
Behavioral Simulations in MapReduce

Guozhang Wang, Marcos Vaz Salles, Benjamin Sowell, Xun Wang, Tuan Cao,
Alan Demers, Johannes Gehrke, Walker White

Cornell University
Ithaca, NY 14853, USA

{guoz, vmarcos, sowell, tuancao, ademers, johannes, wmwhite}@cs.cornell.edu
{xw239}@cornell.edu

ABSTRACT
In many scientific domains, researchers are turning to large-scale
behavioral simulations to better understand real-world phenomena.
While there has been a great deal of work on simulation tools
from the high-performance computing community, behavioral sim-
ulations remain challenging to program and automatically scale in
parallel environments. In this paper we present BRACE (Big Red
Agent-based Computation Engine), which extends the MapReduce
framework to process these simulations efficiently across a clus-
ter. We can leverage spatial locality to treat behavioral simulations
as iterated spatial joins and greatly reduce the communication be-
tween nodes. In our experiments we achieve nearly linear scale-up
on several realistic simulations.

Though processing behavioral simulations in parallel as iterated
spatial joins can be very efficient, it can be much simpler for the do-
main scientists to program the behavior of a single agent. Further-
more, many simulations include a considerable amount of complex
computation and message passing between agents, which makes
it important to optimize the performance of a single node and the
communication across nodes. To address both of these challenges,
BRACE includes a high-level language called BRASIL (the Big
Red Agent SImulation Language). BRASIL has object-oriented
features for programming simulations, but can be compiled to a
dataflow representation for automatic parallelization and optimiza-
tion. We show that by using various optimization techniques, we
can achieve both scalability and single-node performance similar
to that of a hand-coded simulation.

1. INTRODUCTION
Behavioral simulations, also called agent-based simulations, are

instrumental in tackling the ecological and infrastructure chal-
lenges of our society. These simulations allow scientists to under-
stand large complex systems such as transportation networks, in-
sect swarms, or fish schools by modeling the behavior of millions
of individual agents inside the system [6, 11, 13].

For example, transportation simulations are being used to ad-
dress traffic congestion by evaluating proposed traffic management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

systems before implementing them [11]. This is a very important
problem as traffic congestion cost $87.2 billion and required 2.8
billion gallons of extra fuel and 4.2 billion hours of extra time in
the U.S. in 2007 alone [44]. Scientists also use behavioral simu-
lations to model collective animal motion, such as that of locust
swarms or fish schools [6, 13]. Understanding these phenomena is
crucial, as they directly affect human food security [24].

Despite their huge importance, it remains difficult to develop
large-scale behavioral simulations. Current systems either offer
high-level programming abstractions, but are not scalable [22, 33,
36], or achieve scalability by hand-coding particular simulation
models using low-level parallel frameworks, such as MPI [50].

This paper proposes to close this gap by bringing database-style
programmability and scalability to agent-based simulations. Our
core insight is that behavioral simulations may be regarded as com-
putations driven by large iterated spatial joins. We introduce a new
simulation engine, called BRACE (Big Red Agent-based Compu-
tation Engine), that extends the popular MapReduce dataflow pro-
gramming model to these iterated computations. BRACE embod-
ies a high-level programming language called BRASIL, which is
compiled into an optimized shared-nothing, in-memory MapRe-
duce runtime. The design of BRACE is motivated by the require-
ments of behavioral simulations, explained below.

1.1 Requirements for Simulation Platforms
(1) Support for Complex Agent Interaction. Behavioral simula-
tions include frequent local interactions between individual entities
in the simulation system, or agents. In particular, agents may affect
the behavior decisions of other agents, and multiple agents may is-
sue concurrent writes to the same agent. A simulation framework
should support a high degree of agent interaction without excessive
synchronization or rollbacks. This precludes discrete event simu-
lation engines or other approaches based on task parallelism and
asynchronous message exchange.
(2) Automatic Scalability. Scientists need to scale their simula-
tions to millions or billions of agents to accurately model phenom-
ena such as city-wide traffic or swarms of insects [6, 13, 21]. These
scales make it essential to use data parallelism to distribute agents
across many nodes. This is complicated by the interaction between
agents, which may require communication between several nodes.
Rather than requiring scientists to write complex and error-prone
parallel code, the platform should automatically distribute agents
to achieve scalability.
(3) High Performance. Behavioral simulations are often ex-
tremely complex, involving sophisticated numerical computations
and elaborate decision procedures. Much existing work on behav-
ioral simulations is from the high-performance computing commu-

nity, and they frequently resort to hand-coding specific simulations
in a low-level language to achieve acceptable performance [21, 38].
A general purpose framework must be competitive with these hand-
coded applications in order to gain acceptance.
(4) Commodity Hardware. Historically, many scientists have
used large shared-memory supercomputer systems for their sim-
ulations. Such machines are tremendously expensive, and cannot
scale beyond their original capacity. We believe that the next gen-
eration of simulation platforms will target shared-nothing systems
and will be deployed on local clusters or in the cloud on services
such as Amazon’s EC2 [2].
(5) Simple Programming Model. Domain scientists have shown
their willingness to try simulation platforms that provide simple,
high-level programming abstractions, even at some cost in perfor-
mance and scalability [22, 33, 36]. Nevertheless, a behavioral sim-
ulation framework should provide an expressive and high-level pro-
gramming model without sacrificing performance.

1.2 Contributions
The main contributions we make with this work are summarized

in the following:

• We show how behavioral simulations can be abstracted in
the state-effect pattern, a programming pattern we developed
for scaling the number of non-player characters in computer
games [51, 52]. This pattern allows for a high degree of con-
currency among strongly interacting agents (Section 2).

• We show how MapReduce can be used to scale behavioral
simulations expressed in the state-effect pattern across clus-
ters. We abstract these simulations as iterated spatial joins
and introduce a new main memory MapReduce runtime that
incorporates optimizations motivated by the spatial proper-
ties of simulations (Section 3).

• We present a new scripting language for simulations that
compiles into our MapReduce framework and allows for al-
gebraic optimizations in mappers and reducers. This lan-
guage hides all the complexities of modeling computations
in MapReduce and parallel programming from domain sci-
entists (Section 4).

• We perform an experimental evaluation with two real-world
behavioral simulations that shows our system has nearly lin-
ear scale-up and single-node performance that is comparable
to a hand-coded simulation. (Section 5).

We further discuss related work to our approach in Section 6.

