and out of order thread spawning. For

the partitioning process, the compiler uses profiling, intra-procedural pointer analy-

sis, data dependent and control dependent informations. The thread model supports

spawning a thread from anywhere in the current thread: it may wait for example for

a dependence to get resolved, before spawning another thread.

Finally, Zhai et al. [79] observe that program performance under thread-level

speculation models is severely limited due to the stalls required to forward the scalar

values (that would otherwise cause frequent data dependence violations) between

threads. It further presents and evaluates data flow algorithms for three increasingly

aggressive instruction scheduling techniques that reduce the critical forwarding path

introduced by the data forwarding associated synchronizations.

2.4.2 Our Non-Distributed TLS Approach

Even though hardware support for speculation is not available yet, we set out to

explore the benefits of TLS and implemented a software framework. Our approach

is similar to the one of Rundberg and Stenstrom [66], in the sense that loads/stores

from/in addresses that cannot be statically disambiguated (speculative locations) are

replaced with calls to functions which simulate the data dependence checking that

would be present in a speculative cache protocol.

62

Figure 2.24 The structure of a speculative variable:
Shadow Data Vector: stores the variable values for different iterations
Original Value: safe point value – usually the value before speculation has started
Load Vector: if entry with index i is set then thread i has “read” the variable
Store Vector: if entry with index i is set then thread i has “written” the variable
Lock Variable: is used to avoid race conditions

Lock Variable (lock)

Structure of speculative variable

Load Vector (LV)

Store Vector (SV)

Shadow Data Vector (ShV)

Original Value (val)

For each variable that may be the cause of a data dependence violation, the

compiler associates a speculative variable whose structure is presented in Figure 2.24.

Our architecture also assumes that the compiler replaces a “read/write” of such a

variable with a call to a speculative load/store function.

Upon a speculative load, a thread marks up the entry in the load vector correspond-

ing to its iteration number (id), then searches the store vector to find the greatest

thread id less than its own that has “written” the variable, and finally fetches the

value from the corresponding entry in the shadow data vector. Similarly, a specula-

tive store sets up the entry in the store vector corresponding to the id of the thread

that executes the operation, then stores the value at the corresponding index in the

shadow data vector, and finally checks if a later thread has “read” a value that should

have been provided by the current thread. If the latter is true than a data depen-

63

dence violation has occurred and a rollback has to be serviced. The rollback routine

usually sets a barrier, and waits for all but one thread to reach the waiting state.

The running thread is the one with the lowest id that has a rollback to service, and

consequently its state is the same one obtained after sequentially executing thread id

iterations (correct/valid state). The original value is updated to the value known by

the current thread, and then the rest of the vectors (load, store, shadow) are cleared,

and either the speculative or the sequential execution is restarted.

Our approach, however, is at a much higher level than that of [66], which imple-

mented a speculative framework in a mix of C and assembly. The initial idea behind

our framework was to incorporate TLS into the repertoire of an adaptive dynamic

optimizer such as JikesRVM [5]. Profiling could detect situations in which speculation

might be applicable and even resolve statically unsolvable distance-vector equations

which rely upon run-time values. This monitoring of the run-time state could be

used to possibly reduce the number of dependence violations encountered by initi-

ating threads separated by the observed dependence distance. The addition of TLS

to a traditional parallelizing compiler could provide speed-up where data dependence

analysis fails to conclusively determine if dependencies exist across loop iterations.

The access to the true run-time behavior of a program that a dynamic compiler

has could as well be used to direct the shape of the iteration space by identifying

whether a block or cyclic iteration pattern is most applicable. Further adding to the

adaptability of the system, profiling can be integrated into the rollback handler. The

ratio of rollbacks to commits could be monitored and if an unacceptable threshold is

reached, the run-time compiler could remove the speculative code. Many hardware

based schemes suffer from the inability to control the amount of memory required

by speculative threads in order to keep the main state isolated from the speculative

64

state [61]. In our software approach we can resize or set an upper bound on the size

of the speculative cache as needed.

Our goal is to apply speculation to parallelize general Java programs, as opposed

to the conservative parallelization techniques that work well only on very regular

scientific applications. To achieve this, a dynamic compiler carrying out the specula-

tive transformations must be able to plug in speculatively aware versions of the Java

class libraries. Specifically, in order to speculate on many common code sequences

speculative versions of the collection classes, such as List, are needed. Consider the

common situation of iterating through a List. Given a speculative version of the

List class, a dynamic compiler could replace the use of the sequential library with a

speculative version which cuts the List into segments dependent upon the number

of available processors. Each processor would then visit in parallel only its assigned

part of the List, and dependence checking would be hidden behind the scenes in the

implementation of the speculative List class.

65

Chapter 3

ALMA

3.1 Chapter Introduction

This chapter studies an interoperability problem between two very different computer

algebra systems: Maple and Aldor. The investigation has two main goals: First, we

are interested in understanding the issues that arise in matching the compile-time

parametric polymorphism of Aldor’s dependent types with the dynamic parametric

polymorphism of Maple’s module-producing functions, and in matching the Aldor’s

strongly type system with Maple’s weakly typed system. Second, we are interested

in the practical problem of using Aldor as an extension mechanism for the popular

Maple computer algebra system. This allows users to make extensions that operate at

the same efficiency as the Maple kernel, and allows Maple users to take advantage of

Aldor’s mechanisms for structuring correct large-scale libraries. The work presented

here is based on the ISSAC paper “Domains and Expressions: An Interface between

Two Approaches to Computer Algebra” [51], co-authored with Stephen Watt.

One of the positions held over the past two decades of mainstream computer al-

66

gebra system design has been that there should be one over-arching language that

serves both the end user and library developer. The idea has been if the language

is good enough for end-users, it should be good enough for system developers, and

otherwise it needs fixing. This has led to systems that either use modified scripting

languages for their libraries (e.g. Maple), or that use modified library-building lan-

guages for their user interface (e.g. Axiom). A variant of this approach has been to

build much of the mathematical support in a lower-level system implementation lan-

guage, such as Lisp (e.g. with Macsyma) or C (e.g. with Mathematica). The result

is that large parts of the current computer algebra systems are written in languages

poorly adapted to the purpose, resulting in systems that are less flexible, less efficient

and less reliable than we might wish.

This chapter examines the structure required for a different approach: to write

libraries in a language well-adapted to large-scale computer algebra programming,

together with an environment aimed at ease of use by the general end-user.

It is not difficult to see that the style of programming for top-level problem solving

and for libraries is quite different. For interactive problem solving, or for one-off

scripts, it is important to be able to write commands quickly and succinctly. In this

context, manipulation of some sort of general expression provides flexibility. On the

other hand, to program large-scale computer algebra libraries, there are advantages

to a language that allows efficient compilation, secure interfaces, and flexible code re-

use. However, to achieve efficiency, safety and composibility requires more declarative

structure. In this context, it is more natural to work with objects in precisely defined

algebraic domains. Since libraries are used many times more than top-level scripts,

programmers are more willing to provide this structure.

67

Extensions to computer algebra systems are not always calls to larger software

components; they may equally well be collections of very fast light-weight routines.

We therefore look beyond the solutions offered by loosely coupled computer algebra

systems, e.g. OpenMath [58] or the software bus [62]. We choose Aldor [75] as a

suitable library-building language, Maple [45] as a suitable interactive environment,

and we require that Aldor libraries to be tightly coupled to Maple. That is, Aldor

libraries will receive and directly operate on Maple objects in the same address space.

Our solution consists of two parts: The first part allows the low-level run-time

systems of Maple and Aldor to work together. It allows Aldor functions to call Maple

functions and vice versa, and provides a protocol whereby the garbage collectors of

the two systems can cooperate when structures span the two system heaps. As with

any low-level foreign function interface, it holds the user responsible for correct usage.

This work was conducted by Watt and was reported in [74].

The second part of our solution, reported here, implements a high-level correspon-

dence between Maple and Aldor concepts. The aim has been to bridge the semantic

differences between the two environments, to allow Aldor domains to appear to the

user as Maple modules, and Maple modules to appear as Aldor domains. While our

semantic correspondence works both ways, in practice we are primarily interested in

using Aldor libraries in the Maple environment. We use a tool to generate Aldor, C

and Maple code that wraps the Aldor library exports, as well as supporting run-time

support code to do dispatch and caching.

The resulting package, which we call Alma, allows standard Aldor libraries to be

used in a standard Maple environment [45]. More precisely, Alma can be seen as a

software component architecture to achieve connectivity among two computer algebra

68

systems. It gracefully handles user-errors (type checking), supports reflective features

to describe components’ types and functionalities, provides a user-oriented interface

(Maple “look and feel”), and employs high-level optimizations. Thus, our approach is

more challenging and quite different from previous work on low-level foreign function

interfaces, and consequently the internal architecture of the proposed framework is

more complex.

We present two validations of this architecture: First, we describe the mappings

of the Aldor language features to Maple, and the Alma type checking process (Sec-

tion 3.5). Second, we present a comprehensive example, in which approximately 1160

Aldor exports have been made available to the Maple user (Sections 3.2 and 3.7).

Earlier results leading to this approach have been reported in [13, 49].

We see the following as contributions of this work:

• Aldor has been found to offer efficiencies comparable to hand-coded C++ [2].

Our approach therefore allows extension libraries to operate with efficiencies

comparable to Maple kernel routines.

• These extensions are written in a high-level language, well-adapted for math-

ematical software. It allows the programmer to ignore lower-level details and

have natural integration of dynamic components into the Maple environment.

• Aldor is designed for mathematical “programming in the large” and provides

linguistic support for such concepts as generic algorithms, algebraic interface

specification and enforcement, dynamic instantiation, etc. Our approach allows

the Maple system to benefit from these features. Alternatives, such as C++, do

not provide this.

69

• Authors of large Aldor libraries often wish to make their functionality available

through a main-stream computer algebra system. Two examples are Bronstein’s

library for differential operators, Sumit [4], and Moreno Maza’s library for tri-

angular decompositions, Delta [47]. The current work makes this relatively

easy.

The remainder of this chapter is organized as follows: We start with an example

in Section 3.2: we show a Maple session computing the polynomial GCD over a tower

of algebraic extensions using Aldor’s BasicMath library. Section 3.3 briefly introduces

the aspects of the Maple and Aldor programming environments needed to understand

Alma. Section 3.4 presents a high level architectural view of the Alma framework,

together with an example of user-Alma interaction. Section 3.5 describes the Maple

mapping, together with our type checking mechanism. Section 3.6 describes the key

ideas used in the Aldor and C mappings. Section 3.7 shows the implementation side

of the example started in Section 3.2. Finally, Section 3.8 presents some conclusions.

3.2 Example

This section presents an example where a Maple user employs the functionality of the

Aldor BasicMath library to solve a mathematical problem in a way not supported

natively in Maple. The BasicMath library [26] was developed at NAG by Moreno

Maza and others as part of the FRISCO project, and provides Aldor with a set

of types and algorithms for computer algebra. In particular, our example uses its

support for regular chains. It is an extensive library, comprising about 103700 lines

of Aldor code.

70

Figure 3.1 A Maple session computing a GCD in (R[x]/Sat(mx))[z, y]
using the Alma framework

> read "mtestgcd-wrap.mpl":

Construct polys

> f1 := MapleToAldorPoly(x*y^2 - 4*y + 5*x):

> f2 := MapleToAldorPoly(6*x*y - y^2 + 5):

> m := MapleToAldorPoly(x^2 + 1):

Form triangular set and gcd by Aldor package.

> trset := TriPack:-empty():

> rchain:= TriPack:-regularChain(m, trset):

> ggcd := TriPack:-regularGcd(f1, f2, rchain):

> ggcd := genstep(ggcd):

> ggcd := TriPack:-reducedForm(ggcd, rchain):

Get the GCD as a Maple expression.

> AldorToMaplePoly(ggcd);

y - x

The Maple session presented in Figure 3.1 shows the Alma interface. The example

computes the greatest common divisor of two polynomials (f2 = 6 × x × y − y2 + 5

and f1 = x × y2 − 4 × y + 5 × x) in (R[x]/Sat(x2 + 1))[z, y] by invoking the Aldor

BasicMath library and using its support for regular chains. The session uses the file

mtestgcd-wrap.mpl to act as a wrapper between the Alma system and the user. The

implementation of this file is explained in Section 3.7, after we have described the

necessary concepts.

The example first creates the Alma objects corresponding to the given Maple

polynomials. The regular chain containing the polynomial m is constructed, and

the greatest common divisor of f1 and f2 with respect to the regular chain is com-

puted. Finally, the reduced form of ggcd is computed, and it is converted to a Maple

polynomial. As the last line of Figure 3.1 shows, the computed GCD is y − x.

71

Figure 3.2 A Maple module and its use

1 makeZp := proc(p)

2 module()

3 export plus;

4 plus := (a,b) -> a + b mod p;

5 end module:

6 end proc:

7

8 z5 := makeZp(5); # create the module

9 z5:-plus(2,4); # add 2 and 4 mod 5.

The functions empty, regularChain and regularGcd have the interfaces ex-

actly as exported by the Aldor library. TriPack is the instantiation of an au-

tomatically generated Maple module wrapper corresponding to the Aldor package

RegularTriangularSet.

3.3 Aspects of Maple and Aldor

This section briefly presents some of the aspects of Aldor and Maple systems that we

used in our architectural design.

Maple uses a dynamically typed language that supports first class functions. Typi-

cally, functions use dynamic type tests to implement polymorphism, and name over-

loading is not supported. Modern versions of Maple have adopted the concept of

modules to organize packages and libraries. A module is a first-class Maple object

and provides a collection of name bindings. Some of these bindings are accessible to

Maple code outside the module, after the module has been constructed; these are the

exports of the module [45]. Figure 3.2 shows a Maple module and its use.

72

Figure 3.3 An Aldor category/domain example

1 -- File Example.as:

2 import from SingleInteger;

3 define Module(R:Ring) : Category ==

4 AbelianGroup with {

5 *: (R, %) -> %; ++ Scalar multiplication

6 coerce: R -> %;

7 coerce: String -> %;

8 }

9

10 ++ Polynomial domain over ring R

11 Polynomial(R: Ring) : Module(R) == add {

12 (r: R) * (x: %) : % == ...;

13 coerce(r: R) : % == ...;

14 coerce(s: String) : % == ...;

15 ...

16 }

As they are first class objects, modules can be returned by functions. A module’s

exported functions can reference environment variables visible at the moment of their

creation (i.e. it is a closure). In Figure 3.2 the module returned by the makeZp function

references makeZp’s parameter p. It exports the plus operation whose functionality

is to add numbers modulo p.

We remind the reader that the Aldor language has already been introduced in

Section 2.1.1. An example of an Aldor program is presented in Figure 3.3. It defines

a parametrized category Module(R), representing a simplified version of the mathe-

matical category of R-Modules. Module(R) declares as exports a scalar multiplication

and two conversion operations from an element of the ring and from a String ob-

ject to an object of type %. The type %, within a domain-valued expression, refers

to the domain being computed. Polynomial has the dependent mapping type: (R:

Ring)-> Module(R), taking one parameter R, which is a domain satisfying the Ring

73

category, and produces a type belonging to the category of R-modules. Static analysis

can use the fact that R provides all the operations required by Ring, thus allowing

static resolution of names and separate compilation of parameterized modules. Names

can be overloaded, and are resolved based on their static type. The first line in the

Aldor code in Figure 3.3 makes the exports of the SingleInteger domain available

throughout the file.

3.4 Alma Design

This presents an overview of Alma’s design. The main ideas that guided the design

are summarized below, and then further detailed:

• Alma should automatically generate any needed (Maple, C, and Aldor) stubs,

and keep the system’s internals hidden from the user.

• Alma should provide a dynamic (interactive) type checking mechanism that

gracefully handles user need, and errors.

• Alma should allow Maple to interact with Aldor components in an efficient

manner, introducing only a minimal overhead cost.

• Alma should extend the Maple language only as needed, by providing mappings

for foreign programming language concepts such as overloading, domains, etc.

• Alma should be simple to use, rendering a Maple “look and feel” to Aldor code.

74

Figure 3.4 High-level architecture overview:
white arrows mean “generates,”
normal arrows mean “uses,”
dashed boxes are user source code,
light boxes are generated code.

Aldor Library

Aldor
Stub

Aldor
Binary Stub

C

Maple

Library
Checking

Type

Caching

JITC

ALMA

Maple Run Time SystemAldor Run Time System A+ M+

Stub
Maple

Aldor
Program

ALMA module

ALDOR COMPILER

Maple Program

Maple Environment

BINARIES

3.4.1 Rationale of the Design

Figure 3.4 introduces the main components of the Alma architecture. The code

generation module is located inside the Aldor compiler. It receives as input an Aldor

program, and generates the usual compiled binary representation of it, together with

Aldor, C, and Maple stubs for the program’s exports. Among these there may be

exports that have their definition in some Aldor library.

75

The Maple stub becomes the interface between the user and the Alma system. It

uses the functionality of the type checking module in order to ensure a correct call to

the Aldor library. Otherwise, if no type checking is performed, an incorrect call on

the user’s part would most likely produce a low-level fatal error. The type checking

module is designed to provide useful feedback to the user in the case of an erroneous

invocation. For example it will list the allowed export types for a given export name.

Once the program has reached a mature phase, one may want to eliminate the

type checking overhead. If a fast implementation is desired, the Alma code generation

module is able to produce code in which no type checking is performed. The type

checking module is implemented mostly in Maple, but it also uses Aldor run-time

system enhancements (the “has” operation that tests if a given domain satisfies a

given category).

Our architecture allows Maple to share a single address space with optimized

Aldor components from a library. However, the run-time cost of calling an Aldor

function can be somewhat expensive: The initial use of the Aldor stub may require a

number of expensive runtime operations, such as domain instantiation, that cannot

be statically optimized by the Aldor compiler. (These operations may involve pa-

rameters that are known only at runtime.) Thus, for performance reasons, the Maple

stub uses a cache module (implemented based on Maple’s remember option) to store

previously computed domain/category types. Aldor-closure objects corresponding to

functional Aldor exports are also cached, so that they can be invoked directly, thus

by-passing the Aldor stub. Alma supports function-level just in time re-compilation

of the C and Aldor stubs (JITC module). More precisely, if an export is found to

be “hot” and depends on type parameters known only at run-time, Alma will build,

and recompile a specialized C and Aldor stub corresponding to that export. Since

76

most type parameters are now instantiated, the Aldor compiler will find better oppor-

tunities for aggressive optimizations (like inlining), thus improving the application’s

performance.

In order to successfully complete a foreign Aldor invocation, the Maple stub calls

the C stub that forwards the request to the Aldor stub, and this invokes the correct

Aldor export on valid Aldor parameters, returning a value to the C stub. The C stub

creates foreign Maple objects and returns them to the Maple stub. The functionality

of the Aldor and Maple run-time system enhancements modules (A+ and M+ in the

figure) is to synchronize Maple’s and Aldor’s garbage collectors (see [74]).

Alma’s objects expose rich reflective features that can be queried by the user. This

allows one to find the functionality of the corresponding Aldor component, its type,

etc. Alma’s foreign objects can also be manipulated in the same way as any ordinary

Maple objects: They may be used in Maple operations (such as map, apply), while

Alma’s internal invocation mechanism is completely transparent to the user.

3.4.2 Example of Correspondence

We present a simple interaction between the Maple-user and the Alma framework.

Assume the user wants to use the functionality of the Aldor code in Figure 3.3, and the

stubs have already been generated by calling the Aldor compiler with the appropriate

options on the Example.as file.

The first line in Figure 3.5 imports the Maple stub into Maple’s environment. On

line 3, the user asks for information about the Polynomial domain. Alma answers

by providing the type information, exports, and the comments associated with the

Polynomial domain (see Figure 3.3). Similarly, on line 4, the user asks about the *

77

Figure 3.5 User-Alma interaction.
Lines starting “>” are user input; the others are Maple output

>read("MapleExampleStub.mpl"): # line 1

>with(Example); # line 2

module() export Polynomial, ... end module

>Polynomial("help"); # line 3

Domain Type: Polynomial(R: Ring) : Module(R)

Exports:

* : (R, %) -> %;

coerce: (R) -> %;

coerce: (String) -> %;

Comment: Polynomial domain over ring R

>Polynomial("help", "*"); # line 4

Functional Type: *: (R, %) -> %;

Comment: Scalar multiplication

>SI_dom := SingleInteger:-Info:-asForeign; # line 5

["d", 1856856, module() export ...]

>int_obj := Alma:-AldorInt(5); # line 6

["o", 5, module() export ...]

>poly_si_dom := Polynomial(SI_dom); # line 7

["d", 1848300, module export ...]

>poly_obj := poly_si_dom:-coerce(int_obj); # line 8

module() export ... end module

>wrong_obj:=Polynomial(SI_dom):-coerce(SI_dom); # line 9

no function with this signature! candidates:

coerce:(SingleInteger)->Polynomial(SingleInteger)

coerce:(String) -> Polynomial(SingleInteger)

78

export of the Polynomial domain. All Aldor domains/categories are translated into

Maple modules, or functions producing modules, if parameterized. They export an

Info module that encapsulates the type’s reflective features. The asForeign export

of the Info module stores a Maple foreign object corresponding to the Aldor domain it

represents. At present, our implementation represents a foreign Maple object as a list

that contains a classification identifier (“d” means domain, “c” means category, “f”

means function, “o” means object, etc.), a pointer to the Aldor object (for primitive

types this will be the value), a Maple structure representing the Aldor type, and some

additional information used to synchronize the garbage collectors This is illustrated

by Alma’s response to the user command at lines 5, 6, 7.