2. BEHAVIORAL SIMULATIONS IN THE
STATE-EFFECT PATTERN

Behavioral simulations model large numbers of individual agents
that interact in a complex environment. Unlike scientific simu-
lations that can be modeled as systems of equations, agents in a
behavioral simulation can execute complex programs that include
non-trivial control flow. In order to illustrate the functioning of
behavioral simulations, we use a traffic simulation [54] and a fish
school simulation [13] as running examples. Details on these sim-
ulations can be found in Appendix C.
Concurrency in Behavioral Simulations. Logically, all agents in
a behavioral simulation execute actions concurrently. These actions
usually result from interactions with other agents. In a fish school
simulation, for example, a fish continuously updates its direction of

movement based on the orientations of other fish within its visibil-
ity range. This implies that it is necessary to ensure consistency on
multiple concurrent reads and writes among several fish.

Traditional discrete-event simulation platforms handle concur-
rency by either preempting or avoiding conflicts [9, 39, 15, 35,
57]. These systems implement variants of pessimistic or opti-
mistic concurrency control schemes. The frequency of local in-
teractions among agents in a behavioral simulation, however, in-
troduces many conflicts. This leads to poor scalability due to ei-
ther excessive synchronization or frequent rollbacks, depending on
the technique employed. Thus, these previous solutions, while pro-
grammable, do not allow us to scale behavioral simulations to large
scenarios.
The State-Effect Pattern. In order to deal with concurrency in be-
havioral simulations, we observe that most behavioral simulations
can be modeled under a similar structure, which we introduce be-
low. Behavioral simulations use a time-stepped model in which
time is discretized into “ticks” that represent the smallest time pe-
riod of interest. Events that occur during the same tick are treated
as simultaneous and can be reordered or parallelized. This means
that an agent’s decisions cannot be based on previous actions made
during the same tick. An agent can only read the state of the world
as of the previous tick. For example, in the traffic simulation, each
car inspects the positions and velocities of other cars as of the be-
ginning of the tick in order to make lane changing decisions.

In previous work on scaling computer games, we proposed a
model for this kind of time-stepped behavior called the state-effect
pattern [51, 52]. The basic idea is to separate read and write op-
erations in order to limit the synchronization necessary between
agents. In the state-effect pattern, the attributes of an agent are sep-
arated into states and effects, where states are public attributes that
are updated only at tick boundaries, and effects are used for inter-
mediate computations as agents interact. Therefore state attributes
remain fixed during a tick, and only need to be synchronized at the
end of each tick. Furthermore, each effect attribute has an associ-
ated decomposable and order-independent combinator function for
combining multiple assignments, i.e., updates to this attribute, dur-
ing a tick. This allows us to compute effects in parallel and combine
the results without worrying about concurrent writes. For example,
in the fish school simulation every fish agent has an orientation vec-
tor as an effect attribute. This effect attribute uses vector addition
as its combinator function, which is invoked on assignments of the
orientations of nearby fish. Since vector addition is commutative,
we can process these assignments in any order.

Tick

Update
Phase

Query
Phase

Effects

State

New
State

In the state-effect pattern, each tick is divided
into two phases: the query phase and the update
phase, as shown in the figure on the right. In the
query phase, each agent queries the state of the
world and assigns effect values, which are com-
bined using the appropriate combinator function.
To ensure the property that the actions during a tick
are conceptually simultaneous, state variables are
read-only during the query phase and effect vari-
ables are write-only.

In the update phase, each agent can read its state attributes and
the effect attributes computed from the query phase; it uses these
values to compute the new state attributes for the next tick. In the
fish school simulation, the orientation effects computed during the
query phase are read during the update phase to compute a fish’s
new velocity vector, represented as a state attribute. In order to
ensure that updates do not conflict, each agent can only read and
write its own attributes during the update phase. Hence, the only
way that agents can communicate is through effect assignments in

effects mapt
1 reducet

1 mapt
2 reducet

2 mapt+1
1

local updatet−1
queryt — — updatet

distributet distributet+1

non- updatet−1 non-local — effect updatet

local distributet effectt aggregationt distributet+1

Table 1: The state-effect pattern in MapReduce

the query phase. We classify effect assignments into local and non-
local assignments. In a local assignment, an agent updates one of
its own effect attributes; in a non-local assignment, an agent writes
to an effect attribute of a different agent.
The Neighborhood Property. The state-effect pattern addresses
concurrency in a behavioral simulation by limiting the synchroniza-
tion necessary during a tick. However, the synchronization at tick
boundaries may still be very expensive, as it is possible that every
agent needs to query every other agent in the simulated world to
compute its effects. We observe that this rarely occurs in practice.
Most behavioral simulations are spatial, and simulated agents can
only interact with other agents that are close according to a distance
metric [30]. For example, a fish can only observe other fish within
a limited distance ρ [13]. We will take advantage of this property of
a large class of behavioral simulations to optimize communication
within and across ticks.

3. MAPREDUCE FOR SIMULATIONS
In this section, we abstract behavioral simulations modeled ac-

cording to the state-effect pattern and neighborhood property as
computations driven by iterated spatial joins (Section 3.1). We pro-
ceed by showing how these joins can be expressed in the MapRe-
duce framework (Section 3.2). We then propose a system called
BRACE to process these joins efficiently (Section 3.3).

3.1 Simulations as Iterated Spatial Joins
In Section 2, we observed that behavioral simulations can be

modeled by two important properties: the state-effect pattern and
the neighborhood property. The state-effect pattern essentially
characterizes behavioral simulations as iterated computations with
two phases: a query phase in which agents inspect their environ-
ment to compute effects, and an update phase in which agents up-
date their own state.

The neighborhood property introduces two important restrictions
on these phases, called visibility and reachability. We say that the
visible region of an agent is the region of space containing agents
that this agent can read from or assign effects to. An agent needs
access to all the agents in its visible region to compute its query
phase. Thus a simulation in which agents have small visible regions
requires less communication than one with very large or unbounded
visible regions. Similarly, we can define an agent’s reachable re-
gion as the region that the agent can move to after the update phase.
This is essentially a measure of how much the spatial distribution
of agents can change between ticks. When agents have small reach-
able regions, a spatial partitioning of the agents is likely to remain
balanced for several ticks. Frequently an agent’s reachable region
will be a subset of its visible region (an agent cannot move farther
than it can see), but this is not required.

We observe that since agents only query other agents within
their visible regions, processing a tick is similar to a spatial self-
join [34]. We join each agent with the set of agents in its visible
region and perform the query phase using only these agents. Dur-
ing the update phase, agents move to new positions within their
reachable regions and we perform a new iteration of the join during
the next tick. We will use this observation next to parallelize be-
havioral simulations efficiently in the MapReduce framework. As

we will see in Section 4, the observation also enables us to apply
efficient database indexing techniques, e.g., [18, 37].