Line 5 creates a foreign domain type object corresponding to the SingleInteger

Aldor domain. Line 6 creates an object of type SingleInteger which in fact is

just a primitive integer value, as one can see in the Maple representation of the

int obj. Next, on line 7, another domain-type object is created, corresponding

to the Polynomial(SingleInteger) Aldor type. If the user would like to verify

first that the SingleInteger domain satisfies the Ring category, he can look in

the SingleInteger:-Info:-supertypes export. Note that the interaction with our

framework is quite intuitive, as our mapping closely follows Aldor’s specification struc-

ture and semantics. Types are run-time values both in Aldor and in our mappings:

the user has to construct them first in order to use their exports. Types are also first

class values, therefore they are constructed and used in the same way a regular object

is used. Finally, on line 8, the coerce function is called, and as result, a foreign

Maple object of Polynomial(SingleInteger) Aldor type is returned.

The last line in our example (line 9) shows how our framework reacts to an er-

roneous input: The type checking module detects that the parameter to the coerce

79

export is neither of type SingleInteger nor of type String, so the incorrect Aldor

library invocation is aborted. In addition, feedback is provided to the user with re-

spect to the valid type signatures of the coerce function. Also note that while Maple

does not support overloading, our mapping behaves as though it does. To the user

it seems as though one can call two functions with the same name and with different

parameter types, as they appear in the Aldor specification.

3.5 The Maple Stub

We now turn our attention to the internals of the system, starting with the generated

Maple stubs.

The Maple mapping addresses the issues that arise from matching the Aldor’s

strongly typed system with Maple’s dynamically typed system. In particular, one of

the challenges is in matching the compile-time parametric polymorphism of Aldor’s

dependent types with the dynamic polymorphism of Maple’s module-producing func-

tions. For a rich connectivity between Maple and Aldor to exist, Aldor’s features,

such as run-time domain types, overloading, dependent types and mapping types,

need to be mapped to Maple. The key for the translation of these features is to

create, via the Maple stub, dynamic types corresponding to the hierarchy of available

Aldor types, and to design a dynamic type checking mechanism for the foreign Maple

objects. Alma’s type checking phase is greatly simplified, compared to the static Al-

dor type checking, as it happens at the application’s run-time where most parameters

have completely instantiated types.

80

3.5.1 Mapping Rules

The code in Figures 3.6 and 3.7, is an extract of the Maple stub corresponding to

the Aldor Polynomial domain defined in Figure 3.3. We use this to help present

the high-level concepts ideas used to interface Maple with Aldor. To keep the figures

simpler, we have excluded the code for the coerce exports, the “help” option, or

some of the exports of the Info module.

An Aldor domain-producing function (e.g., Polynomial) is translated into a Maple

function which at run-time yields a module. In addition it encapsulates the necessary

information for type checking its parameters and exports. This is done on lines 7, 36,

and 37 in Figure 3.6; type/TC is the Alma type checker that ensures the consistency

of the mapped Maple code with the Aldor type system. Aldor’s nested domains

are mapped into nested Maple modules. The rest of the Aldor domain exports are

mapped to Maple module exports. Name overloading in our mapping is achieved by

concatenating the different implementations for the same name and using a single

function in which dynamic type tests identify the right code to be executed.

Modules corresponding to Aldor’s domains and categories export an Info module

containing metadata (reflective features and profiling information) associated with

that type. These standardized exports of the Info module are computed at the

domain/category-type module creation time.

Our mapping exploits Maple’s support for closures. Each of the generated func-

tions that produces a type will set a variable with a unique name to point to its pa-

rameters list, thus guaranteeing access to its parameters from a function declared in a

nested scope. Line 36 and 37 in Figure 3.6 type check the *: (r:R, x:%)->% export

of the Polynomial: (R:Ring)->Module(R) parameterized domain. Notice that here

81

Figure 3.6 Part of the MapleExampleStub.mpl file

1 ‘Polynomial‘ := proc() option remember; ## cache for domain types

2 local ret, tmp_fct, b, ret_param, ALMA_getObject, args4;

3 if(args[1]="help") then ... return; fi;

4 args4 := args;

5 if nargs=1 then

6 b := true;

7 if b then b := type(args[1], TC(Ring())); fi;

8 if b then ## TYPE: Module(R:Ring)

9 ret := module()

10 export ‘*‘, Info, fcts;

11 Info := module() ## metadata: reflective + profiling

12 export GenExports, GenInfo, hash, self, asForeign,

13 type, asForeign, supertypes, printExports,

14 domArgs, domArgsOpt, optimizeOn, profile;

15 GenInfo := ["Polynomial",[["Ring"]],

16 ["Apply","Module",[args4[1]]]];

17 GenExports := [["*",[args4[1],"%"],["%"]], ...];

18 domArgs := args4; domArgsOpt := [];

19 optimizeOn := [0]; profile := [[0]];

20 end module;

21 fcts := module()

22 export ‘*‘, ‘*clos‘, ‘coerce‘, ‘coerceclos‘;

23 local ‘*cstubname‘; ‘*cstubname‘ := "starFrMyPolyT";

24 ‘*clos‘ := proc(arg) option remember; ## closure cache

25 local tmp_fct, ret;

26 tmp_fct := define_external(convert(‘*cstubname‘,

27 symbol), ’MAPLE’, ’LIB = "./libctestJIT.so"):

28 ret := tmp_fct(Alma_map(lst->lst[2], [op(arg)]),

29 ["f",[args4[1,3],Info:-self],[Info:-self]]);

30 return ret;

31 end proc;

82

Figure 3.7 Part of the MapleExampleStub.mpl file – continuation

32 ‘*‘ := proc()

33 local ret, cached_clos, b, ret_param;

34 if nargs = 2 then

35 b := true;

36 if b then b := type(args[1], TC(args4[1,3])); fi;

37 if b then b := type(args[2], TC(Info:-self)); fi;

38 if b then

39 if (Info:-optimizeOn[1] = 1) then

40 cached_clos := ‘*clos‘(domArgsOpt);

41 else cached_clos := ‘*clos‘(domArgs); fi;

42 Info:-profile[1,1] := Info:-profile[1,1] + 1;

43 if(Info:-profile[1,1] = Alma:-JITtreshold) then

44 ‘*cstubname‘ := "starFrMyPolySpec";

45 Info:-optimizeOn[1] := 1;

45 OptimizeAldor(Info:-self, 1); fi;

46 ret := callAldorClosure(cached_clos,

47 map(lst->lst[2],[args]),[Info:-self]);

48 return ret;

49 fi; fi;

50 print("Context: Polynomial(R:Ring);");

51 print("Candidates: *(R,%)->(%)");

52 error "No function with this signature";

53 end proc; ... end module; ## end fcts module

54 ‘*‘ := fcts:-‘*‘;

55 end module; ## end ret module

56 ret:-Info:-self := ret;

57 Alma_getObject := proc() local tmp_fct, ret1;

58 tmp_fct := define_external(’cPolynomialOfT’,

59 ’MAPLE’, ’LIB’ = "./libctestJIT.so");

60 ret1 := tmp_fct(map(lst->lst[2],[op(args4)]),

[ret:-Info:-self]);

61 return ret1;

62 end proc;

63 ret:-Info:-asForeign := ‘Alma_getObject‘();

64 ret:-Info:-type := Module(args[1]);

65 ret:-Info:-supertypes := [Type]; return ret;

66 fi; fi;

67 print("Context:");

68 print("Candidate:Polynomial:(R:Ring())->Module(R)");

69 error "No function with this signature";

70 end proc;

83

R is a type variable, as it is given as a parameter to the Polynomial domain, and is

used as a type in its implementation. R can be accessed by means of the args4 variable

in the Polynomial’s function outer scope. The type(args[1],TC(args4[1,3])) call

invokes the Alma type checker (type/TC) to verify if r is of type R. This uses the

representation knowledge that the third element in Aldor’s domain foreign object rep-

resentation is the Maple module object that maps the corresponding Aldor domain).

Both r and R are known only at run-time, and are accessible through the closure’s

environment.

Modules corresponding to Aldor’s domains and categories export an Info module

containing metadata (reflective features and profiling information) associated with

that type. The Info module provides a set of standardized exports that are computed

at the domain/category-type module creation time:

• an asForeign member that stores a Maple foreign object corresponding to the

Aldor domain it represents;

• a self member that keeps a reference to itself, so that it can type check a

parameter whose type is Aldor’s %;

• a hash member that uniquely identifies a type (as it is computed based on its

parameter hashes - if any, and on its Aldor static hash) - this is used by type

checking;

• a flag member specifying whether or not the module represents a category/domain

type, or other “special” types (such as Category, Type, a “Join” of several cat-

egories, etc);

84

• a type member that stores a module object corresponding to the Aldor type of

the current object;

• a supertypes member which, for a category module stores its super-types (in-

herited categories) represented as Maple module objects;

• a GenInfo/GenExports member that records name and type information of

itself/its exports; a printExports member pretty prints all or part of this

information;

• optimizeOn and profile members are to be used in the context of just in time

(JIT) re-compilation optimizations. For each domain-export optimizeOn shows

whether or not it has been already recompiled, while profile stores profiling in-

formation (gathered during the applications run-time) for each domain-export;

• domArgs/domArgsOpt expose the parameters of the original/ JIT type-specialized

domain/category.

Lines 32-53 in Figure 3.7 show the implementation of the * export of the Polynomial

domain. Lines 34-37 verify that the number and type of the parameters are consis-

tent with the Aldor definition. If the optimizeOn entry associated with the * export

is set, then this export has already been type specialized and re-compiled (see Sec-

tion 3.6). In this case, the *clos function is invoked on the non-inlined parameters

(domArgsOpt, line 40). Otherwise it is invoked on all domain parameters (domArgs,

line 41). The *clos function returns an Alma closure-object corresponding to the

Aldor * export. This is invoked with valid parameters on line 46 by means of the

callAldorClosure Alma’s system-function. Its first parameter is the Alma closure

object, the second is a list of Aldor valid arguments, while the third is the Alma type

85

of the result. If the profiled information corresponding to the * export shows that it is

advantageous to JIT recompile the C/Aldor stub (line 43), the Alma system-function

OptimizeAldor is called (line 45).

In order to return the Alma closure-object corresponding to the Aldor * export,

the *clos function requires access to the C stub via the Maple’s define external

function. The call to define external links in an externally defined function, and

produces a Maple procedure that acts as an interface to this external function [45]; the

tmp fct, computed on line 26 of Figure 3.6, is such an interface. The first parameter

of the tmp fct is a list of Aldor parameters on which the Aldor stub is to be invoked,

while the second argument (["f",[args4[1,3],Info:-self],[Info:-self]]) is

the Alma type of the closure object (* receives two parameters: one of type R –

where R is a type parameter of the Polynomial domain, and another one of type %,

yielding an object of type %).

We note that, the type/closure cache of the Alma system is easily implemented

with Maple’s option remember (lines 1 and 24).

3.5.2 Foreign Object Layout

We now briefly describe the Alma foreign object layout. Where necessary we shall

provide details on Aldor’s type system semantics.

In Aldor, types and functions are first class values: they can be created at run-

time, and can be passed as parameters/returned to/by functions. Therefore, besides

“regular” objects, we have to define proper formats for foreign Alma type/closure

objects, and to design proper Maple types for them.

86

Figure 3.8 Aldor specification

1 -- any Aldor domain satisfies Type

2 -- any Aldor category type satisfies Category

3

4 define MyCat(T:Type): Category == with; -- Type: Category

5

6 MyDom(T:Type): MyCat(T) == add; -- Type: Domain

7

8 fun(A:Type, o:A, obj:MyDom(A)): A == o; -- Type: Function

9

10 SI == SingleInteger; a: SI := 3::SI; -- Type: Object

Figure 3.9 shows the foreign object layout for the Aldor expressions: MyCat(SI)

(category-type object), MyDom(SI) (domain-type object), a (object of SingleInteger

type), and fun (function), which have all been defined in Figure 3.8. For objects

that do not correspond to domain/category Aldor types, the third element of Alma’s

foreign object layout (rows 3 and 4, column 2) is their Alma type. The layout of

the domain/category-type objects does not include their types, but rather themselves

(see rows 1 and 2 in Figure 3.9). For example MyCat(SI) is the Alma module-type

associated with the Aldor MyCat(SingleInteger) category. This is because their

Alma type is readily accessible by means of their reflective features (the Info:-type

export).

Row 5 in Figure 3.9 shows the Alma type corresponding to the fun function. It is

composed from a classification identifier “f”, a list containing the Alma types of its

parameters and another list containing the Alma types of its returns. A list whose

first argument is the “l” tag (link) indicates that the parameter’s type is itself passed

as a parameter to this function, the remaining list’s arguments giving the index in

the current type where the type parameter was introduced. The "a" tag stands for

87

Figure 3.9 Foreign object layout. The Aldor expressions in the first column are
defined in Figure 3.8

Aldor Expr. Associated Alma Foreign Object Layout

MyCat(SI) ["c", ptr to obj, MyCat(SI)]

MyDom(SI) ["d", ptr to obj, MyDom(SI)]

a ["o", 3, SI]

fun ["f",ptr to clos,f tp] where l1:=["l",1],
f tp:=["f",[Type,l1,["a",MyDom,[l1]]],[l1]];

“apply the second argument of the set to the rest of the set’s arguments.” It is used

only if the type expression involves a type parameter that has not yet been computed

(thus the type of the “apply” cannot be computed yet in this case).

3.5.3 Type Checking

Let us now consider Alma’s type checking mechanism. In Aldor, every value is a

member of a unique domain that determines the interpretation of its data. For the

current version of the language, only the domain of all domains, and the domain

of all functions produce non-trivial subtype lattices [75][77]. This means that user-

developed domains cannot create subtypes, the only non-trivial sub-typing lattices

for our type system are the lattices of categories and functions; a non-function object

is of a unique type, and cannot satisfy any other type.

To type check that a foreign Maple object o is of Alma type d (i.e. a Maple

module corresponding to an Aldor domain type), the Aldor type of o (found through

the foreign object layout), and the Aldor object representation of d are compared,

either directly or by hash codes. To verify that an Alma domain-object belongs to

88

a certain category type, the Aldor run-time system is invoked (“has” operation) via

Alma’s Aldor stub.

To test that a foreign Maple functional object S1->T1 is of a functional type

S2->T2, one has to verify that S2 is a subtype of S1, and T1 is a subtype of T2.

When testing this, a run-time unification algorithm is used, which computes and

works with the fix-point representation of a type. Otherwise for mutually recursive

types the algorithm will never end.

3.6 The C and Aldor Stubs

The role of the Aldor and C stub is to re-direct the user’s call to the Aldor library.

These are not necessarily accessible to the user, and do not resemble the structure

of the mapped Aldor specification. The C and Aldor mappings, if not used inside

our framework form un-safe code, as they assume that the type checking has already

been performed at the Maple stub level.

The C stub is the glue between the Maple and Aldor stubs, as both languages

expose a basic interoperability layer with C. The C stub for the Aldor export *:(R,

%)->% is presented in Figure 3.10. When invoked, the C stub (starFrPolynomialT)

identifies the Aldor objects to be passed as parameters to the Aldor stub (list args),

and calls the Aldor stub (represented by astarFrPolynomialT) on these arguments

(casted to void pointers). The resulting Aldor object (ret) is combined with its Alma

type (ret type, also received as a parameter by the C stub) to form an Alma foreign

closure-object that is returned to the Maple stub.

This is accomplished through the use of the makeForeignObject Alma system

function. The created closure-object, when called (via callAldorClosure Alma

89

Figure 3.10 C stub mapping

1 /************ C stub for *$Polynomial(T) ************/

2 extern FiClos astarFrPolynomialT(void* D);

3

4 ALGEB starFrPolynomialT(MKernelVector kv, ALGEB args) {

5 ALGEB list_args, ret_type, result; FiClos ret;

6 list_args = (ALGEB)args[1];

7 ret_type = (ALGEB)args[2];

8 ret = astarFrPolynomialT((void*)MapleToInteger32(kv,

9 MapleListSelect(kv,list_args,1)));

10 result = makeForeignObject(kv,"f",ret,ret_type);

11 return result;

12 }

13

14 /****** C stub for *$Polynomial(SingleInteger) ******/

15 /** Code generated by the JIT re-compilation module **/

16 extern FiClos astarFrPolynomialSpec();

17

18 ALGEB starFrPolynomialSpec(MKernelVector kv,ALGEB args)

19 {

20 ALGEB ret_type, result; FiClos ret;

21 ret_type = (ALGEB)args[1];

22 ret = astarFrPolynomialSpec();

23 result = makeForeignObject(kv,"f",ret,ret_type);

24 return result;

25 }

system-function), uses the Aldor-C interoperability layer for executing a closure call

(CCall). The C stub generated by the JIT re-compilation module looks very much

like the standard one. The only difference is that it invokes a different Aldor func-

tion (astarFrPolynomialSpec) which takes fewer parameters. In our case it takes

no parameters as the SingleInteger parameter of the Polynomial has been already

inlined in the * Aldor stub export generated by the JIT re-compilation module.

Figure 3.11 illustrates the main ideas employed in the Aldor stub generation. The

Aldor stub exposes the parametric polymorphism of the Aldor specification/library

90

Figure 3.11 Aldor stub mapping

1 astarFrPolynomialT(T:Ring) :

2 (Ring,Polynomial(T)) -> Polynomial(T) == {

3 _*$Polynomial(T); -- (***)

4 }

5

6 -- Code generated by the JIT re-compilation module --

7 SI == SingleInteger;

8 astarFrPolynomialSpec() :

9 (SI,Polynomial(SI)) -> Polynomial(SI) == {

10 _*$Polynomial(SI);

11 -- this can be aggresively optimized --

12 }

to the Maple user who can now instantiate Aldor types at the application’s run-time

and call their exports. A domain functional export is represented as a function that

takes as parameters all the parameters of the domains in which it is nested (starting

with the uppermost one), and that returns the desired closure to the C stub. All the

other exports shall return an object (for example domain/category types).

As can be seen, the Aldor stub is quite simple. We employ the type inference

mechanism to do the difficult work of identifying which of the possible overloaded

* functions we return. The Aldor compiler will identify more opportunities to ag-

gressively optimize the astarFrPolynomialSpec Aldor stub export (generated by

JIT re-compilation) – for example it can inline all the SI operations (+, -, *) that

appear in the * export of the Polynomial(SI) domain.

91

Figure 3.12 Aldor specification used as input to the Alma framework

1 -- File testgcd.as:

2 #include "basicmath"

3

4 N == NonNegativeInteger; R == Integer;

5 lv: List Symbol == [+"z",+"y",+"x"];

6 V == OrderedVariableList(lv); Q == Fraction(Integer);

7 P == SparseMultivariatePolynomial(Q, V);

8 gcdPack==GcdOverTowersOfAlgebraicExtensionsPackage(lv);

9 T == RegularTriangularSet(Q, lv);

10 VT == ValueWithRegularChain(P, T);

11 BB == Boolean; SI == SingleInteger;

3.7 Example Implementation

We now show the details a library author must be aware of to use Alma. This

completes the example of Section 3.2, which showed only the end-user’s point of

view.

Figure 3.12 shows the Aldor specification that must be provided as input to the

Alma compiler to make available part of BasicMath’s exports to the Maple environ-

ment. The compilation generates Maple, C, and Aldor stubs that each have about

1160 exports. It is, in our opinion, easy to see why a naive, non-automatic integration

of this library in the Maple environment is not a practical solution. It requires a good

deal of effort, not to mention the maintenance cost. If the exports of the library are

changed, the Maple mapping must be altered as well.

Figure 3.13 presents the hand-written wrapping code that will create the nec-

essary Alma types and functions and will ease the use of the Alma system. This

is not, strictly speaking, necessary and could be done by the end user. However

it is likely that it needs to be created only once, and may be used in different

92

Figure 3.13 Maple wrapper used in Figure 3.1

1 # Import from generated Aldor file.

2 read "mtestgcd.mpl": with(testgcd):

3

4 # Problem-independent abbreviations.

5 STR := String: CHAR := Character: S := Symbol:

6

7 # Wrapper for this package.

8 TriPack := RegularTriangularSet(Q:-Info:-asForeign,lv):

9 GenP := Generator(P:-Info:-asForeign):

10 GenCHAR := Generator(CHAR:-Info:-asForeign):

11 GenVT := Generator(VT:-Info:-asForeign):

12

13 MapleToAldorPoly :=

14 almaPolyToAldor(P,SI,N,R,Q,S,CHAR,STR):

15 AldorToMaplePoly :=

16 almaPolyToMaple(P,GenP,Q,N,R,S,STR,GenCHAR):

17

18 # Utility function.

19 genstep := proc(ggcd0)

20 local ggcd, vgcd, str;

21 ggcd := GenVT:-‘step¡(ggcd0):

22 vgcd := GenVT:-value(ggcd):

23 str := AlmaNewString(SI,CHAR,STR)("val"):

24 VT:-apply(vgcd, str):

25 end:

programs. We underscore that the Maple and Aldor generated stubs are generic

and can be instantiated over various types. The Alma user may also work with

SparseMultivariatePolynomial(R,V), not only with the P defined in Figure 3.12.