3.2 Iterated Spatial Joins in MapReduce
In this section, we show how to model spatial joins in MapRe-

duce. A formal version of this model appears in Appendix A.
MapReduce has been criticized for being inefficient at processing
joins [53] and also inadequate for iterative computations without
modification [19]. However, the spatial properties of simulations
allow us to process them effectively without excessive communica-
tion. Our basic strategy uses the technique of Zhang et al. to com-
pute a spatial join in MapReduce [56]. Each map task is responsible
for spatially partitioning agents into a number of disjoint regions,
and the reduce tasks join the agents using their visible regions.

The set of agents assigned to a particular partition is called that
partition’s owned set. Note that we cannot process partitions com-
pletely independently because each agent needs access to its entire
visible region, which may intersect several partitions. To address
this, we define the visible region of a partition as the union of the
visible regions of all points in the partition. The map task replicates
each agent a to every partition that contains a in its visible region.

Table 1 shows how the phases of the state-effect pattern are as-
signed to map and reduce tasks. For simulations with only local
effect assignments, a tick t begins when the first map task, mapt

1,
assigns each agent to a partition (distributet). Each reducer is as-
signed a partition and receives every agent in its owned set as well
as replicas of agents within its visible region. These are exactly
the agents necessary to process the query phase of the owned set
(queryt). The reducer, reducet

1, outputs a copy of each agent it
owns after executing the query phase and updating the agent’s ef-
fects. The tick ends when the next map task, mapt+1

1 , executes the
update phase (updatet).

This two-step approach works for simulations that have only lo-
cal effects, but does not handle non-local effect assignments. Recall
that in a non-local effect assignment some agent a updates an ef-
fect in some other agent b within a’s visible region. For example,
if the fish simulation included predators, we could model a shark
attack as a non-local effect assignment by a shark to a nearby fish.
Non-local effects require communication during the query phase.
We implement this communication using two MapReduce passes,
as illustrated in Table 1. The first map task, mapt

1, is the same
as before. The first reduce task, reducet

1, performs non-local ef-
fect assignments to its replicas (non-local effectt). These partially
aggregated effect values are then distributed to the partitions that
own them, where they are combined by the second reduce task,
reducet

2. This computes the final value for each aggregate (effect
aggregationt). As before, the update phase is processed in the next
map task, mapt+1

1 . Note that the second map task, mapt
2, is only

necessary for distribution, but does not perform any computation
and can be eliminated in an implementation. We call this model
map-reduce-reduce.

Our map-reduce-reduce model relies heavily on the neighbor-
hood property. The number of replicas that each map task must
create depends on the size of the agent’s visible regions, and the
frequency that partitions change their owned set depends on the
size of their reachable regions. So, as shown in the next section,
we rely on the fact that long-distance interactions are uncommon
in behavioral simulations to optimize the communication pattern
when processing the simulation.

3.3 The BRACE MapReduce Runtime
In this section we describe a MapReduce implementation that

takes advantage of the state-effect pattern and the neighborhood

Reduce 1

Reduce 2

Map

Reduce 1

Reduce 2

Map

Reduce 1

Reduce 2

Map

Worker 1 Worker 2 Worker 3

Load Balacing

Checkpointing
Master
Node

tick communication

epoch communication

Figure 1: BRACE Architecture Overview

property. We introduce BRACE, the Big Red Agent Computation
Engine, our platform for scalable behavioral simulations. BRACE
includes a MapReduce runtime especially optimized for the iter-
ated spatial joins discussed in Section 3.1. We have developed a
new system rather than using an existing MapReduce implemen-
tation such as Hadoop [25] because behavioral simulations have
considerably different characteristics than traditional MapReduce
applications such as search log analysis. The goal of BRACE is to
process a very large number of ticks efficiently, and to avoid I/O
or communication overhead while providing features such as fault
tolerance. As we show below, our design allows us to apply a num-
ber of techniques developed in the HPC community [14, 20, 26,
46] and bridge them to a map-reduce model.
Shared-Nothing, Main-Memory Architecture. In behavioral
simulations, we expect data volumes to be modest, so BRACE exe-
cutes map and reduce tasks entirely in main memory. For example,
a simulation with one million agents whose state and effect fields
occupy 1 KB on average requires roughly 1 GB of main memory.
Even larger simulations with orders of magnitude more agents will
still fit in the aggregate main memory of a cluster. Since the query
phase is computationally expensive, partition sizes are limited by
CPU cycles rather than main memory size.

Figure 1 shows the architecture of BRACE. As in typical
MapReduce implementations, a master node is responsible for
cluster coordination. However, BRACE’s master node only inter-
acts with worker nodes every epoch, which corresponds to a fixed
number of ticks. This amortizes overhead related to fault tolerance
and load balancing. In addition, we allocate tasks of map-reduce-
reduce iterations to workers so as to minimize communication over-
heads within and across iterations.
Fault Tolerance. Traditional MapReduce runtimes provide fault
tolerance by storing output to a replicated file system and automat-
ically restarting failed tasks. Since we expect ticks to be quite short
and they are processed in main memory, it would be prohibitively
expensive to write output to stable storage between every tick. Fur-
thermore, since individual ticks are short, the benefit from restart-
ing a task is likely to be small.

We employ epoch synchronization with the master to trigger co-
ordinated checkpoints [20] of the main memory of the workers. As
the master determines a pre-defined tick boundary for checkpoint-
ing, the workers can write their checkpoints independently without
global synchronization. As we expect iterations to be short, failures
are handled by re-execution of all iterations since the last check-
point, a common technique in scientific simulations. In fact, we can
leverage previous literature to tune the checkpointing interval to
minimize the total expected runtime of the whole computation [14].
Partitioning and Load Balancing. As we have observed in Sec-
tion 3.2, bounded reachability implies that a given spatial partition-
ing will remain effective for a number of map-reduce-reduce iter-
ations. Our runtime uses that observation to keep data partitioning

stable over time and re-evaluates it at epoch boundaries.
At the beginning of the simulation, the master computes a par-

titioning function based on the visible regions of the agents and
then broadcasts this partitioning to the worker nodes. Each worker
becomes responsible for one region of the partitioning. Agents
change partitions slowly, but over time the overall spatial distribu-
tion may change quite dramatically. For example, the distribution
of traffic on a road network is likely to be very different at morn-
ing rush hour than at evening rush hour. This would cause certain
nodes to become overloaded if we used the same partitioning in
both cases. To address this, the master periodically receives statis-
tics from the workers about the number of agents in the owned
region and the communication and processing costs. The master
then decides on repartitioning by balancing the cost of redistribu-
tion with its expected benefit [26]. If the master decides to modify
the partitioning, it broadcasts the new partitioning to all workers.
The workers then switch to the new partitioning at a specified epoch
boundary.
Collocation of Tasks. Since simulations run for many iterations,
it is important to minimize communication between tasks. We ac-
complish this by collocating the map and reduce tasks for a parti-
tion on the same node so that agents that do not switch partitions
can be exchanged using shared memory rather than the network.
Since agents have limited reachable regions, the owned set of each
partition is likely to remain relatively stable across ticks, and so will
remain on the same node. Agents still need to be replicated, but
their primary copies do not have to be redistributed. This idea was
previously explored by the Phoenix project for SMP systems [55]
and the Map-Reduce-Merge project for individual joins [53], but it
is particularly important for long-running behavioral simulations.

Figure 1 shows how collocation works when we allow non-local
effect assignments. Solid arrows (both thick and thin) indicate the
flow of agents during a tick. Each node processes a map task and
two reduce tasks as described in Section 3.1. The map task repli-
cates agents as necessary and sends them to the appropriate reduce
tasks. The first-level reducers compute local effects and send non-
local effects to the second-level reducers, which aggregate all (local
and non-local) effects and send them to the map tasks for the next
tick. Because of the neighborhood property, only agents that are
near partition boundaries need to be replicated, and agents change
partitions infrequently. Most messages are between tasks on the
same node (as indicated by the thick blue arrows), enabling com-
munication by shared memory rather than the network. This opti-
mization exploits dependencies on the data between tasks, much in
line with schemes for relaxing communication in bulk-synchronous
computations, e.g., [46].

When we put together all of the optimizations above, the run-
time of BRACE resembles an optimized shared-nothing message-
passing environment. However, BRACE still exposes an intuitive
map-reduce programming abstraction as an interface to this run-
time. As we show in the next section, this interface enables us to
compile a high-level language for domain scientists into efficient
map-reduce-reduce pipelines over BRACE.

4. PROGRAMMING AGENT BEHAVIOR
In this section, we show how to offer a simple programming

model for a domain scientist, targeting the last requirement of Sec-
tion 1.1. MapReduce is set-based; a program describes how to pro-
cess all of the elements in a collection. Simulation developers pre-
fer to describe the behavior of their agents individually, and use
message-passing techniques to communicate between agents. This
type of programming is closer to the scientific models that describe
agent behavior.

class Fish {
// The fish location
public state float x : (x+vx); #range[-1,1];
public state float y : (y+vy); #range[-1,1];

// The latest fish velocity
public state float vx : vx + rand() + avoidx / count * vx;
public state float vy : vy + rand() + avoidy / count * vy;

// Used to update our velocity
private effect float avoidx : sum;
private effect float avoidy : sum;
private effect int count : sum;

/** The query-phase for this fish. */
public void run() {
// Use "forces" to repel fish too close
foreach(Fish p : Extent<Fish>) {

p.avoidx <- 1 / abs(x - p.x);
p.avoidy <- 1 / abs(y - p.y);
p.count <- 1;

}}}

Figure 2: Class for Simple Fish Behavior

We introduce a new programming language – BRASIL, the Big
Red Agent SImulation Language. BRASIL embodies agent cen-
tric programming with explicit support for the state-effect pattern,
and performs further algebraic optimizations. It bridges the men-
tal model of simulation developers and our MapReduce processing
techniques for behavioral simulations. We provide an overview of
the main features of BRASIL (Section 4.1) and describe algebraic
optimization techniques that can be applied to our scripts (Sec-
tion 4.2). Formal semantics for our language as well as the proofs
of theorems in this section are provided in Appendix B.1.

4.1 Overview of BRASIL
BRASIL is an object-oriented language in which each object cor-

responds to an agent in the simulation. Agents in BRASIL are
defined in a class file that looks superficially like Java. The pro-
grammer can specify fields, methods, and constructors, which can
be either public or private. Unlike in Java, each field in a BRASIL
class must be tagged as either state or effect. The BRASIL compiler
enforces the read-write restrictions of the state-effect pattern over
those fields as described in Section 2. Figure 2 is an example of a
simple two-dimensional fish simulation, in which fish swim about
randomly, avoiding each other with imaginary repulsion “forces”.

Recall that the state-effect pattern divides computation into
query and update phases. In BRASIL, the query phase for an agent
class is expressed by its run() method. State fields are read-only
and effect assignments are aggregated using the functions specified
at the effect field declarations. This is similar to aggregator vari-
ables in Sawzall [42]. In our fish simulation example, each fish
repels nearby fish with a “force” inversely proportional to distance.
The update phase is specified by update rules attached to the state
field declarations. These rules can only read values of other fields in
this agent. In our example, fish velocity vectors are updated based
on the avoidance effects plus a random perturbation.

BRASIL has some important restrictions. First, it only supports
iteration over a finite set or list via a foreach-loop. This eliminates
unbounded looping, which is not available in algebraic database
languages. Second, there is an interplay between foreach-loops
and effects: effect variables can only be read outside of a foreach-
loop, and all assignments within a foreach-loop are aggregated.
This powerful restriction allows us to treat the entire program, not
just the communication across map and reduce operations, as a
dataflow query plan.

BRASIL also has a special programming construct to enforce the

neighborhood property outlined in Section 2. Every state field that
encodes spatial location is tagged with a visibility and reachability
constraint. For example, the constraint range[-1,1] attached
to the x field in Figure 2 means that each fish can inspect others
whose x coordinate is at most [−1,1] different to its own in the
query phase, and can change its x coordinate by at most [−1,1] in
the update phase. The language runtime enforces these constraints,
as described in Appendix B.

4.2 Optimization
We compile BRASIL into a well-understood dataflow language.

In our previous work on computer games, we used the relational
algebra to represent our data flow [51]. However, for distributed
simulations, we have found the monad algebra [7, 31, 41, 48] – the
theoretical foundation for XQuery [31] – to be a much more ap-
propriate fit. In particular, the monad algebra has a MAP primitive
for descending into the components of its nested data model; this
makes it a much more natural companion to MapReduce than the
relational algebra.