The code in Figure 3.13 constructs various Alma types and constants correspond-

ing to BasicMath types/constants which will be needed in the computations already

presented in Figure 3.1. Note that Alma has also generated Maple exports corre-

sponding to the Aldor constants lv, N, R, Q, T, ... (Figure 3.12), and these can

now be directly manipulated in the Maple file. The utility function (genstep) receives

93

as parameter a generator object containing (gcdi, toweri) pairs, obtained by calling

the TriPack:-regularGcd function, and returns gcd1.

The functions almaPolyToAldor and almaPolyToMaple are Alma system com-

ponents that return to the user Maple to Aldor and Aldor to Maple polynomial

conversion closures.

3.8 Chapter Conclusions

We have described an approach to using efficient, externally defined, high-level math-

ematical libraries within Maple. These can extend Maple in an effective and natural

way. The Alma framework implements an interoperability solution between two lan-

guages with very different type models: strongly typed, higher order type system

(Aldor) versus dynamically typed system (Maple). Our implementation allows Aldor

domains to appear as Maple modules, and allows Aldor programs unfettered direct

access to Maple objects. This allows very efficient interaction between the two envi-

ronments.

At this point Alma is most useful in two settings: The first setting is to allow

kernel-like efficiency in core mathematical extensions of Maple. The difference be-

tween Alma and using C code via Maple’s foreign function interface is that it is

possible to work at a high mathematical conceptual level and not worry about details

such as garbage collection. The second setting is to allow complex Aldor packages to

be used naturally from Maple. These packages typically have their own internal rep-

resentation for the mathematical objects they manipulate. We forsee a third setting

where Alma will be used: as an alternative for writing new libraries for Maple. New

programs can work naturally with both Maple and Aldor native objects, while the

94

Aldor compiler enforces mathematical interface requirements and generates efficient

code.

Most importantly, we have re-examined one of the most basic assumptions of

modern computer algebra system design: that algebra code should be written either

in the top-level user language or in the low-level systems implementation language.

We believe that we have demonstrated that top-level problem solving and library

development can successfully use different mathematical programming languages.

95

Chapter 4

GIDL

4.1 Chapter Introduction

This chapter examines what is required to have multi-language parameterized compo-

nents interoperate to create applications, and how to access existing generic libraries

across language boundaries. We propose a common model for parametric polymor-

phism that accommodates a representative range of different object semantics and

binding times from various languages, and use it to design a “generic” software com-

ponent architecture extension that can be applied on top of most component ar-

chitectures in use today. The work presented here is based on the OOPSLA paper

“Parametric Polymorphism for Software Component Architectures” [52], co-authored

with Stephen Watt.

Software component architectures provide mechanisms for software modules to

be developed independently, using different programming languages, and for these

components to be combined in various configurations to construct applications. To

provide the richest environment, these architectures have historically attempted to

96

capture the intersection of features of the programming languages for which they have

bindings. Common programming practice has evolved a great deal, however, since the

component architectures in common use today were established. Notably, parametric

polymorphism has evolved from a beautiful property of research-oriented program-

ming languages to become a standard feature of languages used in main-stream ap-

plications. The concept of multi-language, multi-platform components must similarly

evolve if we wish our components to enjoy the benefits of parametric polymorphism.

Parametric polymorphism is one mechanism by which programming languages

may provide support for generic programming. By associating all behavior of pa-

rameter values with the types of the parameters, it becomes possible to write generic

programs. These types can either be stated explicitly as parameters to a module, or

inferred, depending on the setting. Explicit parametric polymorphism has become

more widely used, in practice, and has certain theoretical benefits, including termina-

tion of type inference in some higher order languages [41]. Parametric polymorphism

increases the flexibility, re-usability, and expressive power of the programming en-

vironment, avoids the need for down-casting, and allows a compiler to find more

programming errors.

There are quite a few popular programming languages with support for parametric

polymorphism, albeit with differing semantics. Section 2.2.2 summarized a few, to

give an idea of the range a general facility must be able to map onto. Our conclusion

is that a mechanism to combine modules in different programming languages must

be able to accommodate both compile-time and run-time instantiation of modules,

and both qualified and unqualified type variables. Here, we use the term qualified as

a synonym for bounded quantification [8].

97

Our work described in this chapter was inspired by an early experiment [11], briefly

presented in Section 2.1, where two languages with different parametric polymorphism

semantics and different binding time models were made to work together. The ex-

periment linked C++, with compile time template instantiation, and Aldor [76, 77],

with run time higher-order functions producing dependent types. This experiment

motivated the present, more general, approach.

We have developed an extension to corba’s Interface Definition Language (idl)

to support parameterized interfaces. We have dubbed this extended specification lan-

guage Generic IDL, or gidl for short. In this chapter we present our implementation

of gidl, which consists of a gidl to idl compiler and code generators implementing

C++, Java and Aldor bindings. gidl encapsulates a common model for generics and

provides efficient implementation under a wide spectrum of requirements for specific

semantics and binding times of the supported languages. Our component architecture

extension does not assume a homogeneous environment. Its design, which constitutes

in our view a novel application of the type-erasure technique to implement generics

in a heterogeneous environment, allows it to be easily adapted to work on top of most

software component architectures in use today: corba is just our working study case.

To test the effectiveness of our model for generics, we have investigated how to

use gidl as a vehicle to access two generic libraries beyond their original language

boundaries. The first library experiment implements a server incorporating part of

the C++ Standard Template Library (stl) functionality. We have not re-written the

stl: our implementation uses the stl as a black box, wrapping it in a manner that

can easily be automated. We find that gidl is perhaps more suitable than C++

to express the stl “orthogonality” semantics. Our specification is self-explanatory

and self-contained, in the sense that it does not need free language annotation to

98

explain type safety constraints. The second library experiment explores the high-level

conceptual ideas involved in mapping the semantics of the Aldor BasicMath library

to a gidl specification. We see that Aldor’s functional model of polymorphism can

be mapped naturally into gidl.

We see the contributions of our approach as:

• recognition of parametric polymorphism as important to support in a multi-

language environment,

• identification of polymorphism semantics suitable for use in this setting,

• the definition of an interface language, gidl, with mappings for three very

different target languages, and

• a report on our implementation experience.

The remainder of this chapter is organized as follows. Section 4.2 compares our

generic model with the different parametric polymorphism flavors in various pro-

gramming languages, and defends the generality of the proposed design. Section 4.3

describes gidl’s semantics, and the gidl to idl translation. Section 4.4 presents the

high level ideas used in the mapping of the generic type qualifications. Section 4.5

introduces the general architecture of the gidl base application. Sections 4.6 de-

scribes the gidl bindings of the supported languages (C++, Java, Aldor). Section 4.7

examines the effectiveness of the gidl generic model, by exposing parts of two exist-

ing generic libraries to a multi-language environment via gidl. Finally, Section 4.8

presents some concluding remarks.

99

4.2 Motivation and Design Point

The initial motivation for our work arose building a linkage between Aldor and C++ in

the context of a European project for symbolic-numeric computation. The two main

background items brought into the project were (1) a complex, heavily template-based

C++ library, PoSSo, for the exact solution of multivariate polynomial equations over

various coefficient fields, and (2) an optimizing compiler for a higher-order program-

ming language, Aldor, used in computer algebra. One of the specific objectives of

the project was to allow Aldor programs to make use of the PoSSo library. From this

very practical problem arose the interesting challenge to make two languages with

very different binding time models and parametric polymorphism semantics work to-

gether (C++ with compile-time template class instantiation and Aldor with run-time

higher-order functions producing dependent types). A summary of this work was

already given in Section 2.1, while a detailed account is given elsewhere [11, 12].

This experiment established that we could overcome the C++/ Aldor semantic gap

and motivated our search for a systematic solution for parametric polymorphism for

components, encompassing more languages in a simpler way.

Since the semantics of generics are different in various programming languages,

we have been forced to identify a common ground that can be suitably mapped to

these languages efficiently. gidl supports mappings to Java, C++ and Aldor, thus

handling a wide spectrum of parametric polymorphism and binding time semantics.

(see Section 2.2.2). We are not aware of any current mainstream languages that would

pose substantially new issues. For example, it would be straightforward to provide

C# bindings once its template support is finalized.

100

In our opinion, a language targeted to describe parameterized components should

support qualified (rather than only unqualified) type parameters, and compile-time

(rather than only run-time) module instantiation. This allows the compiler to find

more programming errors. It also allows the component specification to gain in ex-

pressivity (with more invariants expressed in type signatures) and in clarity (from

the semantics of qualification), enforcing a cleaner separation of specification and

implementation.

Our generic model supports a type of bounded polymorphism, in which restrictions

can be placed on type variables in terms of both inheritance relations (extension-based

qualification), and expected functionality (export-based qualification). The distinc-

tion between the two types of qualification is the standard one between named and

structural subtyping. The latter will provide a natural mapping for programming

languages that allow type variables to be bounded by a list of exports, and will be

useful in cleanly describing the semantics of orthogonally designed libraries (see C++’s

stl, Section 4.7.1), or in mapping functional types to gidl (see Section 4.7.2). Both

qualifications are implemented in an uniform manner over the targeted languages

(C++, Java and Aldor), with almost no run-time overhead introduced by the generics

mechanism.

For our implementation of the generic model, we chose an erasure technique (as in

Java/GJ [54, 53]), rather than syntax expansion (as in C++) or type-valued param-

eters (as in Aldor [77]). The generic type information is “erased” to types that are

understood by the underlying component architecture, our mapping to the targeted

languages (Java, C++, Aldor) being responsible for recovering the lost (generic type)

information. The application of the type erasure technique [54] for implementing

generics has allowed us to design a generic software component architecture extension

101

that can work on top of most component architectures in use today (different corba

implementations, dcom, jni), modulo modifications in the targeted language stub

code generation phase. In addition, this design enforces the backward compatibility

with the non-generic applications written for the underlying component architecture

and with applications written in programming languages with no support for para-

metric polymorphism. gidl is also comprehensive with respect to binding times,

requiring the particular language binding (C++, Java, Aldor) to determine appro-

priate implementations (see Section 4.6). Code is generated to allow normally static

environments to provide dynamic types through virtualization, and to allow normally

dynamic environment to be more static through specialization.

4.3 Generic IDL

corba–idl [56] is a declarative language used to describe the interfaces that client

objects call and object implementations provide, separating the specification and the

implementation aspects of a module. It defines basic types (short, byte, float,

double, string, ...), structured types (struct, sequence, array) and provides sig-

natures for interface types, fully specifying each operation’s parameters. Thus, a

specification written in corba–idl encapsulates the information needed in order to

develop clients using the specified services. These services may be provided by local

or remote objects and are in principle transparent to the client program. corba–

idl’s usefulness for language-independent specification has lead to its use outside of

its initial corba setting. For example, the World Wide Web Consortium provides

idl definitions for its document object models for XML, SVG, MathML, etc.

In this section we present the syntax and semantics of Generic Interface Definition

Language (gidl), our extension to corba–idl that supports parametric polymor-

102

phism. We have developed a corresponding gidl compiler, consisting of about 33,500

lines of code in 133 Java classes.

We emphasize from the outset that we do not aim at writing a compliant omg–

corba extension; for example we have not as yet modified the corba interface

repository to handle generic types. We have focused on adding parametric polymor-

phism at the static idl level of corba so the ideas involved in our design can be

applied in a straightforward manner to extend other software component architec-

tures. Reflective features and type repositories are architecture specific and thus not

the subject of this paper. However, these type (interface) repositories mirror the

idl specification and therefore similar ideas can be employed to enhance them with

support for parametric polymorphism.

4.3.1 Rationale of the Design

We summarize the main principles that guided the design of our gidl extension. We

required that the gidl’s model for generics should:

• be “general” enough to allow a similar extension for various scas, and preserve

the backward compatibility with non-generic applications

• have the property that the type of an expression be context independent (i.e.

be determined solely by the type of its constituents),

• be powerful enough to make specifications written in gidl clear, precise and

easily extensible, allowing qualifications to be placed on generic types,

• allow mappings to languages supporting parametric polymorphism in a natural

way, within a small overhead cost.

103

In the light of the above assumptions we constructed a generic model for gidl

in some ways similar to that of Java and GJ [73]. We are using a homogeneous

implementation approach, based on a type erasure technique which ensures the back-

ward compatibility with the non-generic applications written for the underlying SCA.

Briefly, the gidl compiler generates an idl specification file by erasing the generic

type information, and generates wrapper code in the desired programming language

(C++, Java, Aldor) to retrieve the erased information.

4.3.2 The GIDL Parametric Polymorphism Semantics

gidl defines a generalized model of parametric polymorphism that allows us to sup-

port a range of languages through various mappings. One consequence is that gidl is

neutral to whether the type parameters are created statically or dynamically; this de-

pends on the targeted language. From a type-system point of view, gidl supports F-

bounded quantifications [6] based on named and structural subtyping. Type variables

can be restricted to explicitly extend a given interface, or to implicitly implement all

the functionality (methods) of a given interface. The latter addresses the code exten-

sibility and re-usability issue, allowing the programmer to design a clean and precise

specification, and to avoid unnatural inheritance relations between interfaces. (This

is useful, for example, in rendering the correct semantics of orthogonal-based libraries

as the C++ stl.) Furthermore, there are languages like Aldor that can allow type

variables to be bounded simply by a list of exports, without demanding a subclassing

relationship: f(A:with{op:(SI)->SI},a:A): SI ==...;. This type of restriction is

discussed further in Section 4.4.

104

The following example introduces the varieties of parametric polymorphism sup-

ported by gidl. Suppose we want to write a very simple gidl interface describing a

priority queue, as in Figure 4.1.

The interface PriorQueue1 specifies a priority queue of objects whose types have

to be the PriorElem interface or to explicitly extend it (be a subtype of it). We

call this an extension-based qualification. A type instantiation of an extension-based

qualified generic type will be validated by the compiler only if it actually inherits from

the qualifier, in our case PriorElem.

The PriorQueue2 interface accepts as valid candidates for the generic type all the

interfaces that implicitly, fully implement all the operations present in the definition

of the PriorElem interface. We call this an export-based qualification. Note that this

definition requires exact matching of method signatures, and does not accommodate

functional subtyping (contravariant parameter types, covariant return type).

To illustrate, at line 33 in our example, the type checker will accept the

Test<Foo extend, Foo export> scoped-name, because the interface Foo extend in-

herits from PriorElem, and the Foo export interface implements the whole function-

ality of the PriorElem interface. Line 34 will generate a type error since Foo export

does not inherit from PriorElem, and therefore violates the extension based qualifi-

cation of the A: PriorElem generic type.

A type instantiation of an export-based qualified generic type is valid only if it is

found to implement the whole qualifier’s functionality. In this example, a call such

as PriorQueue2<Interf> is valid only if Interf contains the operations:

105

Figure 4.1 Generic interfaces with different generic type qualifications

1 module GenericStructures {

2

3 interface PriorElem {

4 short getPriority();

5 short compareTo(in Object r);

6 };

7

8 interface Foo_extend : PriorElem { /* */ };

9

10 // Assume Foo_export is not in a "isA" logical relation with

11 // PriorElem so we did not want to inherit from it

12 interface Foo_export{

13 short getPriority();

14 short compareTo(in Object r);

15 //...

16 };

17

18 interface PriorQueue1<A: PriorElem> {

19 void enqueue(in A a);

20 A dequeue();

21 boolean empty();

22 short size();

23 };

24

25 interface PriorQueue2<A:-PriorElem> {

26 void enqueue(in A a);

27 A dequeue();

28 boolean empty();

29 short size();

30 };

31

32 interface Test<A: PriorElem, B:- PriorElem>{

33 Test<Foo_extend, Foo_export> op1(); // OK

34 Test<Foo_export, Foo_export> op2(); // ERROR

35 Test<Foo_extend, Foo_extend> op2(); // OK

36 };

37 // ...

38 };

106

Figure 4.2 Export-based qualification example

1

2 interface Elem {

3 Elem op(in string str, in Object o);

4 };

5

6 interface TElem<A, B> {

7 A op(in B b, in Object o);

8 };

9

10 interface Test<A:-Elem>{ };

short getPriority()

short compareTo(in Object r)

This check is not trivial, as shown below:

interface Elem {

Elem op(in string str, in Object o);

};

interface TElem<A, B> {

A op(in B b, in Object o);

};

interface Test<A:-Elem>{ };

Both Elem and TElem<Elem, string> are valid candidates for the generic type A in

the definition of the Test interface, but this is not true for TElem<Object, string>

for example, because Object is not a subtype of Elem and op is required to return

an Elem.

107

gidl also supports a unqualified or universally qualified generic types, similar to

templates in C++ (e.g. PriorityQueue3<A>). This allows the instantiation to be

any gidl type. gidl also supports type parameterized methods, common to all three

mapped languages (e.g. as inner template function). The gidl-level type checking

and the language bindings necessary to implement this feature are similar to those

for parametric polymorphism at the interface type level. However, a delicate problem

arises when ensuring the correct invocation of such a method. Due to their static

implementation of parametric polymorphism, both C++ and Java expect the method-

level generics to be instantiated at the call site. In our case, the code is split between

the caller and callee and separately compiled, thus the server has no way of knowing

the type parameter instantiations. To handle this, we pass extra reflective-parameters

that encapsulate the type-information of the generic type instantiations. The server-

side generates code for a small method, which invokes the parameterized method

on properly instantiated type-parameters, just-in-time compiles it and links it to the

application. The generated method is finally called to complete the original invocation.

The generated methods corresponding to different instantiations of the exposed type

parameters can be cached for later reuse. A similar mechanism can be found in [51].

4.3.3 GIDL’s Grammar and Consistency Checks

To provide syntax for parametric forms, we have modified the omg idl grammar

as shown in Figure 4.3. Specifically, we have modified the derivation rule for the

scoped name non-terminal so that we can manipulate template types inside the gidl

specification (we can have sequence, arrays, structures, unions, interfaces, regular-

values, etc. making use of generic types).

108

Figure 4.3 Adding support for parameterized interfaces to the idl grammar

//...

<forward_dcl> ::= ["abstract"] "interface" identifier

["<" <template_dcl> ">"];

<template_dcl> ::= <template_dcl_unit>

| <template_dcl> "," <template_dcl_unit>

;

<template_dcl_unit> ::= <identifier> [{":"|":-"}

<scoped_name>];

<template_call> ::= <template_call_unit>

| <template_call> "," <template_call_unit>

;

<template_call_unit> ::= <const_type>

;

<scoped_name> ::= ["::"] <identifier>

["<" <template_call> ">"]

| <scoped_name> "::" <identifier>

["<" <template_call> ">"]

;

//...

We discuss a few details, with examples referring to the gidl specification in

Figure 4.4. We define the visibility scope of a generic type parameter to be through-

out the interface in which it is defined. Following the same approach as in Generic

Java [54, 73], we consider the subtyping to be invariant for parameterized types.

For example, even if Elem is a subtype of Object, Comp<Elem> is not a subtype of

Comp<Object>. In Figure 4.4, the type-checking of the

Comparator<Comp, Comp<A>> type (with mutual-recursive bounds) shall fail.

This is because Comp should extend Comp<Comp<A>> and, since the subtyping

109

Figure 4.4 Scopes and type-checking

1 interface Base<C> {

2 typedef struct BaseStruct {

3 Base<C> field;

4 };

5 };

6

7 interface Comp<A> : Base<A>{

8 void op1(in BaseStruct s);

9 };

10

11 interface Double : Comp<Float> {...};

12 interface Float : Comp<Double> {...};

13

14 interface Comparator<A : Comp, B : Comp<A> > {

15 Base::BaseStruct op2();

16 Comparator<Comp, Comp<A> > op3(); // ERROR

17 Comparator<Double, Float> op4(); // OK

18 };

is invariant for parameterized types, this implies that B and Comp<A> are precisely

the same type, which is not true. Using a similar reasoning, one will find that the

Comparator<Double, Float> type is well-formed. Since the export-based qualifica-

tion can be reduced to an extend-based qualification at gidl level (see Section 4.4.2),

the type checking mechanism in this case will be similar to the one presented above.

We turn now to the validity of the op1/op2 operations of the Comp/Comparator

interfaces. The op1 method takes a parameter of type BaseStruct. The latter

makes use of the generic type C and is defined inside the Base interface, which is

a superclass of Comp. It follows that BaseStruct is also in the scope of Comp, its

signature in this context, determined by traversing up the inheritance tree of Comp,

being Base<A>::BaseStruct. In the case of the op2 method, all the information is

stored inside the scoped name of the returned type: Base::BaseStruct.

110

We explicitly note that the extension-based qualification is stronger that the export-

based qualification. For example, the gidl specification below should generate a

compile error.

interface Test0<C:Type1> { ... };

interface Test1<A:-Type1> : Test0<A> { ... };

This is because the type variable A in the Test1<A> scoped name is not required to

extend Type1, as requested by the Test0 definition, but only to implicitly implement

its functionality.

4.3.4 Well-Formedness Type Rules

This section discusses the issues that arise from the combination of both named and

structural subtyping in the definition of the qualification semantics. Figure 4.5 shows

some of the type rules for well-formedness and subtyping in the presence of qualified

type variables. We do not discuss the unqualified generic type, as its formal integration

does not pose any challenges.

In this discussion, the metavariableX ranges over type variables; T , R and P range

over types; N and O range over types other than type variables (non-variable types).