We present the formal translation to the monad algebra in Ap-
pendix B, together with several theorems regarding its usage in
optimization. Most of these optimizations are the same as those
that would be present in a relational algebra query plan: algebraic
rewrites and automatic indexing. In fact, any monad algebra ex-
pression on flat tables can be converted to an equivalent relational
algebra expression and vice versa [41]; rewrites and indexing on
the relational form carry back into the monad algebra form. In par-
ticular, many of the techniques used by Pathfinder [49] to process
XQuery with relational query plans apply to the monad algebra.
Effect Inversion. An important optimization that is unique to our
framework involves eliminating non-local effects. When non-local
effect assignments can be eliminated, we are able to process each
tick with a single reduce pass instead of two (Section 3). Consider
again the program of Figure 2. We may rewrite its foreach-loop
as
foreach(Fish p : Extent<Fish>) {

avoidx <- 1 / abs(p.x - x);
avoidy <- 1 / abs(p.y - y);
count <- 1;

}

This rewritten expression does not change the results of the simu-
lation, but only assigns effects locally. We call this transformation
effect inversion, and it is always possible at some cost in visibility
range. Indeed, in Appendix B.2, we formally prove the following:

THEOREM 3 If the visibility constraint on a script is distance d,
there is an equivalent script with a visibility constraint at most 2d
that uses only local effect assignments.

Increasing the visibility bound increases the number of replicas re-
quired at each node. Hence this optimization eliminates one com-
munication round at the cost of sending more information in the
remaining round.

5. EXPERIMENTS
In this section, we present experimental results using two dis-

tinct real-world behavioral simulation models we have coded us-
ing BRACE. We focus on the following: (i) We validate the effec-
tiveness of the BRASIL optimizations introduced in Section 4.2.
In fact, these optimizations allow us to approach the efficiency
of hand-optimized simulation code (Section 5.2); (ii) We evalu-
ate BRACE’s MapReduce runtime implementation over a cluster
of machines. We measure simulation scale-up via spatial data par-
titioning as well as load balancing (Section 5.3).

5.1 Setup
Implementation. The prototype BRACE MapReduce runtime is
implemented in C++ and uses MPI for inter-node communication.
Our BRASIL compiler is written in Java and directly generates C++
code that can be compiled with the runtime. Our prototype includes
a generic KD-tree based spatial index capability [4]. We use a sim-
ple rectilinear grid partitioning scheme, which assigns each grid
cell to a separate slave node. A one-dimensional load balancer pe-
riodically receives statistics from the slave nodes, including com-
putational load and number of owned agents; from these it heuris-
tically computes a new partition trying to balance improved perfor-
mance against estimated migration cost. Checkpointing is not yet
integrated into BRACE’s implementation at the time of writing.

We plan to integrate more sophisticated algorithms for all these
components in future work. But our current prototype already
demonstrates good performance and automatic scaling of realistic
behavioral simulations written in BRASIL.
Simulation Workloads. We have implemented realistic traffic and
fish school simulations in BRASIL. The traffic simulation includes
the lane-changing and acceleration models of the state-of-the-art,
open-source MITSIM traffic simulator [54]. MITSIM is a single-
node program, so we compare its performance against our BRASIL
reimplementation of its model also running on a single node. We
simulate a linear segment of highway, and scale-up the size of the
problem by extending the length of the segment.

The fish simulation implements a recent model of information
flow in animal groups [13]. In this model the “ocean” is unbounded,
and the spatial distribution of fish changes dramatically as “in-
formed individuals” guide the movements of others in the school.

Neither of these simulations uses non-local effect assignments;
therefore we need only a single reducer per node. To evaluate our
effect inversion optimization, we modified the fish simulation to
create a predator simulation that uses non-local assignments. It is
similar in spirit to artificial society simulations [30]. Appendix C
describes these simulation models in more detail. We measure total
simulation time in our single-node experiments and tick throughput
(agent ticks per second) when scaling up over multiple nodes. In all
measurements we eliminate start-up transients by discarding initial
ticks until a stable tick rate is achieved.
Hardware Setup. We ran all of our experiments in the Cornell
Web Lab cluster [3]. The cluster contains 60 nodes interconnected
by a pair of 1 gigabit/sec Port Summit X450a Ethernet Switches.
Each node has two Quad Core Intel Xeon, 2.66GHz, processors
with 4MB cache each and 16 GB of main memory.

5.2 BRASIL Optimizations
We first compare the single-node performance of our traffic sim-

ulation to the single-node program MITSIM. The main optimiza-
tion in this case is spatial indexing. For a meaningful comparison,
we validate the aggregate traffic statistics produced by our BRASIL
reimplementation against those produced by MITSIM. Details of
our validation procedure appear in Appendix C.

Figure 3 compares the performance of MITSIM against BRACE
using our BRASIL reimplementation of its model. Without spa-
tial indexing, BRACE’s performance degrades quadratically with
increasing segment length. This is expected: In this simulation, the
number of agents grows linearly with segment length; and with-
out indexing every vehicle enumerates and tests every other vehi-
cle during each tick. With spatial indexing enabled, BRACE con-
verts this behavior to an orthogonal range query, resulting in log-
linear growth, as confirmed by Figure 3. BRACE’s spatial indexing
achieves performance that is comparable, but inferior to MITSIM’s

hand-coded nearest-neighbor implementation. Our optimization
techniques generalize to nearest-neighbor indexing, and adding this
to BRACE is planned future work. With this enhancement, we ex-
pect to achieve performance parity with MITSIM.

We observed similar log-linear versus quadratic performance
when scaling up the number of agents in the fish simulation in a
single node. We thus omit these results. When we increase the
visibility range, however, the performance of the KD-tree indexing
decreases, since more results are produced for each index probe
(Figure 4). Still, indexing yields from two to three times improve-
ment over a range of visibility values.

In addition to indexing, we also measure the performance gain of
eliminating non-local effect assignments through effect inversion.
Only the predator simulation has non-local effect assignments, so
we report results exclusively on this model. We run two versions
of the predator simulation, one with non-local assignments and the
other with non-local assignments eliminated by effect inversion.
We run both scripts with and without KD-tree indexing enabled on
16 slave nodes, and with BRACE configured to have two reduce
passes in the first case and only a single reduce pass in the second
case. Our results are displayed in Figure 5. Effect inversion in-
creases agent tick throughput from 3.59 million (Idx-Only) to 4.36
million (Idx+Inv) with KD-tree indexing enabled, and from 2.95
million (No-Opt) to 3.63 million (Inv-Only) with KD-tree index-
ing disabled. This represents an improvement of more than 20% in
each case, demonstrating the importance of this optimization.

5.3 Scalability of the BRACE Runtime
We now explore the parallel performance of BRACE’s MapRe-

duce runtime on the traffic and fish school simulations as we scale
the number of slave nodes from 1 to 36. The size of both simula-
tions is scaled linearly with the number of slaves, so we measure
scale-up rather than speed-up.