I and m range over interface and method names respectively, while M ranges over

method signatures. We write X as a shorthand for X1,...,Xn and X/̄N as a shorthand

for X1 /1 N1, ..., Xn /n Nn. The length of the sequence X is #X and we assume that

the sequences of type variables contain no duplicate names. An interface table IT

is a mapping from interface names to interface declarations. A type environment ∆

111

Figure 4.5 Type rules for two varieties of qualification

(Well-formed types “:” and “:-” qualifications)

IT (I) = interface I < X/̄N >: O{...} /i ∈ { : , : - }
∆ ` T ∆ ` Ti 5i [T/X]Ni ∀i ∈ {1, ..,#X}
where 5i = <: if /i = : and 5i = <: - if /i = : -

∆ ` I < T >

(Named subtyping “<:”)

IT (I) = interface I < X/̄ N >: O{...} /i ∈ { : , : - }

∆ ` I < T > <: [T/X]Oi ∀i ∈ {1, ..,#O}

(Structural subtyping “<:-”)

Methods(O1) = {M11, ..,M1k} Methods(O2) = {M21, ..,M2`}
where ` ≤ k ∆ ` O1 ∆ ` O2 ∆ `M2i �M1i ∀i ∈ {1, .., `}

∆ ` O1 <: - O2

(Method inclusion “�” – II)

M1 = R1 m(P1) M2 =< X/̄N > R2 m(P2) / ∈ {: , : -}
∃T ∆ ` T ∆ ` P1 = [T/X]P2 ∆ ` R1 = [T/X]R2

∆ `M1 � M2

(Method inclusion “�” – III)

M1 =< X1/̄1N1 > R1 m(P1) M2 =< X2/̄2N2 > R2 m(P2)
∆ ` P1 = [X1/X2]P2 ∆ ` R1 = [X1/X2]R2

/1, /2 ∈ { : , : - } ∆ ` N1 ψ(/̄1, /̄2) [X1/X2]N2

∆ `M1 � M2

ψ(/1, /2) =







































/1 = /2 = : then :
/1 = /2 = : - then : -
/1 = : and /2 = : - then : -
/1 = : - and /2 = : then η where
O1ηO2 = true if {I|I <: -O1} ⊆ {I|I <: O2},
and false otherwise

112

is a finite mapping from type variables to pairs of bounds and qualification relation,

written X/̄N where /i is one of the extend or export based qualifications. For brevity,

some obvious rules are omitted from Figure 4.5: A type variable X is well formed

in the type context ∆ if it belongs to the domain of ∆. The type Object (the root

of the idl inheritance hierarchy) is well formed in any type context. Both subtyping

relations are reflexive and transitive. Also, a type variable belonging to a type context

is known to be in the corresponding subtyping relation with its bound.

The well-formedness rule in Figure 4.5 simply says that if the declaration of in-

terface I begins with interfaceI <X/̄N >, then a type I <T > is well formed only if

all the components of T are well formed and if, in addition, substituting T for X re-

spects the bounds N . Also, note that the simultaneous substitution enables recursion

and mutual recursion between variables and bounds [29]. The named subtyping rule

(“<:”) in Figure 4.5 is also straight forward: the inheritance hierarchy is dictated by

the interface table IT .

Intuitively, the type-rule for structural subtyping (“<:-”) says that O1 is a struc-

tural subtype of O2 if “it exports all the methods” of O2. (idl attributes are seen as a

pair of methods: a getter and a setter). Note that O1 and O2 are instantiated types,

in a given type context ∆. To formalize this property we introduced the inclusion

relation (“�”) between methods. If M1 and M2 are not type parameterized then

M1 � M2 if the method names and signatures are identical. It follows in this case

that also M2 � M1.

Type-parameterized functions can be viewed as a set of functions: one for each

different instantiation of their generic types. If M2 is type parameterized (X / N),

but M1 is not, then M1 � M2 if the method names are identical and there exist a

set of well-formed types T such that the substitution/instantiation [T/X] applied on

113

M2 yields a signature identical with that of M1. The last case is when both M1 and

M2 are type parameterized. Let us assume only one type parameter for M1 and M2:

X1 and X2 respectively. (The generalization is straight forward.) In order to have

M1 � M2 we need to have that the set of valid instantiation for X1 is included in the

set of valid instantiations for X2. Assume an extend-based qualification X1 : O1 for X1

and an export-based qualification X2 : -O2 for X2. The set of interfaces that extend

O1 should be included in the set of interfaces that implement O2 and the necessary

and sufficient condition is O1 : -O2. A similar line of reasoning leads to the definition

of the ψ operator in Figure 4.5. The last case leads to an overly technical result,

which requires the type-checker to work hard. We prefer the more elegant alternative

that excludes this case: if X1 : -O1 and X2 : O2 then M1 is not �-included in M2.

4.3.5 GIDL to IDL Transformation

The implementation of our generic model employs a type erasure mechanism, based

on the subtyping polymorphism supported by idl. This preserves the interoperabil-

ity between programs written over different implementations of the same software

component architecture and allows our model to be easily adapted to enhance several

software component architectures.

To achieve this, we constructed a translator from our gidl to omg idl, accepting

both regular idl and gidl specifications. When generating the idl file, we first delete

the generic type declarations from the gidl file (delete the template dcl productions

in the gidl grammar). Then the unqualified/export-based qualified type variables are

substituted by the any/Object idl type, while the extend-based-qualified ones are

substituted by the (type variable erased) interface type they are supposed to extend.

114

Figure 4.6 The generated idl specification

1 module GenericStructures{

2 // ...

3 interface PriorElem{

4 short getPriority();

5 short compareTo(in Object r);

6 };

7

8 interface PriorQueue1{

9 void enqueue(in PriorElem a);

10 PriorElem dequeue();

11 boolean empty();

12 short size();

13 };

14

15 interface PriorQueue2{

16 void enqueue(in Object a);

17 Object dequeue();

18 boolean empty();

19 short size();

20 };

21 // ...

22 };

The result should be a valid omg idl file, which can be compiled with a regular idl

compiler.

It is obvious that during this transformation we are losing the generic type in-

formation encapsulated in the gidl specification. We recover this information by

generating skeleton/stub wrapper classes in the target languages that make use of

the specific characteristics of the parametric polymorphism in these languages. If we

run the gidl translator over the specification shown in Figure 4.1, it will generate

the idl specification in Figure 4.6.

115

4.4 High Level Ideas for Mapping

Qualified Generic Types

Our generic type mechanism unifies the semantics of parametric polymorphism from

different programming languages. In the implementation of our software tools we do

as much work as possible at the unified level and in the gidl to idl translation, to

minimize the language specific details.

4.4.1 Basic Ideas

Type-erasure for an extend-based qualified generic type is achieved by substituting it

with the bounding-interface specified in the corresponding template dcl unit pro-

duction. The Java and Aldor mappings are quite natural since this type of qualifi-

cation is already supported. For the C++ language, due to its static binding time,

the mapping can be achieved simply by casting an instance of the generic type to its

corresponding qualifier. Note that this code is never executed at run-time, as shown

in line marked “//*” in Figure 4.7.

We show below that the export-based qualified generic type can be reduced to an

extension-based qualification relation at the gidl level. The idea here is to find, for

each export-based qualified generic type, all the possible interfaces that may (for a

proper instantiation of their generic types, if any) implement the functionality of the

associated qualifier.

The next step is to construct an interface that:

• implements the whole functionality of the qualifier (for a proper instantiation

of its generic types, if any),

116

Figure 4.7 Extend-based qualification mapping to C++

1 // GIDL specification:

2 interface Foo { /*...*/ };

3 interface Test<T1:Foo> { /*...*/ };

4

5 -

6

7 // C++ mapping:

8 template<class T1> class Test :

9 virtual public ::GIDL::GIDL_Object {

10 private:

11

12 virtual void implTestFunction() {

13 if(1) return; //*

14 T1 a_T1; Foo a_Foo = (Foo)a_T1;

15 }

16

17 public:

18

19 Test(::Test_var ob) {

20 implTestFunction(); //...

21 }//...

22 }

• becomes a “natural” parent for the interfaces identified in the previous step (in

the sense that the inheritance does not actually introduce new functionality),

• defines a minimal number of generic types

We call the constructed interface the most specific generic antiunifier (MSGA) of

the export-based qualification. The MSGA can be seen as the most specific antiuni-

fier [63] or equivalently the least general generalization [60] of the types that satisfy

the export-based qualifier.

Section 4.3.4 has already introduced and explained the gidl type rules related

to well-formedness and subtyping in the presence of qualified type variables. Next

117

Figure 4.8 MSGA example

1 interface Element{

2 tp0 op(in tp1 a1, in tp2 a2, in tp0 a3, in tp3 a4, in tp1 a5);

3 };

4

5 interface TemplEl1<T1, T2>{

6 T1 op(in T2 a1, in tp2 a2, in T1 a3, in tp3 a4, in T2 a5);

7 };

8

9 interface TemplEl2<T1, T2, T3>{

10 T1 op(in tp1 a1, in T2 a2, in T1 a3, in tp3 a4, in T3 a5);

11 };

12

13 interface Test<A:-Element> {

14 //use A ...

15 };

we discuss the main stages involved in the MSGA construction and we present an

example. This MSGA could be used as the erasure type for its corresponding generic

type. We have chosen not to do so, however, due to corba’s idl limitations, and we

use Object instead. The second subsection concludes the chapter.

4.4.2 Mapping the Export-Based Qualification

The algorithm for computing the MSGA associated with an export-based qualification,

presented here, works under the assumption that the extend-based qualification has

already been mapped to the target language. Each gidl-interface that may satisfy

the export-based qualification in certain circumstances (for a given instantiation of

the generic type for example), shall be made to implement the most specific generic

antiunifier (MSGA) interface associated with that export-based qualification.

118

As an example, consider the gidl file shown in Figure 4.8. The Test interface

uses an export-based qualified generic type. Among the valid candidates for the type

instantiation one can list:

Element, TemplEl1<tp0, tp1>, TemplEl2<tp0, tp2, tp1>.

Being given the methods in the Element interface and the set of interfaces defined

in a gidl specification, our task is to construct the most specific generic antiunifier

(MSGA) of these candidates. First, we construct a new parameterized interface, with

as many generic types as the number of parameters in all the methods of the “to be

implemented” interface, plus the number of methods, as the return types should also

be taken into account. In our example, the MSGA initially looks like:

interface MSGA<G0, G1, G2, G3, G4, G5> {

G0 op(in G1 a1, in G2 a2, in G3 a3, in G4 a4, in G5 a5);

}

Left like this, the interface created can make use of many different generic types,

so we may want to simplify it. We create a matrix as below, in which the types that

have to match will share the same column. If there is an interface that we can prove

cannot implement the required functionality, it should not appear in the matrix.

G0 G1 G2 G3 G4 G5 MSGA

tp0 tp1 tp2 tp0 tp3 tp1 Element

T1 T2 tp2 T1 tp3 T2 TemplEl1

T1 tp1 T2 T1 tp3 T3 TemplEl2

The first thing to do is to identify the columns formed by the same non-generic

type. This occurs in G4’s column in the above table. The next step is to remove the

119

Figure 4.9 The result of the MSGA algorithm

1 interface MSGA<G0, G1, G2, G5> {

2 G0 op(in G1 a1, in G2 a2, in G0 a3, in tp3 a4, in G5 a5);

3 }

4

5 interface Element: MSGA<tp0,tp1,tp2,tp1> {...};

6

7 interface TemplEl1<T1, T2>: MSGA<T1,T2,tp2,T2> {...};

8

9 interface TemplEl2<T1, T2, T3>: MSGA<T1,tp1,T2,T3> {...};

10

11 interface Test<A : MSGA<tp0, tp1, tp2, tp1> > { //use A...};

corresponding generic type from the template declaration part of the MSGA interface

and substitute it with the non-generic type throughout the MSGA’s interface defini-

tion. In our example this would be substituting tp3 for G4. A second simplification

can be made if two columns are found to be equal. This occurs with columns 0 and

3 of our example. In this case we can also remove one of the generic types in the

template declaration part of the MSGA interface and substitute it with the other

generic type throughout the interface definition. Special care should be taken for the

void return type, since it cannot be matched by any generic type instantiation.

Finally, all the interfaces found to be valid candidates to instantiate the export-

based qualified generic type, are made to implement the simplified MSGA interface,

as shown in Figure 4.9. It is clear that only Element, TemplEl1<tp0, tp1> and

TemplEl2<tp0, tp2, tp1> will not be signaled with a compiler error when substi-

tuted for the generic type A in the Test generic interface. Notice also that the MSGA

is using only unqualified type parameters in order to cover all possible type instanti-

ations and that the generic type qualifications of the candidate interfaces (TemplEl1,

TemplEl2) do not influence the algorithm in any way.

120

Figure 4.10 More MSGA issues

1 //A. GIDL specification//

2

3 // Eg. 1

4 interface Type1< A:-Type1<A> > {...};

5 interface Type2< B:-Type2 > : Type1 {...};

6

7 // Eg. 2

8 interface Elem< C > {...};

9 interface Test1< D:-Elem<D> > {...};

10 interface Test2< E:-Elem<E> > {...};

11

12

13 //B. MSGA constructs for the GIDL specification in A.//

14

15 // Eg. 1

16 interface MSGA1< A > {...}; //A:-Type1<A>

17 interface MSGA2< B > : MSGA1 {...}; //B:-Type2

18 interface Type1< A: MSGA1<A> > : MSGA1<A> {...};

19 interface Type2< B: MSGA2 > : Type1, MSGA2 {...}; //***

20

21 // Eg. 2

22 interface MSGA3< T > {...}; //D:-Elem<D> and E:-Elem<E>

23 interface Elem < C > : MSGA3<C> {...};

24 interface Test1< D: MSGA3<D> > {...};

25 interface Test2< E: MSGA3<E> > {...};

Type parameterized functions are accommodated in a straightforward manner in

the algorithm presented. Section 4.3.4 has provided the details: If at least one type

instantiation of a function satisfies the signature of another function that appears

in the export-based qualifier, then we consider that the type parameterized function

satisfies the qualifier’s function. Conversely, if the export-based qualifier exports

a type parameterized function, then only another type parameterized function will

satisfy it and only if its set of valid type instantiations includes the one of the qualifier’s

function.

121

There are two additional points to mention with respect to MSGAs. Figure 4.10

presents a legal gidl specification, together with its corresponding MSGA bindings.

The first example in Figure 4.10 shows that we must preserve the inheritance hierarchy

among MSGAs. If this were not done, the compiler would find an error while checking

the correctness of the Type1 type in line 19. The B bound is MSGA2, but B

should also be bounded by MSGA1 from the definition of Type1 in line 18. If no

inheritance relation were defined among MSGA2 and MSGA1 interfaces, a compile-time

error would be signaled.

In order to keep the number of generated MSGAs to a minimum, a simple unifi-

cation algorithm is employed among export-based qualification relations. The second

example in Figure 4.10 shows that only one MSGA (MSGA3) is constructed for the D

and E export-based qualifications (lines 23, 24).

4.4.3 Discussion

We should remember that during the gidl to idl translation, we are losing the generic

information present in our gidl specification. We recover the lost information by gen-

erating wrapper classes corresponding to the constructs in the gidl specification. We

use the MSGA interfaces as a general approach for mapping the export-based qualifi-

cation to both the C++ and Java programming languages (once we have implemented

the mapping for the extend-based qualifications). They are also used at the gidl level

for type checking. Also notice that the MSGA construct introduces little run-time

overhead, as it is used in the type-checking phase at compile time. The generated

MSGA interfaces may look ugly, involving many generic type parameters. This is not

a concern since their use is transparent to the user, as their only task is to ensure a

122

Figure 4.11 Incorrect C++ mapping of the export-based qualification

1 template<class T1> class Test : virtual public ::GIDL::GIDL_Object

{

2

3 private:

4 virtual void implTestFunction() {

5 if(1) return;

6 T1 a_T1; tp1 var1; tp2 var2; tp3 var3; tp0 var0;

7 var0 = a_T1.op(var1, var2, var0, var3, var1);

8 }

9

10 public:

11 Test(::Test_var ob) {

12 implTestFunction(); //...

13 }

14

15 //...

16 }

correct translation of the gidl semantics to the language bindings.

At a first sight, it might appear that in the case of the C++ mapping, an easier

solution can be found for translating the export-based qualification. Namely, the

A:-Element in Figure 4.8, can be wrongly mapped as in Figure 4.11.

This calls all the qualifier’s functions on the generic type object. This translation

is not consistent with the export-based qualification semantics, however, as the generic

type instantiation may export a method that is a subtype of the qualifier’s method

(in the usual functional lattice) and type-checking will succeed when it should not.

It might be desirable to have functional subtyping encapsulated in the export-based

qualification semantics, especially since one could then easily map the semantics of

functional subtyping through generics. In this case the code above will do. We are

still investigating this but it appears to be difficult: If the generic model assumes

invariant parameterized types subtyping, the current MSGA algorithm is insufficient.

123

Conversely, if covariant and contravariant parameterized type subtyping is assumed,

the MSGA algorithm can be made to work, but enforcing the correctness of the gidl

semantics in the mapped languages complicates the language bindings and the user

interaction with the framework. This discussion is beyond the scope of this thesis.

At present, as described, our choice has been for invariant subtyping.

4.5 The GIDL Base Application Architecture

We now present a high level view of our gidl architecture: that is how the archi-

tecture components are created and how they interact to accomplish an invocation

successfully. We then show how a programmer may use our architecture. We argue

the transparency of our design, in the sense that the programmer need not know the

internal architecture, but only the mapping rules from gidl to a specific programming

language.

4.5.1 The GIDL Extension Architecture

Figure 4.12 illustrates the design of our proposed architecture. The circles stand

for user’s code. The rectangular boxes represent components in the standard omg-

corba architecture. This includes the idl specification, the stub and skeleton, and

the object request broker (ORB). The hexagons represent the components needed by

our generic extension, including the gidl specification and generated gidl wrappers.

The dashed arrows represent the compiles to relation among components. A gidl

specification compiled with our gidl compiler will generate an idl specification file,

together with gidl wrapper stub and skeleton bindings, which recover the lost generic

type information.

124

Figure 4.12 gidl architecture for corba

circle – user code
hexagon – gidl component
rectangle – corba component
dashed arrow – is compiled to
solid arrow – method invocation flow

GIDL
Specification Application

(C++/Java/Aldor)

Server

SkeletonIDLIDL Stub

IDL Specification

CORBA’s Object Request Broker (ORB)

−−> marshal the invocation to the skeleton
marshal the return to the stub <−−

Client
Application

(C++/Java/Aldor)

GIDL
method

invocation

marshal the
params

to the IDL
skeleton

call server
wrap params

un−wrap the
return

ORB
delegate the

to handle the
invocation

un−wrap params

method
call IDL

GIDL

Stub
Wrapper

delegate the ORB
to marshal
the returnserver invocation

return from

wrap the
result

return to the
GIDL stub

return to the
IDL skeleton proper GIDL

invoke the

method

GIDL
Wrapper
Skeleton

125

The bottom part of the figure represents corba’s internals. When compiling the

idl file with any vendor’s idl compiler, client stubs and skeletons will be generated

and these serve as proxies for clients and servers respectively. Because the idl defines

interfaces so strictly, the stub on the client side will have no trouble matching per-

fectly with the skeleton on the server side, even if the two are compiled to different

programming languages, or are running on different ORBs from different vendors,

under different operating systems or hardware [56].

The solid arrows in Figure 4.12 depict method invocation. In corba, every object

has its own unique object reference. The client must obtain an object’s reference in

a string representation. This is used by the ORB to identify the exact instance that

must be invoked. As far as the client is concerned, it invokes a method on the object

instance. However, it actually calls the idl stub that acts as a proxy and forwards the

invocation to the ORB. It is the ORB’s job to find the server, to pass the parameters,

make the invocation and eventually to return a result to the client [56].

As stated previously, our generic extension for corba introduces an extra level of

indirection in the original mechanism; in order to recover the generic type information

lost by the gidl to idl transformation, stub and skeleton wrappers are generated to

match the original gidl specification. Basically, for every type in our gidl specifi-

cation, we construct C++/Java/Aldor wrapper stubs that reference the corba-stub

objects generated by the idl compiler. When the client invokes an operation, it actu-

ally calls a method on a gidl stub wrapper object. The gidl method implementation

retrieves the corba-objects hidden by the wrapper-objects taken as parameters, in-

vokes the method on the corba-object’s stub hidden inside our wrapper class, gets

the result, encloses it in a newly formed wrapper if necessary and returns it to the

client application. The wrapper skeleton functionality is the inverse of the client. The

126

wrapper skeleton method encapsulates the erased idl objects with generics erased as

gidl ones, adding back the generic type’s erased information. It invokes the user-

implemented server method with these parameters, retrieves the corba idl-object

or value from the returned object and passes it to the idl skeleton.

Clearly, for our implementation to be corba compliant, corba’s Interface Repos-

itory (ir) model would have to be changed to handle parameterized interfaces. Two

new ir–idl interfaces for TemplateDclUnit and TemplateCallUnit extending the

IRObject interface should be added to the ir meta model and the InterfaceDef

ir-idl interface should be modified to contain a sequence of TemplateDclUnit and a

list of TemplateCallUnit. The definition of ScopedName would also have to be made

to deal with templates. The TypeCodes and the string representation of references

would also be extended to contain parameterized type information.

But as we stated earlier, it is not our goal to write a corba compliant extension

of idl. Thus a detailed investigation of the changes that would have to be done

at the corba interface repository level is orthogonal to the goal of this thesis. We

interested exclusively in adding genericity to idl; the omg’s ir is a mirror of idl’s

specifications, thus the same ideas apply.

A more delicate problem is modifying a software component architecture’s run-

time to deal with dynamic invocation on parameterized methods, as by the use of

generics the number of gidl types is potentially infinite. This is handled by run-time

re-compilation techniques, similar to that described in [51]. We start with a set of can-

didates for the instantiation of the generic method and expand this set incrementally

as invocations with different instantiation for generic types occur.

With minimal modifications to the wrapper code generation, our generic extension

127

architecture can sit on top of other software component architectures such as dcom

or jni. Targeting dcom is straight forward, as its design is similar to corba.

Enhancing jni is more subtle: Given a gidl specification file, wrapper stubs are

generated on the C++ and Java sides. These make use of parametric polymorphism

and will ensure that the gidl semantics are statically enforced in both mappings,

similar to our design for corba. What differs is the implementation of the erased stub

(IDL stub box in Figure 4.12). On the C++ side, this corresponds to the mechanism

provided by jni to invoke the jvm; it can be mangled inside the wrapper classes

and hidden from the user. To call Java code from C++, the C++ parameterized

wrapper classes use the jni mechanism to invoke, through jvm, the parameterized

Java wrapper classes. To call C++ from Java, the parameterized Java wrapper classes,

containing only native methods, are compiled (“javah” utility) and, as a result, the

C++ generic erased stub is generated. The latter re-directs the invocation to the

parameterized wrapper class.

In summary, the generic extension for our corba case study can be applied on

top of any corba-vendor implementation, while maintaining backward compatibility

with standard corba applications. Moreover, with minimal changes, our architecture

can be applied to various heterogeneous systems. Our approach has been to design

a general and clean extension architecture and then to apply aggressive optimization

techniques to reduce the overheads incurred by casting, and the extra indirection

in invocation. One can anticipate that a combination of optimizations, including

pointer aliasing, scalar replacement of aggregates, copy propagation and dead code

elimination, will achieve this in most cases.

128

Figure 4.13 gidl code for a simple priority queue

1 interface PriorElem {

2 short getPriority();

3 short compareTo(in Object r);

4 };

5

6 interface PriorQueue2<A:-PriorElem> {

7 void enqueue(in A a);

8 A dequeue();

9 boolean empty();

10 short size();

11 A creatNewA(in short s);

12 };

4.5.2 The User’s Perspective

Consider the gidl specification shown in Figure 4.13. When implementing the

server side, the programmer should extend the generated skeleton wrapper classes

PriorQueue2 and PriorElem, implementing the operations that appear in the gidl

specification. This is the usual corba procedure for writing servers, so the user will

find no difficulty here.

An excerpt from a C++ client program that makes use of the types defined in this

gidl specification is shown in Figure 4.14. Suppose the server is represented by a

GIDL::PriorQueue2<GIDL::PriorElem> object. Suppose the server is represented

by a GIDL:: PriorQueue2<GIDL::PriorElem> object. The client obtains a string

representation of a reference to the generic type erased object, i.e. ::PriorQueue2

from the server (line 1). It creates a generic wrapper stub (line 2) together with an idl

stub proxy. The latter is implemented inside the wrapper class constructor to hide the

internal architectural design. From this point on, the user can transparently invoke

the server functionality (lines 5, 11, 12). In Figure 4.14, GIDL::Short GIDL is the

129

Figure 4.14 Code excerpt from a C++ client

1 CORBA::Object_var obj = orb->string_to_object(s);

2 GIDL::PriorQueue2<GIDL::PriorElem> gpq(pq_orig);

3 GIDL::PriorElem gPEobj = gpq.createNewA(GIDL::Short_GIDL(1));

4

5 gpq.enqueue(gPEobj); // OK

6

7 // Obtain a reference to a CORBA::Object - obj ...

8

9 gpq.enqueue(obj); // Error

10

11 GIDL::PriorElem gPEobj = gpq.dequeue();

12 GIDL::Short_GIDL sh = PEobj.getPriority();

13

14 cout<<sh<<endl; //prints "1"

C++ mapping type for gidl’s short. Line 9 generates a compile-type error, signaling

the user that his code does not obey the gidl specification semantics. If we look at

the gidl specification in Figure 4.13, the enqueue operation is supposed to take a

parameter of type A. In our case the parameter is substituted by GIDL::PriorElem,

since we are working with GIDL::PriorQueue2<GIDL::PriorElem>. Therefore the

parameter of the enqueue function is expected to be of type GIDL::PriorElem and

not CORBA::Object.

To conclude, our architecture places little burden on programmer’s shoulders, as

most of our implementation details are hidden. The steps in application design are the

same as those required for a standard corba application, but now the implementation

can use generic programming. The details of the language bindings for C++, Java and

Aldor are given in the next section.

130

4.6 Language Bindings

In Section 4.5 we discussed in general terms the high-level ideas involved in the design

of our framework. Now, by seeing the mapping specifics, we complete the description

of the overall architecture. There are two reasons for presenting aspects related to the

language bindings: First, as the targeted languages cover a wide-range of parametric

polymorphism semantics and binding time models, it is informative to understand

how the mappings work. Second, it is of practical interest to mention some of the

less obvious details that are important in achieving an effective mapping.

We do not give a formal proof for the correctness of the translation schemes for the

language bindings. This would be a tedious task as none of the targeted languages, to

our knowledge, have a complete formal model. An approach similar to that adopted

for Featherweight GJ [29], working with only a small functional subset of the languages

considered, might be used to prove that our extension does not introduce any run-time

errors.

4.6.1 GIDL to C++ Mapping

This section describes how the stub and skeleton wrappers, presented in the previ-

ous section as high level components of our architecture, are implemented when the

targeted language is C++. We first introduce the high-level mapping ideas, including

the correspondence between gidl and C++ types. We then elaborate on the wrapper

object-model and on the C++ implementation of gidl’s export- and extend-based

qualifications.

131

4.6.1.1 High-Level Mapping Ideas

The mapping from gidl to C++ is for the most part quite easy and natural, as the

idl syntax and semantics are quite close to those of C++. We closely follow the same

conventions used in the standard idl to C++ mapping, so the user will not feel any

major conceptual difference when using our generic architecture.

gidl modules are translated into C++ namespaces; gidl interfaces into C++ (possi-

bly template) classes, encapsulating all the functions that appear in the gidl interface

together with getter and setter functions for every attribute in the gidl interface. A

gidl structure is mapped to a C++ class, with setter and getter functions for each

field in the gidl structure. gidl basic types (short, long, etc) are mapped to corre-

sponding C++ types, providing the expected functionality by means of operator over-

loading. gidl’s arrays and sequences are mapped by type instantiating a C++ generic

array/sequence class in which the “[]” operator is overloaded. In our implementation,

the relation between the wrapper objects and the associated corba-objects is many

to one: There can be several wrappers storing the same corba-object. Memory

management is simple, creating our wrapper objects on the stack only. Thus there is

no need for explicit de-allocation.

Our gidl-C++ stub and skeleton wrappers are encapsulated within the “GIDL”

and “GIDL implem” namespaces. The inheritance hierarchy at the gidl specification

level is preserved in the C++ mapping. gidl scopes directly create C++ scopes, as

the C++ semantics allows the definition of nested classes. A side-effect of this is that

the generic types defined by a generic gidl interface stay in the same position after

the C++ translation and do not create generic type duplicates for the nested gidl

structures (as happens in the Java mapping case).

132

Figure 4.15 Nested structures

1 // GIDL:

2 interface GenericInterf<A> {

3 struct GenericStruct {

4 typedef A A_array[5][5];

5 A_array field;

6 };

7 };

8

9 -

10

11 // C++:

12 template<class A> class GenericInterf: GIDL::GIDL_Object{

13 struct GenericStruct : GIDL::GIDL_Object {

14 typedef Array_GIDL<...,A,...> A_array;

15 public: A_array field;

16 //...

17 } //...

18 } //...

In the example shown in Figure 4.15, a gidl specification containing a structure

type nested inside an interface type is similarly translated to C++ as a nested definition

of classes. The generic type parameter A is shared inside the nested scope.

Our wrapper objects, no matter what gidl type they represent, can be seen as

an aggregation of a reference to the erased corba value they represent, the generic

type information associated with them and the casting functionality they define. They

also inherit the functionality provided by the corresponding gidl type. This is similar

to the “reified type” pattern of Johnson [30], where objects are used to carry type

information or to some uses of dependent product types.

133

4.6.1.2 Wrapper Stub Object Model

Figure 4.16 shows A piece of the generated wrapper stub for the following gidl

specification.

interface Foo { /*...*/ };

interface Test<T1:Foo, T2:-Foo, T3>

{ Foo op(in T1 t1, in T2 t2, in T3 t3, in Foo f); };

As stated in Section 4.6.1.1, the type casting functionality is common to all the

stub wrapper types. This is represented in Figure 4.16 by the lift and narrow

methods. The lift method returns a new instance of the wrapper class encapsulat-

ing the corba-object received as parameter, while narrow returns the corba-object

encapsulated by the wrapper object. The any lift and any narrow functions have

a similar functionality, but they are used in conjunction with the CORBA::Any type,

our erasure for the unqualified generic type.

The implementation of the op function (in Figure 4.16) illustrates the method

invocation mechanism. All the wrapper objects received as parameters are unboxed

to idl stub objects. Following the type erasure rules, a wrapper interface type object

is unboxed to the corba stub object it encapsulates (line //6), a unqualified generic

type is erased to the CORBA::Any var type (line //5), an extend-based qualified generic

type is unboxed to the idl-stub type associated with its qualifier (line //3) and finally

an export-based qualified generic type is erased to the CORBA::Object type (line //4).

The idl stub method is invoked on the object reference that our wrapper encapsulates

(line marked 7) and finally the returned corba stub object/value is boxed inside a

stub wrapper object and is returned to the client application (line //8).

134

Figure 4.16 Excerpt of C++ wrapper stub code

1 template<class T1,class T2,class T3> class Test :

2 virtual public ::GIDL::GIDL_Object {

3 protected: ::Test_var* obj;

4 private:

5 virtual void implTestFunction() {

6 if(1) return;

7 T2 a_T2; MSGA_Foo msga = (MSGA_Foo)a_T2; //1

8 T1 a_T1; Foo a_Foo = (Foo)a_T1; //2

9 }

10

11 public:

12 Test(::Test_var ob) {

13 obj = new ::Test_var(ob);

14 implTestFunction();

15 } //...

16

17 ::Test_var getOrigObj() { return *obj; }

18 void setOrigObj(::Test_var o) { *obj = ::Test::_duplicate(o); }

19 static ::Test_var _narrow(Test<T1,T2,T3> corba_obj_TIDL) {

20 return *corba_obj_TIDL.obj;

21 }

22 static Test<T1,T2,T3> _lift(CORBA::Object_var corba_obj_TIDL){

23 return Test<T1,T2,T3>(::Test::_narrow(corba_obj_TIDL));

24 }

25

26 static Test<T1,T2,T3> _any_lift(CORBA::Any_var a) { /*...*/ }

27 static CORBA::Any_var _any_narrow(Test<T1,T2,T3> w) { /*...*/ }

28 //...

29

30 virtual GIDL::Foo op(T1 a1_G,T2 a2_G,T3 a3_G,GIDL::Foo a4_G) {

31 ::Foo_var a1 = a1_GIDL._narrow(a1_G); //3

32 CORBA::Object_var a2 = a2_GIDL._narrow(a2_G); //4

33 CORBA::Any_var a3 = a3_GIDL._any_narrow(a3_G); //5

34 ::Foo_var a4 = a4_G._narrow(a4_G); //6

35 ::Foo_var a0_GIDL = (*obj)->op(a1, a2, a3, a4); //7

36 GIDL::Foo retGIDL; return retGIDL._lift(a0_GIDL); //8

37 }

38 };

135

The last thing to note here is the C++ mapping of gidl’s export- and extend-

based qualifications for generic type parameters. We remind the reader that C++

does not support restrictions on generic type parameters. We achieve this through

the implTestFunction() function (in Figure 4.16), which is called from the wrapper

class constructors.

As discussed in Section 4.4.1, our implementation relies on C++’s static binding.

In the case of the extend-based qualified generic type, a simple cast to the qualifier’s

type suffices (shown on line //2). This enforces the condition that the substituted

type has to inherit from the qualifier (GIDL::Foo in our case). The mapping of an

export-based qualification requires the construction of the MSGA associated with that

generic type declaration, as discussed in Section 4.4. The generic type instantiation is

valid if the cast to the associated MSGA succeeds (line //1 in Figure 4.16). Otherwise

a compile-time error is generated during type checking.

Our mapping of parameter qualifications adds no run-time overhead, as our ver-

ification code (lines //1 and //2) follows the statement if(1) return; so is never

reached. After the type-checking phase is completed, any reasonable compiler will

discover this and all the calls to implTestFunction() will be eliminated.

4.6.2 GIDL to Java Mapping

The Java mapping follows the same main lines as the C++ mapping. We create

wrappers objects that encapsulate corba object references and recover the generic

type information lost during the gidl to idl erasure transformation. We follow

the same translation rules defined in the standard idl to Java mapping. The gidl

inheritance hierarchy is translated to a corresponding inheritance hierarchy among

136

Java interfaces, the root of the hierarchy being the GIDL Value Interf interface. We

do this because Java classes do not support multiple inheritance.

One drawback of the Java mapping is that it requires the user’s help. Java does

not support object instantiation of a generic type parameter, e.g. new A(). Neither

does it provide any reflection features on its generic types. The constructor of a

parameterized class (which is the mapping of a gidl type) will force the user to

pass an extra parameter for each generic type introduced by that class. This is

needed because otherwise we cannot enforce an exact boxing/unboxing mechanism

between our wrapper objects and stub objects. The virtual call on such an object will

invoke the correct boxing/unboxing function for the instantiated type, otherwise the

lift/narrow methods will be called on the Java erased type and this is not correct.

We omit the implementation details and touch only upon the constructs that are

mapped in a conceptually different manner than in the C++ case. The remainder

is similar to the C++ mapping. We focus on the Java mapping of the implicitly

parametric structures, that is gidl structures that are nested in the scope of a generic

interface, and that use some of the interface’s generic type parameters. An example

of such structure is the following:

interface Base<C: Object, D, E>{

typedef struct BaseStruct{

C field_c; E field_e;

};

};

Since we have defined that the scope of a generic type parameter is throughout the

interface in which it is declared, the example is perfectly legal gidl code. In order to

137

Figure 4.17 Java wrapper stub mapping

1 package GIDL.Base; import GIDL.*;

2 public final class BaseStruct

3 <C extends GIDL.GIDL_Object, E extends GIDL.GIDL_Value_Interf>

4 implements GIDL.GIDL_Value_Interf {

5

6 private org.omg.CORBA.Object obj; //the encapsulated CORBA object

7 private C c; private E e;

8

9 public BaseStruct(C c, E e, org.omg.CORBA.Object ob) {

10 obj = ob; this.c = c; this.e = e;

11 }

12 public BaseStruct(C c, E e) { this.c = c; this.e = e; }

13

14 public BaseStruct<C, E> lift(org.omg.CORBA.Object b)

15 { return (new BaseStruct<C, E>(c, e, b)); }

16

17 public Base.BaseStruct narrow(BaseStruct<C, E> t) {return t.obj;}

18

19 public BaseStruct<C, E> any_lift(org.omg.CORBA.Any a) {

20 try{

21 Base.BaseStruct ob = Base.BaseStructHelper.extract(a);

22 return (new BaseStruct<C, E>(c, e, ob));

23 }catch(Exception exc){ /* ... */ }

24 }

25

26 public org.omg.CORBA.Any any_narrow(BaseStruct<C, E> o){

27 try{

28 org.omg.CORBA.Any a = orb.create_any();

29 Base.BaseStruct bb = o.obj;

30 Base.BaseStructHelper.insert(a, bb);

31 return a;

32 }catch(Exception exc){ /* ... */ }

33 }//.....

34

35 public C get_field_c() { return (C)c.lift(obj.field_c); }

36 public void set_field_c(C co) { obj.field_c = c.narrow(co); }

37 public E get_field_e() { return (E)e.any_lift(obj.field_e); }

38 public void set_field_e(C eo) { obj.field_e = e.any_narrow(eo); }

39 }

138

perform the mapping, we need to know which are the generic parameters used in the

structure definition, and also any constraints that apply to them. The Java mapping

for the BaseStruct parameterized structure, presented above would be that shown

in Figure 4.17.

As we have seen with the C++ mapping, each wrapper stub class implements two

methods: lift and narrow, which are used to encapsulate and retrieve a corba-

object. However, since Java does not support any run time information with respect

to type variables, we cannot declare the lift and narrow methods statically. We

ask the user to provide a trivial object for each type variable in the declaration of an

interface. This allows dynamic creation of new instances of the variable type using

virtual calls to lift, any lift on the trivial objects. The any lift and any narrow

methods are similar to lift and narrow and are used for the unqualified generic

types (as their erasure is the idl any type). In addition, the gidl wrappers provide

an implementation for each method in the declaration of the corresponding gidl

interface and for any the get and set methods corresponding to fields in the structure

definition.

4.6.3 GIDL to Aldor Mapping

Aldor was not one of the programming languages for which corba provides standard

mappings. Michael Loyd has conducted the work of linking Aldor to the CORBA

framework. We mention here the main mapping ideas, in which I was also involved.

As usual we avoid implementation details and keep the discussion at a high level.

Both gidl and Aldor provide a set of low-level types, for example fixed size integers

and floating point numbers, strings, etc. The correspondence between these low-level

139

types is straightforward. We use Aldor’s ex post-facto domain extension on the basic

types to extend them with the functionality needed by our framework. That is, the

existing domains are extended to satisfy new type categories supporting gidl in an

aspect-oriented manner.

A gidl interface is mapped to an Aldor domain/category pair. The category

specifies the exports present in the gidl interface, together with the casting func-

tionality needed to link it to the corba environment and the domain provides the

implementation. Because Aldor is not based on classes of objects the mappings of

the exported operations all receive one extra parameter corresponding to the implicit

“self” parameter of the gidl methods. Multiple inheritance among gidl interfaces is

matched by multiple inheritance among the Aldor proxy categories. The Join opera-

tion on categories is used when multiple inheritance is required. Inner gidl structures

and interfaces are directly mapped into inner Aldor domains. Aldor directly supports

both types of qualifications present in the gidl model for generics.

It is interesting to notice that languages with dynamic bindings (like Java) support

parametric polymorphism through a qualification mechanism (otherwise an improper

instantiation of the generic type will lead to a run-time error and not to a compile-

time as preferred). Aldor is not an exception from this rule and it directly supports

both types of qualifications present in the GIDL model for generics.

Figure 4.18 provides an example of these ideas. Note that gidl export-based

qualification is directly mapped to Aldor by means of a type parameter qualified

by an un-named category. This is specified by means of the “with” Aldor construct,

which implies that a specific list of exports need to be provided by the type parameter.

The Aldor mapping easily accommodates type-parameterized functions (no need

140

Figure 4.18 Mapping gidl qualifications to Aldor

1 // GIDL specification:

2 interface Monomial<R: Ring> : Ring, Module<R> {

3 Monomial<R> *(R r, Monomial<R> mon);

4 }

5 interface Comp<A> { boolean compare(A a); }

6 interface Comparator<A:-Comp, B:-Comp<A> > {...}

7

8 -

9

10 -- Aldor stubs:

11 define MonomialCat(R:Ring) : Category ==

12 Join(RingCat, ModuleCat(R)) with {

13 *: (R, %) -> %;

14 }

15 Monomial(R:Ring): MonomialCat(R) == add {

16 -- ...

17 (r:R) * (poly:%) : % ==

18 -- CORBA remote invocation of the server ...

19 }

20 define ComparatorCat(

21 A: with{compare:(B)->Boolean},

22 B: with{compare:(A)->Boolean}): Category ==

23 with {

24 -- ...

25 }

for recompilation techniques), as Aldor supports types as first class values. (Types

can be passed as parameters to functions and are constructed at run-time.) Since,

given a GIDL specification, the number of type constructors is finite, it is possible

to write a function that receives as parameter a formal description of a type, and its

implementation constructs that type and returns it. The resulting type is passed as

parameter to the original type-parameterized function.

141

4.7 GIDL and Library Translations

This section explores how our generic model and architectural design may be used

to expose facilities from a language to a multi-language environment and discuss our

mappings in the context of automatic library translation.

Section 4.7.1 presents an experiment in which we have translated part of the

C++’s Standard Template Library (stl) functionality into a gidl server. We con-

clude that gidl is able to express the stl semantics and, furthermore, that the

library-translation process can be automated. As the gidl and Aldor languages are

very different, Section 4.7.2 investigates the high-level ideas involved in mapping the

semantics of an Aldor library to a gidl specification and finds that gidl is effec-

tive in rendering these semantics. The Aldor libraries are sophisticated mathematical

libraries for exact algorithms for linear and non-linear algebra and they use a high-

density of complex type constructors. It is not uncommon for the mathematical types

expressed in Aldor to be several levels deep, as in:

Polynomial(Matrix(Complex(Fraction(Integer))))

Furthermore, libraries typically have relationships between type parameters, declared,

e.g., as:

SimpleAlgebraicExtension(R: CommutativeRing,

P: UnivPolynomCategory(R),

p: P): Algebra(R) == ...

With their rich nature, the Aldor BasicMath library and the C++ Standard Template

Library make two ideal candidates for experimentation.

142

4.7.1 Accessing the C++ STL in a Multi-Language

Environment

We now describe an experiment in which we have exposed the C++ Standard Template

Library to a multi-language setting. This tests both our generic model design, as

we are able to express stl’s fundamental requirements at the gidl’s level and our

architectural model as we were able to translate it with minimal programming effort.