The traffic simulation represents a linear road segment with con-
stant up-stream traffic. As a result, the distribution on the segment
is nearly uniform, and load is always balanced among the nodes.
Therefore, throughput grows linearly with the number of nodes
even if load balancing is disabled (Figure 6). The sudden drop
around 20 nodes is an artifact of IP routing in the multi-switch con-
figuration of the WebLab cluster on which we ran our experiments.

In the fish simulation, fish move in schools led by informed indi-
viduals [13]. In our experiment, there are two classes of informed
individuals, trying to move in two different fixed directions. The
spatial distribution of fish, and consequently the load on each slave
node, changes over time. Figure 7 shows the scalability of this sim-
ulation with and without load balancing. Without load balancing,
two fish schools eventually form in nodes at the extremes of sim-
ulated space, while the load at all other nodes falls to zero. With
load balancing, partition grids are adjusted periodically to assign
roughly the same number of fish to each node, so throughput in-
creases linearly with the number of nodes.

Figure 8 confirms this, where still 16 slave nodes are used and
we sample the time per epoch every 100 epochs, for readability, but
also display all outliers. With load balancing enabled, the time per
simulation epoch is essentially flat; with load balancing disabled,
the epoch time gradually increases to a value that reflects all agents
being simulated by only two nodes.

6. RELATED WORK
Much of the existing work on behavioral simulations has focused

on task-parallel discrete event simulation systems, where compu-
tations are executed according in response to events instead of in
time steps [9, 39, 15, 35, 57]. In contrast to our data-parallel so-

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000

T
o

ta
l

S
im

u
la

ti
o

n
 T

im
e

[s
ec

]

Segment Length

MITSIM
BRACE - no indexing

BRACE - indexing

Figure 3: Traffic: Indexing vs. Seg. Length

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

T
o

ta
l

S
im

u
la

ti
o

n
 T

im
e

[s
ec

]

Visibility Range

BRACE - no indexing
BRACE - indexing

Figure 4: Fish: Indexing vs. Visibility

 0

 500,000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

No−Opt Idx−Only Inv−Only Idx+Inv

T
h
ro

u
g
h
p
u
t

[a
g
en

t
ti

ck
/s

ec
]

Figure 5: Predator: Effect Inversion

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
[a

g
en

t
ti

ck
s/

se
c]

Slave Nodes

BRACE - indexing, no LB

Figure 6: Traffic: Scalability

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 2e+006

 5 10 15 20 25 30 35

T
h

ro
u

g
h

p
u

t
[a

g
en

t
ti

ck
s/

se
c]

Slave Nodes

BRACE - indexing, LB
BRACE - indexing, No LB

Figure 7: Fish: Scalability

 0

 0.5

 1

 1.5

 2

 0 2000 4000 6000 8000 10000

E
p

o
ch

 S
im

u
la

ti
o

n
 T

im
e

[s
ec

/e
p

o
ch

]

Epochs

BRACE - indexing, no LB
BRACE - indexing, LB

Figure 8: Fish: Load Balancing

lution for behavioral simulations based on the state-effect pattern,
these systems implement either conservative or optimistic proto-
cols to detect conflicts and preempt or rollback simulation tasks.
The strength of local interactions and the time-stepped model used
in behavioral simulations lead to unsatisfactory performance, as
shown in attempts to adapt discrete event simulators to agent-based
simulations [29, 28]. Other task parallel approaches, such as using
one concurrent transaction per agent [40], also fail to scale due to
similar reasons.

Platforms specifically targeted at agent-based models have been
developed, such as Swarm [36], Mason [33], and Player/Stage [22].
These platforms offer tools to facilitate simulation programming,
but most rely on message-passing abstractions with implementa-
tions inspired by discrete event simulators, so they suffer in terms
of performance and scalability. A few recent systems attempt
to distribute agent-based simulations over multiple nodes with-
out exploiting application properties such as visibility and time-
stepping [27, 43]. This leads either to poor scale-up or to unrealistic
restrictions on agent interactions.

Regarding join processing with MapReduce, Zhang et al. [56]
compute spatial joins by an approach similar to ours when only lo-
cal effect assignments are allowed. Their mapper partitions are de-
rived using spatial index techniques rather than by reasoning about
the application program, and they do not discuss iterated joins, an
important consideration for our work. Locality optimizations have
been studied for MapReduce on SMPs [55] and for MapReduce-
Merge [53]; in this paper we consider the problem in a distributed
main memory MapReduce runtime.

Data-driven parallelization techniques have also been studied
in parallel databases [17, 23] and data parallel programming lan-
guages [5, 45]. However, it is unnatural and inefficient to use either
SQL or set-operations exclusively to express flexible computation
over individuals as required for behavioral simulations.

Given this situation, behavioral simulation developers have re-
sorted to hand-coding parallel implementations of specific simu-
lation models [21, 38], or trading model accuracy for scalability
and ease of implementation [8, 50]. Our work, in contrast, aligns
in spirit with recent efforts to bring dataflow programming tech-
niques to complex domains, such as distributed systems [1] and
networking [32], with huge benefits in performance and program-

ming productivity. To the best of our knowledge, our approach is
the first to bring both programmability and scalability through data
parallelism to behavioral simulations.

7. CONCLUSIONS
In this paper we show how MapReduce can be used to scale

behavioral simulations across clusters by abstracting these sim-
ulations as iterated spatial joins. To efficiently distribute these
joins we leverage several properties of behavioral simulations to
get a shared-nothing, in-memory MapReduce framework called
BRACE, which exploits collocation of mappers and reducers to
bound communication overhead. In addition, we present a new
scripting language for our framework called BRASIL, which hides
all the complexities of modeling computations in MapReduce and
parallel programming from domain scientists. BRASIL scripts can
be compiled into our MapReduce framework and allow for alge-
braic optimizations in mappers and reducers. We perform an ex-
perimental evaluation with two real-world behavioral simulations
to show that BRACE has nearly linear scalability as well as single-
node performance comparable to a hand-coded simulator.

Acknowledgments. This material is based upon work supported
by the New York State Foundation for Science, Technology, and
Innovation under Agreement C050061, by the National Science
Foundation under Grants 0725260 and 0534404, by the iAd Project
funded by the Research Council of Norway, by the AFOSR under
Award FA9550-10-1-0202, and by Microsoft. Any opinions, find-
ings and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the funding agencies.