4.7.1.1 Key Features in the Design of STL

stl [19] comprises six major kinds of components: containers (e.g. vectors, lists),

generic algorithms (e.g. find, merge, sort), iterators, function objects (classes contain-

ing one method that overloads the () operator), adaptors (components that modify

the interface of another component), and allocators (memory management encapsu-

lation).

One can identify two key differences between stl and many the other C++ li-

braries: First, stl containers are not built within an inheritance relation — they are

not assumed to be derived from some common ancestor. Second, stl components

are designed to be orthogonal, unlike traditional container class libraries where algo-

rithms are associated with classes and implemented as member methods. This keeps

the source code and documentation small, as for m containers and n algorithms that

are applicable to all m containers, only n generic algorithms have to be written and

not m×n. On the other hand, the component’s orthogonal structure addresses the ex-

tensibility issue, as it allows a user’s algorithms to work with the library’s containers,

or user’s containers to work with the library’s algorithms. The orthogonality between

the algorithm domain and the containers domain is achieved, in part, by the use of

143

iterators; the algorithms in stl are not specified in terms of the data structure on

which they operate, but in terms of iterators, which are data structure independent.

However, because of performance guarantees, it might be not possible to plug

together any algorithm with any container: For example an efficient generic sort

algorithm may require random access to the data and in the list’s case this is not

possible. Thus, stl specifies for each container, which iterator categories it provides

and for each algorithm, which iterator categories it requires. These are both defined

as English annotations in the standard [19]. Thus, one may observe that C++ does

not have sufficient formalism to express the set of requirements stl imposes on its

iterators and containers. Next section shows how we can do better with gidl.

4.7.1.2 STL’s GIDL Specification

In our mapping, we have preserved the main design characteristics of stl. At the

gidl level, the design of iterators and containers is not intrusive: It does not assume

any kind of inheritance from a common ancestor. This is achieved by the use of the

export-based qualification. We also preserve the orthogonal structure of containers and

algorithms. As our goal is to make available the stl library in a multi-component en-

vironment through a minimal coding effort, our server relies on the stl’s functionality

in its implementation.

We have abstracted the stl iterators’ functionality, making it context indepen-

dent. We have done this using additional generic types, bounded by a mutual recursive

export-based qualification, as shown in Figure 4.19. It follows that InpIt<T> exports

the method boolean ==(InpIt<T> i) while RaiIt<T> exports the method boolean

==(RaiIt<T> i).

144

Figure 4.19 Export-based qualification for iterators

1 interface InputIterator< T, It:-Iterators::InputIterator<T,It> >

2 : Iterators::BaseIterator<T,It> {

3 boolean ==(in It it);

4 /*...*/

5 };

6

7 interface InpIt<T> : InputIterator<T, InpIt<T> >{};

8

9 interface STLvector

10 < T,

11 Ite:-Iterators::RandAccessIterator<T, Ite>,

12 II:-Iterators::InputIterator<T, II> > {

13 /* ... */

14 };

The code excerpt above shows how things work together. The STLvector con-

tainer does not expect the iterators to be built within any inheritance relation, but

only for them to implement the functionality described in the stl specification. We

use inheritance among iterators just because this provides a better expressivity and

keeps the code short. This is not a requirement, however, as seen from the STLvector

and InputIterator definitions. One can extend our specification for a set of iterators

without using any inheritance relation among them.

We believe that our stl specification is reasonably expressive and self-describing.

A generic algorithm is mapped to a parameterized function, where the type param-

eters are qualified to enforce the semantics of the gidl specification. An excerpt is

given in Figure 4.20. This shows how the find algorithm uses two type variables in its

specification. One, T, is unqualified, for the type of the values the iterator is holding.

The other, It, uses export-based qualification and shares “structural similarity” [6]

with its F-bounded qualifier, InputIterator.

145

Figure 4.20 gidl specification for stl algorithms

1 interface Algorithms {

2 <T, It:-Iterators::InputIterator<T,It> >

3 It find(in It first, in It last, in T val);

4

5 <T, II:-Iterators::InputIterator<T, II>,

6 OI:-Iterators::OutputIterator<T, OI> >

7 OI copy(in II first, in II last, in OI result);

8

9 <T, FI:-Iterators::ForwardIterator<T, FI> >

10 void replace(in FI first, in FI last, in T x, in T y);

11 ..

12 };

4.7.1.3 Implementation Issues

Our implementation uses the stl as a black box, since the goal is not to rewrite

stl but rather to export its functionality in a multi-language environment. The

C++ gidl stubs make heavy use of overloading, as stl exposes these features in the

specification of iterators and containers. The operations ++, --, +=, -=, [], *

are exported by certain types of iterators, and ==, !=, >, < are exported by both

iterators and containers.

Our gidl objects for stl are simple wrappers for the stl library constructs. For

example, our implementation of STLvector keeps an stl vector as instance variable

and, upon invocation, it calls the appropriate method of the stl vector and wraps the

returned object to give the corresponding gidl type. Generic algorithm and function

objects are mapped to parameterized functions and interfaces, each containing only

one method: the function call operator (). Their implementation simply calls the

stl function and again wraps the result to a valid gidl type.

146

The previous subsection has shown that our GIDL specification has enforced the

required stl semantics for iterators. The iterators, together with the functional

objects are of central importance in ensuring the STL orthogonal design (the first

represent abstract data accessing methods, while the latter allows generic algorithms

and some container classes to vary their computation in other ways than those ex-

posed by iterators). One consequence of our mapping is that the gidl stub wrappers

corresponding to iterators and functional objects are themselves valid stl types and

therefore they can be uniformly manipulated by “native” stl exports such as al-

gorithms and containers, if so desired. An invocation on such a gidl iterator will

redirect the call to the (possibly remote) server side. Thus it is not only possible

to have a “black box” automatic library translation strategy, but also to have a dis-

tributed implementation for iterators and functional objects.

An interesting and challenging problem is to optimize the usage of the generic

library in a multi-language, distributed setting, as many of the implicit assumptions

taken in the original design of the library are no longer true. These include the

assumptions of a single space and language environment. For example, if in a dis-

tributed environment one is traversing via an iterator, the performance will greatly

suffer, since in order to obtain each value, a foreign, possibly remote call is performed.

A thread level speculation approach to reduce the communication and dispatching

overheads is presented in Chapter 5, and [50].

147

4.7.2 Accessing Aldor’s BasicMath Library in a

Multi-Language Environment

This section investigates the high-level ideas involved in translating the semantics of

the Aldor library to gidl. This includes the two level type system, functional and

category subtyping, dependent types and other issues. As Aldor and gidl are quite

different, the design of a translation scheme that enforces the semantics of the Aldor

type system in gidl is a test of our generic model.

Our previous work in the context of automatic library translation, described in

Chapter 3 and [51], has studied what is required to use Aldor libraries to extend Maple

[45], a dynamically typed, functional, computer algebra language, in an effective

and natural way. The resulting framework, called Alma, implements a high-level

correspondence between Maple and Aldor concepts, and is able to automatically

generate Maple stubs corresponding to the functionality of an Aldor library. The

user could manipulate Aldor and Maple objects in a completely uniform manner.

Work is in progress to enhance the Alma framework with support for generating

GIDL specifications (corresponding to Aldor libraries) together with automatic server

implementation (that will use the Aldor library as a black box).

The main challenge in mapping Aldor semantics in gidl is to achieve proper func-

tional subtyping constraints for the gidl interfaces representing Aldor functions. We

are do this using semantics constructors for subtype, supertype and set membership

relations. These are implemented as the trivial parameterized interfaces SubType<T>,

SuperType<T> and InstanceOf<T>. Fluet and Pucella [23] employ a similar “phan-

tom types” technique that uses free type variables to encode subtyping information

together with a Hindley-Milner based type system [18] to enforce it.

148

Figure 4.21 Excerpt from Aldor Integer and List

1 define Ring : Category == with {...};

2 define CatA(R:Ring) : Category == with {...};

3 define CatB(R:Ring) : Category == CatA(R) with {...};

4

5 fun(b: CatB(Integer), a: CatA(Integer)): Boolean == {...};

6

7 define IntegerNumberSystem : Category == Ring with {

8 greater : (%, %) -> %;

9 coerce : (BInt$Machine) -> %;

10 }

11 Integer : IntegerNumberSystem == add { ... };

12

13 ListCategory(S: Type) : Category == with {

14 nil : () -> %;

15 isEmpty : (%) -> boolean;

16 first : (%) -> S;

17 rest : (%) -> %;

18 sort : ((S, S) -> Boolean, %) -> %;

19 merge : ((S, S) -> Boolean, %, %) -> %;

20 }

21 List(S: Type) : ListCategory(S) == add { ... }

We have introduced the Aldor language to the reader in Section 2.1.1. Suppose

we want to expose the Aldor exports shown in Figure 4.21 for use in a multi-language

environment. Figures 4.22 and 4.23 show the corresponding gidl specification.

To simulate Aldor’s two level (domain/category) type system, we have intro-

duced the trivial gidl generic interface InstanceOf<T>. If the Aldor domain DomA

∈ CatA, then in gidl we make DomA to inherit from InstanceOf<CatA>. To cor-

rectly handle functional and category subtyping we have introduced the trivial gidl

generic interfaces SubType<T> and SuperType<T>. To express an Aldor subtype or

supertype relation between the categories CatA and CatB, in gidl we make CatA

extend SubType<CatB> or SuperType<CatB> as appropriate (see Categories part in

149

Figure 4.22 GIDL for Aldor exports of Figure 4.21

1

2 /************************ Root Types ************************/

3

4 interface Type {};

5

6 interface InstanceOf<T> {};

7 interface SubType<T> {};

8 interface SuperType<T> {};

9 interface FunctionalType {};

10

11 interface Category : InstanceOf<Type> {};

12 interface Domain : InstanceOf<Type> {

13 <C:Category> boolean has(in C c);

14 };

15

16 /************************ Categories ************************/

17

18 interface Ring: Category, SubType<Ring>,

19 SuperType<Ring>, SuperType<IntegerNumberSystem> {};

20

21 interface CatA< R:InstanceOf<Ring> > :

22 SubType< CatA<R> >, Category,

23 SuperType< CatB<R> >, SuperType< CatA<R> > {};

24

25 interface CatB< R:InstanceOf<Ring> > :

26 SubType< CatB<R> >, Category,

27 SubType< CatA<R> >, SuperType< CatB<R> > {};

28

29 interface IntegerNumberSystem :

30 Category, SubType<Ring>,

31 SubType<IntegerNumberSystem>,

32 SuperType<IntegerNumberSystem> {};

33

34 interface ListCategory< S:InstanceOf<Type> > :

35 Category, SubType< ListCategory<S> >,

36 SuperType< ListCategory<S> > {};

150

Figure 4.23 GIDL for Aldor exports of Figure 4.21 – continuation

1 /***************** Domains: Integer and List<S> *****************/

2 interface GlobalExports {

3 Boolean fun(in CatA a, in CatB b);

4 };

5

6 interface Integer : Domain, InstanceOf< Ring >, SubType<Integer>,

7 SuperType<Integer>, InstanceOf< IntegerNumberSystem > {

8 Boolean greater (in Integer i1, in Integer i2);

9 Integer coerce (in long l);

10 };

11

12 interface List< S:InstanceOf<Type> >: Domain, SubType<List<S>>,

13 SuperType<List<S>>, InstanceOf< ListCategory<S> > {

14 List<S> nil ();

15 Boolean isEmpty (in List<S> l);

16 S first (in List<S> l);

17 List<S> rest (in List<S> l);

18

19 <S1: SuperType<S>, S2: SuperType<S>, F:-Sign_SS_Bool<S, S1, S2> >

20 List<S> sort1 (in F f, in List<S> l);

21

22 <S1: SuperType<S>, S2: SuperType<S>, F:-Sign_SS_Bool<S, S1, S2> >

23 List<S> merge (in F f, in List<S> l1, in List<S> l2);

24 };

25

26 /*********************** Functional Types ***********************/

27 interface fun : FunctionalType {

28 Boolean GIDLapply(in CatB<Integer> b, in CatA<Integer> a);

29 };

30 interface greater : FunctionalType {

31 Boolean GIDLapply(in Integer i1, in Integer i2);

32 };

33

34 interface Sign_SS_Bool < S : InstanceOf<Type>,

35 S1 : SuperType<S>, S2 : SuperType<S>

36 > : FunctionalType {

37 Boolean GIDLapply(in S1 s1, in S2 s2);

38 };

151

Figure 4.22). This is needed because if we make CatA directly extend CatB, we can-

not express the supertype relation. This does not introduce any significant run-time

overhead. Categories are used in Aldor only to specify properties of domains, such

as which operations they export and to qualify type parameters. Domains provide

the implementation. Whereas type categories will normally form an interesting sub-

type lattice, Aldor libraries have only trivial subtype relations among domains. We

therefore provide no sub/super-typing relation between them at the gidl level.

In Aldor, all domains and categories satisfy the Type type. The Domain and

Category interfaces are the base classes for the gidl interfaces corresponding to the

Aldor domains and categories. They both thus inherit from InstanceOf<Type>. An

Aldor declaration such as R:Ring is given at the gidl level as a type qualification

R: InstanceOf<Ring>. For example, Integer should be a valid instantiation for the

generic type R.

Figure 4.22 demonstrates how function parameters and functional subtyping mapped

into gidl. The definition of ListCategory in Figure 4.21 expresses that both

merge and sort functions receive as first parameter a function whose signature is

(S,S)->Boolean, where S is qualified by Type in Aldor and InstanceOf<Type> in

gidl. Corresponding to the signature of the functional object, the gidl compiler

generates the Sign SS Bool interface containing only one function, generically named

GIDLapply. The signature of the function GIDLapply illustrates functional subtyp-

ing, with contravariant subtyping for parameter types. Note that the types of the

parameters S1 and S2 are supertypes of the original parameter type S of the original

declarations for sort and merge.

152

The sort and merge methods of the List interface are parameterized with the

qualifications

< S1: SuperType<S>, S2: SuperType<S>,

F:- Sign_SS_Bool<S, S1, S2> >

and F is used instead of the functional type. The export based qualification of F

ensures that all the possible candidates will be taken into account (see MSGA in

Section 4.4.2). Ultimately, the gidl compiler will find all the Aldor exports that

may have a functional subtype of (S,S)->Boolean and will generate interfaces, each

containing one method named GIDLapply. For example the greater and fun gidl

interfaces correspond to the Aldor functions with the same names. The fun func-

tion is a valid first parameter for the sort function in List<CatB<Integer>> as

CatA<Integer> extends SuperType <CatB<Integer>>. Similarly, greater is a valid

first parameter for the sort and merge functions in List<Integer> interface as the

two signatures are identical.

Finally, we note that in Aldor functional subtyping is most often trivial. Assume

that the qualification for S is a defined category instead of Type. It follows that the

extra parameters S1 and S2 are not needed because no non-trivial super-type exists.

Similar reasoning explains why the mapping does not introduce an extra qualified

type:

S3: SubType<Boolean>

for the return type of the functional object.

153

To conclude, Figures 4.22 and 4.23 present a legal gidl specification that enforces

the semantics of the original Aldor code in Figure 4.21, and the translation process

described here has been generalized and automated.

4.8 Chapter Conclusions

Previous interoperability experiments, described in Chapter 3 and Section 2.1, have

shown that we can match the semantics of different flavors of parametric polymor-

phism: Aldor’s dependent types vs. C++’s static templates vs. Maple’s module-

producing functions. This chapter has proposed gidl: a more general and systematic

solution that encompasses more languages in a simpler way.

The first step was to define a model for generics that could support the interface

semantics for generics in a range of different programming languages. We have seen

from our implementation of gidl that qualification of type parameters can be en-

forced in various target languages, even when the target language does not support

qualification of its generics. We have shown that both extension-based and export-

based qualifications can be supported effectively. Their implementation introduces

almost no run-time overhead.

We have shown that this parameterization in gidl can be supported by translation

to idl, with the generation of appropriate wrappers. This allows such code to be used

with existing corba implementations and to take advantage of the usual support for

distributed applications. Applications which are not distributed, may make use of

gidl simply to support multi-language use of generic modules. This use involves

minimal overhead. We have also shown that, with little modification, gidl can be

used to extend other interconnection architectures such as dcom and jni.

154

Finally, we have demonstrated that it is feasible to export parametric polymor-

phic libraries to a multi-language environment via gidl: We have implemented a

component that accesses a significant part of the C++ stl functionality. From this,

we have seen how imposing qualification restrictions can improve the precision and

safety of the stl library interface. We have also presented the main ideas involved in

mapping the Aldor language features to the gidl level. This allows Aldor libraries

to be used across language boundaries via gidl.

While many special-purpose programming languages have supported parametric

polymorphism for some time, it has really only been C++ which has been in main-

stream use. Now, with the availability of generics in Java, it is rather important that

we understand how to support generics in a multi-language setting. We view our

work as a contribution to this area.

155

Chapter 5

Distributed Models of Thread

Level Speculation

5.1 Chapter Introduction

This chapter applies thread level speculation to the distributed systems area, and

finds that, besides the obvious parallelization benefit, this may effectively reduce

the communication and dispatch overhead inherent to such architectures. The work

presented here is based on the PDPTA paper “Distributed Models of Thread-Level

Speculation” [50], co-authored with Jason Selby, Mark Giesbrecht and Stephen Watt.

Other approaches [25, 1, 16, 15] that address this problem come from the “optimistic

computation” area.

Distributed Software Component Architectures (dsca) provide a mechanism for

software modules to be developed independently, using different programming lan-

guages. These components can be combined in various configurations, to construct

156

distributed applications. Chapter 4 proposed a generic component architecture “ex-

tension” that provides support for parameterized (generic) components, and can be

easily adapted to work on top of various scas (corba [57], dcom [42]).

There is increasing interest in the subject of automatically exporting generic li-

braries beyond their initial language boundaries. Our experiments, already described

in Section 4.7.1 and Chapter 3, have exposed part of C++’s stl and Aldor’s [75] Basic-

Math libraries for use across the Generic idl (gidl) [13, 52] and Alma [49, 51] frame-

works respectively. This work has also revealed several performance issues. First,

the overhead associated with inter-component communication stalls can be quite sig-

nificant. In the context of a distributed application, the network and dispatching

overhead may become dominant. This is especially true for object-oriented languages

since they expose smaller average method length. Second, separate compilation of

components hinders traditional compiler optimizations such as inlining.

This chapter explores the novel application of speculative techniques to a dis-

tributed environment that address the afore-mentioned issues. We propose two mod-

els of Thread-Level Speculation (TLS) that can discover parallelism that is not ex-

ploitable using traditional parallelizing compiler techniques. Their application can

yield substantial performance benefits, even in the case when the underlying hard-

ware is not a multiprocessor.

The first model attempts to overlap the client-server communication overhead

with useful computation performed on the server side in the form of speculation.

This allows multiple remote invocations to be replaced with fewer calls that the server

expands in multiple speculative iterations of the same code. We obtained speed-ups

of about 2× when the client and server share the same machine, and about 3.5× in

157

the distributed case. (The speed-up was measured against the sequential run of the

program.)

The second model simulates “procedure inlining”. The server (master) runs a

predictor program that approximates the code that was supposed to be executed by

the client. The client validates the correctness of the predicted version of the program

using results sent back by the server. This model obtains speed-ups of about 11×

when the client and server share the same machine, and about 21× for the distributed

case.

Section 2.3 and Section 2.4 have already provided an overview of the mainstream

distributed component technology in use today (corba, dcom, .net), and of the

current TLS approaches respectively. The remainder of this chapter is organized as

follows. We describe the application of TLS to a distributed heterogeneous environ-

ment in Section 5.2. Afterward, in Section 5.3 we report and analyze the performance

benefits of exploiting the parallelism enabled by TLS in order to speed-up client-server

applications. Finally, we conclude with the contributions of the work presented in

this chapter in Section 5.4.

5.2 Distributed Applications of

Thread-Level Speculation

This section introduces two TLS models, inspired by [66] and [80], which can be ap-

plied in a potentially multi-language, distributed environment. Performance improve-

ments are derived from two aspects. First, the communication overhead is reduced by

eliminating stalls between the client and the server, and secondly, by taking advan-

158

Figure 5.1 An example of a simple object-oriented client program.

execution diagram
B. SequentialD. Diagram for the

first two // iterations
A. Sequential Client Code

.....

o2.remoteInvocation2(...);

o1.remoteInvocation1(...);
.....

.....
o3.remoteInvocation3(...);

for(int i=0; i<N; i++) {

}

E. pipelined execution

.....

.....

.....
o2.remoteInvocation2(...);

o3.remoteInvocation3(...);

o1.remoteInvocation1(...);

30 CONTINUE

DOALL 30 J=1, N
C. Fortran−like // loop

pipeline
stabilizes

tage of the server/client support for parallel execution. In most situations the second

model yields better speed-ups compared to the first. However, in environments where

security is of concern, the code migration aspect of the second approach might forbid

its use.

Throughout this chapter we assume that the server’s throughput is reasonable low

(that is, the server has some idle time and is not over-run with clients requesting its

services). Section 5.2.1 presents an overview of our approach, while Sections 5.2.2

and 5.2.3 introduce the two speculation models respectively.

5.2.1 Overview

Figure 5.1.A presents an example of a general, object-oriented, client program, and

Figure 5.1.B displays its normal (sequential) execution. However, if the loop can be

159

executed concurrently, as evident in Figure 5.1.C, then the speed-up can be quite

substantial. Figure 5.1.D shows the diagram’s temporal execution of the first two

concurrent iterations. After some number of iterations, the pipeline stabilizes. Ex-

amining Figure 5.1.E, we see that the costs of the communication are ameliorated.

The communication costs could be further decreased by “inlining” the client code into

the server. Additionally, server-side parallelism can be effectively exploited. This be-

comes more important as the granularity of a method increases.

Figure 5.1 displays an ideal Fortran DOALL parallelization of the program. How-

ever, this is not possible since the code is split and separately compiled between the

client and the server. To achieve this, we employ our distributed TLS models that

are discussed in Sections 5.2.2 and 5.2.3.

5.2.2 Distributed Speculation Model

This section provides an overview of our TLS framework and describes its application

to a distributed environment. Our model differs from that of a typical TLS scheme by

the fact that the speculative variables may reside on a remote machine and therefore

are not directly accessible by the client. However, the remote object whose methods

uses these variables can act as a proxy for them. If the method’s parameters are also

remote objects, then recursively, their server is required to provide parallelization

support for the operations that are invoked upon them. If support for speculative

parallelization is unavailable, and the code cannot be proven to be free of data-

dependencies then speculation is not applied.

Figure 5.3 presents part of a two-client program that uses the services provided

by a server that implements the functionality of the GIDL specification presented

160

Figure 5.2 GIDL specification. Lines marked with * denote TLS support

1 module TLSPackage {

2 exception TLS_Dependence_Violation { long thread_num; };

3 interface Speculative_Variable {

4 void reset(in long tid, in long max_tid);

5 void commitValueInFront(in long tid);

6 void start_speculation();

7 };

8 interface Splitable_Variable<T:Splitable_Variable<T> > :

9 Speculative_Variable {

10 typedef sequence<T> Seq_T;

11 Seq_T splitSpeculativeVariable(in long nr);

12 void recombineIterators(in Seq_T s);

13 };

14 };

15

16 interface GetValueObject {

17 long getValue(); void setValue(in long val);

18 };

19

20 module IteratorPackage {

21 interface Iterator<T> :

22 TLSPackage::Splitable_Variable<Iterator<T>>{ // *

23 long isEmpty(); void step();

24 T value(); void resetIterator();

25 };

26 };

27

28 module ContainerPackage { //...

29 interface Vector<T:GetValueObject, C:Comparator<T> > :

30 Container<T,C>, TLSPackage::Speculative_Variable { // *

31 T elementAt(in long i);

32 void setElementAt(in T obj, in long i);

33 T Spec_elementAt(in long i, in long thread_num); // *

34 void Spec_setElementAt(// *

35 in T obj, in long i, in long thread_num

36)raises (TLSPackage::TLS_Dependence_Violation); //....

37 }; //....

38 }; //....

161

Figure 5.3 Two client code regions which are rich in speculative parallelism.

1 // A)

2

3 for(int i=0; i<dim[0]; i++) {

4

5 GetValueObject gvo = vect.elementAt(new Long_GIDL(i));

6 int elem = gvo.getValue().getValue(); elem *= ...;

7

8 if(elem>(-1)) gvo.setValue(new Long_GIDL(elem));

9 else {

10 GetValueObject gvo1;

11

12 if(i>0) {

13 gvo1 = vect.elementAt(new Long_GIDL(i-1)); //***

14 elem = (long)gvo1.getValue().getValue(); elem*= ...;

15 } else elem = ...;

16

17 gvo1 =

18 factoryImpl.createComparableObject(new Long_GIDL(elem));

19 vect.setElementAt(gvo1, new Long_GIDL(i));

20 }

21 }

22

23 // B)

24

25 for(; index_it.isEmpty().getValue()!=0; index_it.step()) {

26

27 Long_GIDL ind = index_it.value();

28 GetValueObject gvo = vect.elementAt(ind); //***

29 int elem = gvo.getValue().getValue(); elem *= ...;

30

31 if(isValidElement(elem)) {

32 GetValueObject gvo =

33 factoryImpl.createComparableObject(new Long_GIDL(elem));

34 vect.setElementAt(gvo, ind); // ***

35 }

36 }

162

in Figure 5.2 (ignore for the moment the lines marked with * and the TLSPackage

module). Assuming that the server’s code is available for analysis, note that the

client code cannot be conservatively parallelized due to the loop-carried true data-

dependence of distance 1 in client A, and due to the indirect access of the vector’s vect

elements in client B (see the lines marked ***). In both cases, profiling information

combined with code analysis performed on the client may (non-conservatively) suggest

that a region of rich-parallelism has been discovered. Suppose the if branch is cold,

considering the hot path the code “resembles” a data-dependence free loop (modulo

the data dependences introduced by possible object aliasing). Given these hindrances

to parallelization our speculative framework can be employed.

The client announces to the server that speculation is about to commence, and

provides the required information regarding the speculative region. The TLS module

used by the GIDL stub will invoke the target-language compiler (Java in our exam-

ple) to compile the respective methods with support for speculation, thus generating

some new (speculative-related) methods on the server side. While it is clear how

this transformation would be implemented we are currently performing it by hand.

Furthermore, it will modify the GIDL specification to also include speculation (lines

marked with * together with the TLSPackage module in Figure 5.2), and re-compile

it to update the client and server stubs.

Each interface that is found to contain at least one speculative method is required

to inherit from the TLSPackage::Speculative Variable interface (see Figure 5.2).

Essentially, such an interface functions as a proxy for the speculative variables identi-

fied in its speculative-methods (as they do not have distributed support). Information

received from the client will aid the server-side compiler to prune the number of vari-

ables that are considered speculative. However, if this is the only modification, the

163

Figure 5.4 Part of the server-side speculative code for ContainerPackage::Vector

1 T[] arr; TLS.Arrays.Spec_Arr_RefU1D<T> spec_arr;

2 ArrayList<GIDL.TLSPackage.Speculative_Variable> Spec_Vars;

3

4 final public void start_speculation() {

5 spec_arr=new TLS.Arrays.Spec_Arr_RefU1D<T>(arr,1,1,ob_T);

6 Spec_Vars.add(spec_arr);

7 }

8

9 final public void setElementAt(T obj, Long_GIDL a1) {

10 arr[a1.getValue()] = obj;

11 }

12

13 final public void Spec_setElementAt

14 (T obj, Long_GIDL a1, Long_GIDL th)

15 throws _TLSPackage.TLS_Dependence_Violation {

16 int th_num = th.getValue();

17 try {

18 spec_arr.Speculative_Store(a1.getValue(), th_num, obj);

19 } catch(TLS.Dependence_Violation exc) {

20 throw new _TLSPackage.TLS_Dependence_Violation(th_num);

21 }

22 }

client-code labelled B in Figure 5.3 will generate many rollbacks due to the iterator

step operation. To solve this, Iterator extends the Splittable Variable interface,

allowing each speculative thread to work with disjoint (separate) iterators (refer to

Section 2.4.2 for speculative support for container classes).

Figure 5.4 presents the setElementAt method of the Vector interface, and its

speculative version Spec setElementAt. Notice that the generated speculative code

differs very little from the original. Specifically, it receives an extra parameter, the

id of the thread executing the method (th). Second, the speculative operation is

guarded by a try-catch block. If a violation is detected than the exception is for-

164

Figure 5.5 The interaction between the speculative threads and the thread manager

while(true) {
 try { program_iteration(); }
 catch(TLS_Dependence_Violation e) {

 roll = true;
 }
 if(roll) {
 roll = false;

 if(!tm.rollbackSTs(id, this)) {
 ... thread_wait(); ...

 }
 else if(tm.shouldRollback(id)) { }
 ... thread_wait(); ...

 }
 id = tm.newID(id,this)
 if(!tm.recycle(id)) { ended = true; return; }

}

Speculative Threads

int barrier_id = −1;
bool rollbackSTs(int id, SpecThread th){...}
bool shouldRollback(int id){...}

int newId(int id, SpecThread th){...}
bool recycle(int id){...}

// split the spec vars if necessary

// commit the speculative state
// wait for spec threads to finish

// call start_speculation on each sepc var

// create the speculative thread pool
// register and start the spec threads

public void speculate() {

}

Thread Manager

warded as a GIDL exception onto the client. Finally, the container that may be

the source of a data-dependence violation (arr:T[]) is replaced with a speculative

version (in this case the spec arr:TLS.Arrays.Spec Arr RefU1D<T>). Figure 5.4

displays the implementation of the start speculation() method exported by the

GIDL.TLSPackage.Speculative Variable interface. It initializes the variables on

which data-dependence violations might occur, and stores them in a container. The

reset and commitValueInFront methods (omitted from Figure 5.4 due to space con-

straints) traverse the list of speculative variables encapsulated by this class (Vector)

and re-initializes them, or updates the original location that they shadow, respec-

tively. These methods are invoked when handling a rollback or when speculation has

succeeded and the speculative state should be merged with the true non-speculative

state, respectively.

As depicted in Figure 5.5, the client starts speculative execution by creating a

thread-manager, and calling the speculate method on it. The thread manager calls

165

the start speculation method on all local speculative variables, and on all the re-

mote objects that act as proxies for the speculative variables identified on the server.

Furthermore, it creates a pool of speculative threads (registered to itself) and starts

them. A speculative thread executes iterations corresponding to the sequential code,

except that it now references local speculative variables and invokes the speculative

handler methods. At the end of an iteration the speculative thread checks to see

if any violations were detected by the other threads. If so, the thread transitions

into the waiting state. Otherwise it is assigned a new id (sequential execution it-

eration number), and checks to see whether the terminating condition was met. If

a thread catches a data-dependence violation exception (thrown by local code or by

the server), it invokes the rollbackSTs method on its thread manager, which will

set the manager’s barrier id flag. In the end, only the lowest id thread that has

detected a rollback will be alive. At this time, for each speculative variable the value

generated by the thread with the highest id less than or equal to the id of the run-

ning thread is committed. Finally, all the speculative variables are committed, and

cleaned up. Adaptability is built into the system by monitoring the ratio of rollbacks

to commits. If a predefined threshold is passed then speculation is abandoned for

sequential execution, otherwise the speculative threads are awakened and speculation

continues.

5.2.3 Distributed Speculative-Inlining Model

The second speculative model presented here, inspired by [80], achieves a speed-up in

a similar manner as procedure inlining. More precisely, the client provides the server

(or vice versa) with a predictor program that approximates the code executed by the

166

client. There are no constraints associated with the distilled program. However, in

order to produce a good speed-up, it needs to achieve a high prediction accuracy. The

server (master) runs the predictor program and sends back to the client, records of

the live variables computed along the anticipated path through the client’s code. It

is the client’s responsibility to validate the correctness of the master’s execution.

Our model differs from [80] in several ways. First, [80] expects the distilled pro-

gram to be much faster (a straight line code segment of the dominant path) than the

slave’s verification code. In our case, we prefer the approximate program to be as

close as possible to the original (and hence less likely to contain a violation), because

of the high cost associated with a rollback. Second, our implementation is adapted

to a distributed environment, and therefore, is geared toward other goals, such as

network, and dispatching overhead elimination. The parallelization of the predictor

program becomes more important for us as the iteration granularity increases.

There are two situations when program distillation is most beneficial inside of

our framework. The first is when a method returns a predictable value. Consider a

local object which is used as a branch condition, for an example see Figure 5.3.B:

if(client obj.IsValidElement(...)). In this case the hot branch will be added

to the predictor but without the test (the test will be a remote invocation from the

server point of view, and thus expensive). The second case, is when the deletion of a

cold branch causes the number of speculative variables to drastically decrease, or the

predictor code becomes conservatively parallelizable. In such a situation the server

may even employ a standard parallelization model to achieve the greatest speed-up.

In Figure 5.3.A, if the true branch from if(elem>-1) ... is found to be hot then

a predictive program can be constructed by keeping the target, and removing the cold

path. Further analysis by the server-side compiler of the predictor may conservatively

167

Figure 5.6 “Inlining” - like speculative model. This figure presents the interaction
between the master/slave threads and the slave thread manager

if full

Masters Array of Seqs

Slaves Queue of Seqs
 } ...

 try {
 ...

 seq = queue.poll();

 slave.checkRecord(seq);

Slave Threads

 try {predictor_iter();}
while(true) {

}

 ...
checkRec(lvars,id); ...

Master Threads

Slave Thread Manager

discover that the vector’s element holder (arr in Figure 5.4) will not generate any

data dependence violations.

The server side of the inlining speculative model is mainly composed from two

communicating instances of our TLS framework, as shown in Figure 5.6.

Master threads, registered to a master thread-manager, execute out of order it-

erations of the distilled program. At the end of every iteration, the live variables of

the master threads are packed into a record residing in a predefined location in an

array of sequences of records indexed by the thread’s id (viewed as a bi-dimensional

array – the Masters Array of Seqs in Figure 5.6). Master threads are not permit-

ted to over-write non-null records since this means that the record has not yet been

committed because at least one thread is lagging behind. When a sequence is filled

up, it is inserted into the slave queue (Slaves Queue of Seqs in Figure 5.6) and a

168

new, empty sequence is placed in the table. The terminating condition of the master

threads is dictated by the client’s code.

The slave threads poll a sequence from the slave-queue (if not empty, otherwise

yield and try again). They request the client (that now acts like a server) to verify

the current sequence containing several live-variable records. A slave-thread’s exit

condition is reached when all of the master-threads are dead and no data in the

slave-queue requires verification. No explicit synchronization is required between the

master and slave threads except for guarded access to the slave-queue.

The client is responsible for verification. If any of the instructions that were

not part of the predictor program (branch conditions excluded) are reached, or a

cold branch excluded from the predictor is taken, then a violation has occurred. The

client throws a dependence-violation exception that will be caught by the correspond-

ing slave thread on the server-side. The slave thread manager will handle the rollback

as described in the previous section, additionally it will set the barrier id flag of

the master thread manager to the id of the thread that detected the violation. Thus

all of the master-threads are going to be in a waiting-state (all have an id greater

than barrier id, otherwise the corresponding sequence wouldn’t have reached the

client), and finally, only one slave-thread (the thread with the lowest id that de-

tected a rollback) is running. Only then are the speculative variables committed and

reinitialized. Control is then handed to the client which sequentially performs the

iterations corresponding to the records in the received sequence.

Figure 5.7 presents the GIDL specification, corresponding to the client program

displayed in Figure 5.3.A, that is needed by our “inlining speculative model”. When

a client discovers a suitable code region for speculation, it locally creates and runs a

169

Figure 5.7 GIDL specification support for the inlining speculative model

1 module MasterSlavePack {

2

3 interface Master1 <

4 T: GetValueObject,

5 C: ContainerPackage::Comparator<T>

6 > {

7 void runMaster(in long i, in long j,

8 in long s, in long l,

9 in long sps, in long ms,

10 in ContainerPackage::Vector<T, C> vect

11);

12 };

13

14 interface Slave1<T: GetValueObject> {

15 struct LiveVariables {

16 T elementAt_result; long thread_nr;

17 long getValue_result;

18 };

19 typedef sequence<LiveVariables> seq_LV;

20

21 void checkRecord(in seq_LV lv)

22 raises(TLSPackage::TLS_Dependence_Violation);

23

24 void performRollbackIteration(in seq_LV lv);

25 };

26 };

27 //...

slave checking-server (type Slave1<...>). The method:

Master1<E, C> createMaster1(Slave1<E> slave)

creates a remote-object that upon invoking the runMaster method will create the

server-side two-level TLS architecture described previously. The checkRecord method

in the Slave1 interface performs the speculation validation. If a dependence violation

exception is thrown the client is requested to sequentially execute several iterations

(performRollbackIteration(...)).

170

As noted in the beginning of this section the inlining model almost always yields

better speed-ups compared to the first approach. This is due to the fact that the

number of remote calls performed by the two models is 1/(MasterCheckingSeqSize∗

NrOfRemoteCallsPerIt) in favor of the inlining speculative model. However, client

code may reference many objects distributed across many servers, among which some

may not support code exchange via a common intermediate representation (IR). More-

over, security issues may disallow the sharing of certain pieces of code or data. In this

case, a combination of the two models is the preferred solution (if the code possesses

high-level parallelism). The master is selected by identifying the remote object that

is invoked most frequently. Predictive programs corresponding to the functionality

of the servers that support a common communication IR and allow code migration

will be also inlined into the master. If the code exposes parallelism, the execution

time may be further decreased by concurrently executing speculative iterations of the

master thread. We can see that one application may create a hierarchy of inlined

speculations and overlapping speculative iterations (first model).

5.3 Results

Automatic library translation across language boundaries is an area yet to be ex-

plored. Unfortunately, it is lacking in formal benchmarks that can accurately measure

the performance effects associated with porting a non distributed application into a

distributed environment. We implemented a GIDL-server which exhibits functional-

ity similar to that found in the STL of C++ (for example, containers, iterators, etc).

Our tests are based on variations of the two examples used throughout this chapter.

The “remote” method granularity was varied from 10 to 10000 instructions (notice

171

Table 5.1 Distributed TLS 1st Architecture (overlapping communication)
Nr = client thread pool size,
G = “remote” method granularity (instructions)
nMc speed-up compared to sequential.
n = no. machines, c = client version
nMcR as above, but with 1% rollback rate.

Nr G 1M1 1M1R 1M2 1M2R 2M1 2M1R 2M2 2M2R
4 10 1.35 1.30 1.30 1.23 2.23 2.05 2.05 1.98
8 10 1.55 1.51 1.56 1.52 3.01 2.72 3.24 2.71
16 10 1.65 1.53 1.62 1.53 3.36 2.76 3.36 2.68
32 10 1.91 1.47 1.69 1.44 3.22 2.37 3.46 2.27
4 103 1.31 1.28 1.30 1.28 2.09 2.03 2.13 2.03
8 103 1.51 1.45 1.53 1.48 3.12 2.72 3.16 3.07
16 103 1.62 1.46 1.62 1.46 3.29 2.94 3.47 2.66
32 103 1.73 1.48 1.70 1.35 3.53 2.31 3.53 2.17
4 104 1.25 1.23 1.32 1.26 2.25 2.03 2.04 1.86
8 104 1.36 1.27 1.50 1.38 2.71 2.35 2.78 2.39
16 104 1.41 1.24 1.55 1.32 2.83 2.35 3.17 2.41
32 104 1.44 1.25 1.63 1.24 2.73 2.01 3.41 2.05

that each iteration performs between 3 and 5 remote calls). Our tests were carried

out on two configurations. One configuration ran on a single machine which acted

as both client, and server (2.4GHz P4/512 Mb). Another configuration employed

two machines on the same local network (both 800MHz P3/256Mb RAM). All the

machines we have used are running Linux.

We applied our TLS framework to distributed programming in the anticipation

that speed-ups could be obtained by overlapping network stalls with speculative com-

putation, thereby minimizing idle times. Table 5.1 shows the speed-ups obtained by

employing our first distributed TLS model compared to sequential program execution.

In a rollback-free (“ideal”) execution, employing a higher number of client threads

generates a better speed-up (32 client threads achieve a 1.91, 1.69, 3.22, 3.46

times speed-up). Our framework is rollback-tolerant in the sense that it gracefully

172

Table 5.2 Distributed TLS 2nd Architecture (“inlining”-like speculation)
G = “remote” method granularity (instructions)
SS = slave sequence size,
nMc speed-up compared to sequential.
n = no. machines, c = client version
nMcR as above, but with 1% rollback rate.

G SS 1M1 1M1R 1M2 1M2R 2M1 2M1R 2M2 2M2R
10 1 3.02 2.31 4.69 3.27 5.86 4.70 8.96 6.58
103 1 2.88 2.22 4.20 3.06 4.96 4.67 10.22 9.21
104 1 1.96 1.32 2.86 1.88 3.76 2.26 5.19 2.99
10 10 9.59 3.20 11.54 3.65 15.57 4.75 21.10 6.18
103 10 7.35 1.77 9.33 2.54 14.05 2.52 14.83 2.86
104 10 2.97 0.71 4.13 0.89 3.83 1.10 5.62 1.57

accommodates a 1% rollback probability. In examination of the cost of a rollback,

we notice that the performance difference with respect to the ideal case decreases

with the size of the thread pool. This is due to the greater number of inter-thread

dependencies resulting in redundant work and increased synchronization overhead.

The observed number of threads that provided the best speed-up was either 8 or 16.

Our second model clearly yields substantial performance benefits compared to the

the first model as demonstrated in Table 5.2. There are two main reasons for this.

First, we have eliminated corba’s inherent remote-call dispatch costs by “inlining”

the client code into the server. All remote calls in the initial code are now handled

locally. Second, the network overhead is reduced by batched communication of the

live variables. The server is configured to use 15 concurrent slave threads in order to

“pipeline” the remote-client checking phase.

In an ideal (rollback-free) execution scenario, the application of this model obtains

impressive speed-ups. On a single machine, execution time was 9.6 and 11.5 times

faster, and 15.6 and 21.1 times faster over a distributed network with a method

granularity, and slave sequence size of 10 (slave sequence size represents the number

173

of records sent in a batch for the client to check for correctness). However, for a

1% rollback probability, the corresponding speed-up decreases dramatically (3.20 –

6.18). This is because, in our implementation, the rollbacks are handled by asking the

client to sequentially execute the iterations associated with the sequence of records

that have generated the violation (10 in our case). We are currently working on

enhancing our architecture to better handle the rollback situation by sequentially

executing only the “guilty” iteration. However, the rollback handling will remain

expensive (see results in Table 5.2 for sequence-size 1) and influence our predicted

program to be more “correct” than “distilled”.