8. REFERENCES
[1] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein,

and R. Sears. Boom analytics: exploring data-centric, declarative
programming for the cloud. In EuroSys, pages 223–236, 2010.

[2] Amazon Elastic Compute Cloud (Amazon EC2).
http://http://aws.amazon.com/ec2/.

[3] W. Arms, S. Aya, P. Dmitriev, B. Kot, R. Mitchell, and L. Walle.
Building a research library for the history of the web. In Proc. Joint
Conference on Digital Libraries, 2006.

[4] J. Bentley. K-d trees for semidynamic point sets. In Proc. SGC, 1990.

[5] G. Blelloch. Programming parallel algorithms. CACM, 39(3):85–97,
1996.

[6] J. Buhl, D. Sumpter, I. Couzin, J. Hale, E. Despland, E. Miller, and
S. Simpson. From disorder to order in marching locusts. Science,
312(5778):1402–1406, 2006.

[7] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. Principles of
programming with complex objects and collection types. Theor.
Comput. Sci., 149(1):3–48, 1995.

[8] N. Cetin, A. Burri, and K. Nagel. A large-scale agent-based traffic
microsimulation based on queue model. In Proc. Swiss Transport
Research Conference (STRC), 2003.

[9] K. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Transactions
on Software Engineering, 5(5):440–452, 1978.

[10] C. Choudhury, M. Ben-Akiva, T. Toledo, A. Rao, and G. Lee.
NGSIM cooperative lane changing and forced merging model.
Technical report, Federal Highway Administration, 2006.
FHWA-HOP-07-096.

[11] C. Choudhury, T. Toledo, and M. Ben-Akiva. NGSIM freeway lane
selection model. Technical report, Federal Highway Administration,
2004. FHWA-HOP-06-103.

[12] Cornell Database Group. The brasil language specification.
http://www.cs.cornell.edu/bigreddata/games/simulations.php, 2010.

[13] I. Couzin, J. Krause, N. Franks, and S. Levin. Effective leadership
and decision-making in animal groups on the move. Nature,
433(7025):513–516, 2005.

[14] J. Daly. A higher order estimate of the optimum checkpoint interval
for restart dumps. Future Generation Computer Systems,
22(3):303–312, 2006.

[15] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette.
GTW: A time warp system for shared memory multiprocessors. In
Proc. Winter Simulation Conference (WSC), 1994.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proc. OSDI, pages 137–150, 2004.

[17] D. Dewitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao,
and R. Rasmussen. The gamma database machine project. IEEE
Trans. on Knowledge and Data Engineering, 2(1):44–62, 1990.

[18] J. Dittrich, L. Blunschi, and M. A. V. Salles. Indexing moving objects
using short-lived throwaway indexes. In Proc. SSTD, 2009.

[19] J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce for data
intensive scientific analyses. In Proc. eScience, 2008.

[20] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of
Rollback-Recovery Protocols in Message-Passing Systems. ACM
Computing Surveys, 34(3):375–408, 2002.

[21] U. Erra, B. Frola, V. Scarano, and I. Couzin. An efficient gpu
implementation for large-scale individual based simulation of
collective behavior. In Press.

[22] B. Gerkey, R. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proc. Int.
Conf. on Advanced Robotics (ICAR), 2003.

[23] G. Graefe. Encapsulation of parallelism in the volcano query
processing system. In Proc. SIGMOD, 1990.

[24] D. Grünbaum. Behavior: Align in the sand. Science,
312(5778):1320–1322, 2006.

[25] Hadoop. http://hadoop.apache.org/.
[26] B. Hendrickson and K. Devine. Dynamic load balancing in

computational mechanics. Computer Methods in Applied Mechanics
and Engineering, 184(2-4):485–500, 2000.

[27] D. Ho, T. Bui, and N. Do. Dividing agents on the grid for large scale
simulation. Intelligent Agents and Multi-Agent Systems,
5357:222–230, 2008.

[28] B. Horling, R. Mailler, and V. Lesser. Farm: A scalable environment
for multi-agent development and evaluation. Software Engineering
for Multi-Agent Systems II, 2940:364–367, 2004.

[29] M. Hybinette, E. Kraemer, Y. Xiong, G. Matthews, and J. Ahmed.
SASSY: A design for a scalable agent-based simulation system using
a distributed discrete event infrastructure. In Proc. Winter Simulation
Conference (WSC), 2006.

[30] Joshua Epstein and Robert Axtell. Growing Artificial Societies:
Social Science from the Bottom Up. The MIT Press, 1996.

[31] C. Koch. On the complexity of nonrecursive xquery and functional

query languages on complex values. In Proc. PODS, 2005.
[32] B. Loo, T. Condie, M. Garofalakis, D. Gay, J. Hellerstein,

P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative
networking: Language, execution and optimization. In Proc.
SIGMOD, 2006.

[33] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan.
MASON: A multiagent simulation environment. Simulation, 81,
2005.

[34] G. Luo, J. Naughton, and C. Ellmann. A non-blocking parallel spatial
join algorithm. In Proc. ICDE, 2002.

[35] F. Mattern. Efficient algorithms for distributed snapshots and global
virtual time approximation. Journal of Parallel and Distributed
Computing, 18(4):423–434, 1993.

[36] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm
simulation system: A toolkit for building multi-agent simulations.
Working Papers 96-06-042, Santa Fe Institute, 1996.

[37] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual
partitioning: an efficient method for continuous nearest neighbor
monitoring. In Proc. SIGMOD, 2005.

[38] K. Nagel and M. Rickert. Parallel implementation of the transims
micro-simulation. Parallel Computing, 27(12):1611–1639, 2001.

[39] D. Nicol. The cost of conservative synchronization in parallel discrete
event simulations. Journal of the ACM, 40(2):304–333, 1993.

[40] T. Ohmori and M. Hoshi. Gaming-simulations of multi-agent
information systems using large databases: The concept and database
algorithms. In Proc. DASFAA, 1995.

[41] J. Paredaens and D. van Gucht. Possibilities and limitations of using
flat operators in nested algebra expressions. In Proc. PODS, 1998.

[42] R. Pike, S. Doward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming Journal,
13(4):227–204, 2005.

[43] M. Scheutz, P. Schermerhorn, R. Connaughton, and A. Dingler.
SWAGES–an extendable parallel grid experimentation system for
large-scale agent-based alife simulations. In Proc. Artificial Life X,
2006.

[44] D. Schrank and T. Lomax. The 2009 urban mobility report. Technical
report, Texas Transportation Institute, 2009.

[45] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky.
Programming with sets; an introduction to SETL. Springer-Verlag
New York, Inc., New York, NY, USA, 1986.