Table 5.1 and Table 5.2 show that for both our models, the speed-up decreases

when the method-granularity increases. However, in this case, taking advantage of

the machine’s (potential) parallelism becomes very important.

To summerize this section, the performance gain for our first model (with respect

to the sequential client program execution time) depends on the size of the thread

pool, on the remote method granularity, and on the rollback ratio. The best speed-

ups, for a rollback-free execution, are obtained with 32 client threads and range from

144% to 191% when the client and server share the same machine, and from 353% to

341% for the distributed case, when the method granularity varies from 10000, to 10

respectively. For a 1% rollback rate, the best speed-ups are obtained using a number

of threads between 8 and 16. They range from 127% to 153% for the single machine

case and from 235% to 276% when the client and server are across a local network, for

a method granularity of 10000 and 10 respectively.

The second model mimics “procedure inlining” and is very effective in eliminating

the distributed system overhead. For a rollback-free execution we obtained speed-ups

174

between 297% and 1154% for a single machine space, and between 383% and 2110% for

the distributed case, for a method granularity of 10000 and 10 respectively. We also

notice that a 1% rollback rate will substantially decrease these speed-ups, therefore

we prefer a more “correct” rather than a more “distilled” predictor.

5.4 Chapter Conclusion

This chapter has examined the potential for thread level speculation in a new area:

the environment of distributed software components. We have found that substantial

speed-ups may be achieved from this level of parallelism.

We propose two TLS models employed in a distributed setting that substantially

reduce the network and call dispatch overhead. Additional speed-up is achieved when

the underlying hardware is a multiprocessor. This becomes more noticeable as the

remote method granularity increases.

The first model performs concurrent speculative iterations on the client, overlap-

ping with communications. The second model mimics procedure inlining to eliminate

distributed system overhead.

The performance gain depends on many factors. For the first model speed-up

ranges from 1.4× to 1.9× on a single machine, and about 3.5× when distributed. For

the second model speed-up ranges roughly between 3× and 11.5× on one machine,

and between 3.8× and 22.1× when distributed. Allowing a 1% rollback rate gives a

somewhat smaller speed up for the first model, and substantially decreases speed-up

for the second model.

175

The creation of speculatively aware container classes proved to be a highly benefi-

cial idea and warants futher investigation to determine other commonly used libraries

where thread-level speculation can be exploited.

176

Chapter 6

Conclusions

The overall goal of this thesis has been to examine the feasibility of using parametric

polymorphism in the context of multi-language software component systems. We

have shown that there are no major impediments to doing this.

The first step has been to investigate an interoperability solution between two

languages with very different type models: the weakly typed Maple, against the

strongly typed, higer order type system Aldor. The resulting framework, named Alma,

is higher-level than the “usual” foreign function interface approaches, and it fosters

a deeper connectivity between the two environments. As a consequence, the facilities

of the Aldor language are naturally integrated in the Maple environment. Alma also

represents a non-traditional approach to structuring computer algebra software: using

an efficient, compiled language, designed for writting complex mathematical libraries

together with a top system based on user interface priorities and ease of scripting.

The experiment described in Sections 2.1 has motivated us to explore a systematic

solution to languages interoperability in the presence of parametric polymorphism.

We have investigated how to resolve different binding times and parametric polymor-

177

phism semantics in a range of representative programming languages, and have iden-

tified a common ground that can be suitably mapped to different language bindings.

We have presented gidl: a generic component architecture extension that provides

support for parameterized components, and can be easily adapted to work on top of

various software component architectures in use today (corba, jni, dcom).

We have introduced the semantics of the gidl parametric polymorphism model,

and the language bindings for C++, Java, and Aldor. We have shown that qualification

of type parameters can improve the precision and safety of the specification interface,

and it can be effectively supported and enforced even when the target language does

not allow it. We have described our implementation of gidl, consisting of a gidl

to idl compiler and tools for generating linkage code under the language bindings,

and have shown that our architecture preserves the backward compatibility with non-

generic applications.

Furthemore, we have described how gidl can be used to export C++’s STL and

Aldor’s BasicMath libraries to a multi-language environment, and have discussed our

mappings in the context of automatic library interface generation. These translations

tested our generic model and the gidl architecture and they have shown that complex

language concepts such as orthogonality and functional subtyping can be expressed at

gidl level.

Our library translation experiments have revealed performance issues related to

the inter-component communication stalls. To address these, we have proposed and

evaluated two speculative models that attempt to reduce some of the method call

overhead associated with the distributed objects. Thread-level speculation exploits

parallelism in code which is not provable free of data dependencies. Our application of

178

thread-level speculation attempts to overlap the client-server communication overhead

with useful computation performed on the server side in the form of speculation. Our

evaluation of applying thread-level speculation to client-server applications resulted

in substantial performance increases, on the order of 3 times for our initial model,

and 21 times for the second.

Parametric polymorphism is an important programming language idea that has

achieved widespread acceptance over the past decade. Making it available to multi-

language components is an important problem, together with developing applicable

compiler optimization techniques. Our goal has been to make a contribution in this

area.

179

References

[1] J.S. Auerbach, D.F. Bacon, A.P. Goldberg, G.S. Goldszmidt, A.S. Gopal, M.T.
Kennedy, A.R. Lowry, J.R. Russell, W. Silverman, R.E. Strom, D.M. Yellin,
and S.A. Yemini. High-Level Language Support for Programming Distributed
Systems. In Proceedings of the 1992 International Conference on Computer Lan-
guages, pages 320–330, 1992.

[2] Laurent Bernardin, Bruce Char, and Erich Kaltofen. Symbolic Computation in
Java: An Appraisement. In Proc. ISSAC 1999, pages 237–244. ACM, 1999.

[3] Anasua Bhowmik and Manoj Franklin. A General Compiler Framework for
Speculative Multithreading. In SPAA’02 Proceedings. ACM, 2002.

[4] M. Bronstein. SUM-IT: A Strongly-Typed Embeddable Computer Algebra Li-
brary. In Proceedings of DISCO’96, Karlsruhe. Springer LNCS 1128, 1996.

[5] M. G. Burke, J. D. Choi, S. Fink, D. Grove, M. Hind, V. Sarkar, M. J. Serrano,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeno Dynamic Optimizing
Compiler for Java. In JAVA ’99: Proceedings of the ACM 1999 conference on
Java Grande, pages 129–141. ACM Press, 1999.

[6] Peter Canning, William Cook, Walter Hill, and Walter Olthoff. F-Bounded Poly-
morphism for Object Oriented Programming. In ACM Symposium on Functional
Programming Languages and Computer Architecture (FPCA), pages 273–280,
1989.

[7] Luca Cardelli. Type Systems. In Handbook of Computer Science and Engineer-
ing, Chapter 103, 1997.

[8] Luca Cardelli. Basic Polymorphism Typechecking. In Science of Computer
Programming, pages 8 (2): 147–172, April 1987.

[9] R. Cartwright and G. L. Steele. Compatible Genericity with Run Time Types
for the Java Programming Language. In OOPSLA’00 Proceedings. ACM, 2000.

[10] Michael K. Chen and Kunle Olukotun. Exploiting Method Level Parallelism in
Single Threaded Java Programs. In PACT’98 Proceedings. IEEE, 1998.

180

[11] Y. Chicha, F. Defaix, and S. Watt. TR537 - The Aldor/C++ Interface: User’s
Guide. Technical report, Computer Science Department - The University of
Western Ontario, 1999.

[12] Y. Chicha, F. Defaix, and S. Watt. TR538 - The Aldor/C++ Interface: Technical
Reference. Technical report, Computer Science Department - The University of
Western Ontario, 1999.

[13] Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt. Parametric Polymorphism for
Computer Algebra Software Components. In Proc. 6th International Symposium
on Symbolic and Numeric Algorithms for Scientific Comput., pages 119–130.
Mirton Publishing House, 2004.

[14] James P. Cohoon and Jack W. Davidson. C++ Program Design: An Introduction
to Programming and Object-Oriented Design, 2nd Edition. Boston: McGraw-
Hill, 1999.

[15] C. Cowan and H. Lutfiyya. A Wait-Free Algorithm for Optimistic Program-
ming: HOPE Realized. In Proceedings of the 16th International Conference on
Distributed Computing Systems, pages 484–493, 1995.

[16] C. Cowan, H. Lutfiyya, and M. Bauer. Performance Benefits of Optimistic Pro-
gramming: A Measure of HOPE. In Proceedings of the Fourth IEEE Interna-
tional Symposium on High Performance Distributed Computing, pages 197–204,
1995.

[17] Haskel B. Curry and Robert Feys. Combinatory Logic, volume 1. North Holland,
second edition, 1968.

[18] Luis Damas and Robin Milner. Principal Type-Schemes for Functional Programs.
In ACM Symposium on Principles of Programming Languages (POPL), pages
207–212, 1982.

[19] Atul Saini David R. Musser, Gillmer J. Derge. STL Tutorial and Reference
Guide, Second Edition. Addison-Wesley (ISBN 0-201-37923-6), 2001.

[20] James Donahue and Alan Demers. Data Types are Values. In ACM Transactions
in Programming Languages and Systems, pages 426–445, 1985.

[21] J. G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen,
B. D. Saunders, W. J. Turner, and G. Villard. LinBox: A Generic Library for
Exact Linear Algebra. In Proc. of ICMS, pages 40–50. World Scientific Pub,
2002.

[22] Jim Farley. Java Distributed Computing. O’Reilly, 1998. ”Wiley computer
publishing.”.

181

[23] Matthew Fluet and Riccardo Pucella. Phantom Types and Subtyping. In IFIP
TCS, pages 448–460, 2002.

[24] Jean Yves Girard. Interpretation Fonctionnelle et Elimination des Coupures de
l’Arithmetique d’Ordre Superieur. In Proceedings of the Second Scandinavian
Logic Symposium, pages 63–92. North-Holland, 1971.

[25] A. Goldberg, A. Gopal, K. Li, R. Strom, and D. Bacon. Transparent Recovery
of Mach Applications. In USENIX MACH Symposium, 1990.

[26] The Computational Mathematics Group. The BasicMath Library. NAG Ltd,
Oxford, UK, 1998. http://www.nag.co.uk/projects/FRISCO.html.

[27] The Numerical Algorithms Group. The FRISCO Project,
http://www.nag.co.uk/projects/frisco.html.

[28] William A. Howard. The formulas-as-types notion of construction. In To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages
479–490. Academic Press, New York, 1980.

[29] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A
Minimal Core Calculus for Java and GJ. In Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), 1999.

[30] Ralph E. Johnson. Type Object. In EuroPLoP, 1996.

[31] M. P. Jones. A System of Constructor Classes: Overloading and Implicit Higher-
Order Polymorphism. In Proc. Functional Programming Languages and Com-
puter Architecture, pages 52–61. ACM, 1993.

[32] Iffat H. Kazi and David J. Lilja. JavaSpMT: A Speculative Thread Pipelining
Parallelization Model for Java Programs. In PPOPP’01 Proceedings. ACM, 2001.

[33] Kate Keahey. A Brief Tutorial on CORBA,
http://www.cs.indiana.edu/ kksiazek/tuto.html.

[34] Andrew Kennedy and Don Syme. Design and Implementation of Generics for
the .NET Common Language Runtime. In Proceedings of the ACM SIGPLAN
2001 conference, 2000.

[35] Seon Wook Kim, Rudolf Eigenmann Chong-Liang Ooi, Babak Falsafi, and T. N.
Vijaykumar. Reference Idempotency Analysis: A Framework for Optimizing
Speculative Execution. In PPOPP’01 Proceedings. ACM, 2001.

[36] J-P. Lafon. Les Formalismes Fondamentaux de l’Algèbre Commutative. Her-
mann, Paris, 1974.

182

[37] Henry Ledgard. ADA An Introduction/ADA Reference Manual. Springer-Verlag,
New York, 1981.

[38] Barbara Liskov, Russell Atkinson, Toby Bloom, Elliott Moss, J. Craig Schaffert,
Robert Scheifler, and Alan Snyder. CLU Reference Manual. Springer-Verlag,
1981.

[39] D. MacQueen. An Implementation of SML Modules. In Conference on Lisp and
Functional Programming, pages 212–223. ACM, 1988.

[40] Donis Marshall. .NET Security Programming. Wiley, 2003.

[41] N. McCracken. The Typechecking of Programs with Implicit Type Structure. In
Semantics of Data Types, LNCS n.173, pages 301–316. Springer-Verlag, 1984.

[42] Microsoft. An Introduction to Microsoft .NET Remoting Framework.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/introremoting.asp.

[43] Microsoft. DCOM Technical Overview.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn dcomtec.asp, 1996.

[44] Robin Milner. A Theory of Type Polymorphism in Programming. In Journal of
Computer and System Sciences, Vol. 17, pages 348–375, 1978.

[45] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. Mc-
Carron, and P. DeMarco. Maple 9 Advanced Programming Guide. Maplesoft,
2003.

[46] M. Moreno Maza. On Triangular Decompositions of Algebraic Varieties. Techni-
cal Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000
Conference, Bath, England.

[47] M. Moreno Maza. Technical Report TR 4/99, On Triangular Decompositions of
Algebraic Varieties. Technical report, NAG Ltd, Oxford, UK, 1999.

[48] Greg Nelson. Systems Programming with MODULA-3. Prentice Hall, 1991.

[49] C. Oancea and S. M. Watt. A Framework for Using Aldor Libraries with Maple.
In Actas de los Encuentros de Algebra Computacional y Aplicaciones, pages 219–
224, 2004.

[50] C. E. Oancea, J. W. A. Selby, M. Giesbrecht, and S. M. Watt. Distributed
Models of Thread-Level Speculation. In Proceedings of the PDPTA’05, pages
920–927, 2005.

183

[51] C. E. Oancea and S. M. Watt. Domains and Expressions: An Interface between
Two Approaches to Computer Algebra. In Proceedings of the ACM ISSAC 2005,
pages 261–269, 2005.

[52] C. E. Oancea and S. M. Watt. Parametric Polimorphism for Software Component
Architectures. In Proceedings of the ACM OOPSLA, 2005.

[53] M. Odersky, P. Wadler, G. Bracha, and D. Stoutamire. Pizza into Java: Translat-
ing Theory into Practice. In 24th ACM Symposium on Principles of Programming
Languages, pages 146–159. ACM, 1997.

[54] M. Odersky, P. Wadler, G. Bracha, and D. Stoutamire. Making the Future Safe
for the Past: Adding Genericity to the Java Programming Language. In Craig
Chambers, editor, ACM Symposium on Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA), pages 183–200, 1998.

[55] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case
for a Single-Chip Multiprocessor. In ASPLOS-VII: Proceedings of the seventh
international conference on Architectural support for programming languages and
operating systems, pages 2–11. ACM Press, 1996.

[56] OMG. Common Object Request Broker Architecture — OMG IDL Syntax and
Semantics. Revision2.4 (October 2000), OMG Specification, 2000.

[57] OMG. Common Object Request Broker: Architecture and Specification. Revi-
sion2.4 (October 2000), OMG Specification, 2000.

[58] OpenMath. Special Issue on OpenMath. ACM SIGSAM Bulletin, 34(2), June
2000.

[59] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[60] G. D. Plotkin. A Note on Inductive Generalization. In Machine Intelligence,
pages 153–163, 1970.

[61] M. Prvulovic, M. J. Garzar, L. Rauchwerger, and J. Torrellas. Removing Archi-
tectural Bottlenecks to the Scalability of Speculative Parallelization. In ISCA
’01: Proceedings of the 28th annual international symposium on Computer ar-
chitecture, pages 204–215. ACM Press, 2001.

[62] James Purtilo. Applications of a Software Interconnection System in Mathemat-
ical Problem Solving Environments. In Symposium on Symbolic and Algebraic
Manipulation (SYMSAC 86), pages 16–23. ACM, 1986.

[63] John C. Reynolds. Transformational Systems and the Algebraic Structure of
Atomic Formulas. In Machine Intelligence, 5(1), pages 135–151, 1970.

184

[64] John C Reynolds. Towards a Theory of Type Structure. In Proc. Colloque sur
la Programmation, pages 408–425. Springer-Verlag LNCS 19, 1974.

[65] John C Reynolds. Theories of Programming Languages. Cambridge University
Press, 1998.

[66] P. Rundberg and P. Stenstrom. An All-Software Thread-Level Data Depen-
dence Speculation System for Multiprocessors. The Journal of Instruction-Level
Parallelism, 1999.

[67] Y. Sazeides and J. E. Smith. The Predictability of Data Values. In MICRO
30: Proceedings of the 30th annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 248–258. IEEE Computer Society, 1997.

[68] Victor Shoup. NTL: A Library for Doing Number Theory,
http://www.shoup.net/ntl/doc/tour.html.

[69] Bjarne Stroustrup. A History of C++: 1979-1991. In Paper and talk transcript
from History of Programming Languages II conference, 1993.

[70] Sun. Java Native Interface Homepage,
http://java.sun.com/j2se/1.4.2/docs/guide/jni/.

[71] J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Le, and B. Sinharoy. POWER4
System Microarchitecture. IBM Journal of Research and Development, 46(1):5–
26, 2002.

[72] Sami Vaisanen. Microsoft Component Technology Concepts: ActiveX, COM,
DCOM, COM+, 2005.

[73] Mirko Viroli and Antonio Natali. Parametric Polymorphism in Java: an Ap-
proach to Translation Based on Reflective Features. In OOPSLA’00 Proceedings,
pages 146–165. ACM, 2000.

[74] S. M. Watt. A Study in the Integration of Computer Algebra Systems: Memory
Management in a Maple-Aldor Environment. In Proc. International Congress of
Mathematical Software, pages 405–411, 2002.

[75] S. M. Watt. Aldor. In J. Grabmeier, E. Kaltofen, and V. Weispfenning, editors,
Handbook of Computer Algebra, pages 154–160, 2003.

[76] S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, J.M. Steinbach, and R.S. Sutor.
A First Report on the A] Compiler. In ISSAC 94 Proceedings, pages 25–31. ACM,
1994.

185

[77] Stephen M. Watt, Peter A. Broadbery, Samuel S. Dooley, Pietro Iglio, Scott C.
Morrison, Jonathan M. Steinbach, and Robert S. Sutor. AXIOM Library Com-
piler User Guide. Numerical Algorithms Group (ISBN 1-85206-106-5), 1994.

[78] Dachuan Yu, Andrew Kennedy, and Don Syme. Formalization of Generics for the
.NET Common Language Runtime. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2004.

[79] Antonia Zhai, Cristopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry.
Compiler Optimization of Scalar Value Communication Between Speculative
Threads. In ASPLOS X 2002 Proceedings. ACM, 2002.

[80] Craig Zilles and Gurindar Sohi. Master/Slave Speculative Parallelization. In
Micro-35 Proceedings. ACM, 2002.

186

Chapter 7

Vita

Cosmin Eugen Oancea was born in Bucharest, Romania, in 1976. In 1999 he ob-

tained the bachelor with honors in Electrical Engineering at the “Politehnica” Uni-

versity of Bucharest. A year later he successfully defended his M.Sc. thesis entitled

“mpeg4-compliant Facial Calibration and Animation Model using Radial Basis Func-

tion (RBF) Interpolation Techniques”, at the same university. Then he started his

research in the area of programming languages, at the Ontario Research Centre for

Computer Algebra group, the Computer Science Department, The University of West-

ern Ontario, London, Canada. This document is his Ph.D. thesis and was successfully

defended in November 2005. At the moment he is working as a Post Doctoral Fellow

in the same group.

List of Refereed Conference Proceedings:

[1] C. E. Oancea and S. M. Watt, “Parametric Polymorphism for Software Com-

ponent Architectures,” ACM Object-Oriented Programming, Systems, Languages and

Applications OOPSLA’05, October 2005, San Diego, US

187

[2] C. E. Oancea and S. M. Watt, “Domains and Expressions: An Interface Be-

tween Two Approaches to Computer Algebra,” ACM International Symposium on

Symbolic and Algebraic Computation ISSAC’05, July 2005, Beijing, China

[3] C. E. Oancea, J. W. Selby, M. Giesbrecht, and S. M. Watt, “Distributed Models

of Thread Level Speculation,” International Conference on Parallel and Distributed

Processing Techniques and Applications PDPTA’05, June 2005, Las Vegas, US

[4] C. E. Oancea, C. So, and S. M. Watt, “Generalization in Maple,” Maple

Conference, July 2005, Waterloo, Canada

[5] Y. Chicha, M. Lloyd, C. E. Oancea, and S. M. Watt, “Parametric Polymor-

phism for Computer Algebra Software Components,” 6th International Symposium

on Symbolic and Numeric Algorithms for Scientific Computing SYNASC’04, Sept.

2004, Timisoara, Romania

[6] C. E. Oancea and S. M. Watt, “A Framework for Using Aldor Libraries with

Maple,” EACA’04 satellite conference to the ISSAC’04, June 2004, Universidad de

Santander, Spain

[7] F. Boulier, M. Moreno Maza, and C. E. Oancea, “A new henselian construc-

tion and its application to polynomial gcds over direct products of fields,” EACA’04

satellite conference to the ISSAC’04, June 2004, Universidad de Santander, Spain

[8] R. G. Belu, C. E. Oancea, and A. C. Belu, “A Wavelet-based Simulation for

Identification and Classification of Short-Term Power Disturbances and Transients as

a Teaching Aid,” Proceedings 2003 Annual ASEE Conference, Nashville, TN, US

[9] R. G. Belu and C. E. Oancea, “A 2-D indoor radio propagation modeling,”

FIE (Frontiers in Education) Confference, November 2003, Boulder, CO, US