[46] J. soo Kim, S. Ha, and C. S. Jhon. Relaxed barrier synchronization
for the bsp model of computation on message-passing architectures.
Information Processing Letters, 66, 1998.

[47] D. Suciu. Parallel programming languages for collections. PhD
thesis, University of Pennsylvania, 1995.

[48] V. Tannen, P. Buneman, and L. Wong. Naturally embedded query
languages. In Proc. ICDT, 1992.

[49] J. Teubner. Pathfinder: XQuery Compilation Techniques for
Relational Database Targets. PhD thesis, Technische Universität
München, 2006.

[50] Y. Wen. Scalability of Dynamic Traffic Assignment. PhD thesis,
Massachusetts Institute of Technology, 2008.

[51] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan.
Scaling games to epic proportions. In Proc. SIGMOD, 2007.

[52] W. White, B. Sowell, J. Gehrke, and A. Demers. Declarative
processing for computer games. In Proc. SIGGRAPH Sandbox
Symposium, 2008.

[53] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing on large
clusters. In Proc. SIGMOD, 2007.

[54] Q. Yang, H. Koutsopoulos, and M. Ben-Akiva. A simulation
laboratory for evaluating dynamic traffic management systems. In
Annual Meeting of Transportation Research Board, 1999. TRB Paper
No. 00-1688.

[55] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth: Scalable
mapreduce on a large-scale shared-memory system. In IISWC, 2009.

[56] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu. Sjmr: Parallelizing
spatial join with mapreduce on clusters. In CLUSTER, 2009.

[57] G. Zheng, G. Kakulapati, and L. Kale. Bigsim: A parallel simulator
for performance prediction of extremely large parallel machines. In
Proc. IPDPS, 2004.

APPENDIX
A. SPATIAL JOINS IN MAPREDUCE

In this appendix, we first briefly review the MapReduce model
(Appendix A.1). We then formalize the spatial joins run at each
tick of a behavioral simulation in MapReduce (Appendix A.2).

A.1 MapReduce
Since its introduction in 2004, MapReduce has become one of

the most successful models for processing long running compu-
tations in distributed shared-nothing environments [16]. While it
was originally designed for very large batch computations, MapRe-
duce is ideal for behavioral simulations because it provides auto-
matic scalability, which is one of the key requirements for next-
generation platforms. By varying the degree of data partitioning
and the corresponding number of map and reduce tasks, the same
MapReduce program can be run on one machine or one thousand.

The MapReduce programming model is based on two functional
programming primitives that operate on key-value pairs. The map
function takes a key-value pair and produces a set of intermediate
key-value pairs, map : (k1,v1)→ [(k2,v2)], while the reduce func-
tion collects all of the intermediate pairs with the same key and pro-
duces a value, reduce : (k2, [v2])→ [v3]. Since simulations operate
in ticks, we use an iterative MapReduce model in which the out-
put of the reduce step is fed into the next map step. Formally, this
means that we change the output of the reduce step to be [(k3,v3)].

A.2 Formalizing Simulations in MapReduce
In the following, we formally develop the map and reduce func-

tions for processing a single tick of a behavioral simulation.
Formalizing Agents and Spatial Partitioning. We first introduce
our notation for agents and their state and effect attributes. We
denote an agent a as a = 〈oid,s,e〉, where s is a vector of the agent’s
state attributes and e is a vector of its effects. To refer to an agent
or its attributes at a tick t, we will write at , st , or et . Since effect
attributes are aggregated using combinator functions, they need to
be reset at the end of every tick. We will use θ to refer to the vector
of idempotent values for each effect. Finally, we use ⊕ to denote
the aggregate operator that combines effect variables according to
the appropriate combinator.

The neighborhood property implies that some subset of each
agent’s state attributes are spatial attributes that determine an
agent’s position. For an agent a = 〈oid,s,e〉, we denote this spa-
tial location `(s) ∈ L , where L is the spatial domain. Given an
agent a at location l, the visible region of a is V R(l)⊆ L .

Both the map and reduce tasks in our framework will have ac-
cess to a spatial partitioning function P : L → P, where P is a set
of partition ids. This partitioning function can be implemented in
multiple ways, such as a regular grid or a quadtree. We define the
owned set of a partition p as the inverse image of p under P, i.e.,
the set of all locations assigned to p. Since each location has an
associated visible region, we can also define the visible region of a
partition as V R(p) =

⋃
l∈L ,P(l)=p V R(l). This is the set of all loca-

tions that might be visible by some agent in p.
Simulations with Local Effects Only. Since the query phase of
an agent can only depend on the agents inside its visible region,
the visible region of a partition contains all of the data necessary to
execute the query phase for its entire owned region. We will take
advantage of this by replicating all of the agents in this region at p
so that the query phase can be executed without communication.

Figure 9 shows the map and reduce functions for processing tick
t when there are only local effect assignments. At tick t, the map
function performs the update phase from the previous tick, and the

mapt(·,at−1) =
[
(p,〈oid,st ,θ〉) where `(st) ∈V R(p)

]
reducet(p,

[
〈oidi,st

i ,θ〉
]
) =

[(
p,〈oidi,st

i ,e
t
i〉
)
,∀i s.t. P(`(st

i)) = p
]

Figure 9: Map and reduce functions with local effects only

mapt
1(·,at−1) =

[
(p,〈oid,st ,θ〉) where `(st) ∈V R(p)

]
reducet

1(p,
[
〈oidi,st

i ,θ〉
]
) =

[(
P(`(st)),〈oidi,st

i , f
t
i〉
)]

mapt
2(k,a) = (k,a)

reducet
2(p,

[
〈oidi,st

i , f
t
i〉
]
) =

[(
p,〈oidi,st

i ,⊕ jft
j〉
)
,∀ j s.t. oidi = oid j

]
Figure 10: Map and reduce functions with non-local effects

reduce function performs the query phase. The map function takes
as input an agent with state and effect variables from the previous
tick (at−1), and updates the state variables to st and the effect at-
tributes to θ. During the very first tick of the simulation, et−1 is
undefined, so st will be set to a value reflecting the initial simu-
lation state. The map function emits a copy of the updated agent
keyed by partition for each partition containing the agent in its vis-
ible set (`(st) ∈V R(p)). This has the effect of replicating the agent
a to every partition that might need it for query phase processing.
The amount of replication depends on the partitioning function and
on the size of each agent’s visible region.

The reduce function receives as input all agents that are sent to
a particular partition p. This includes the agents in p’s owned re-
gion, as well as replicas of all the agents that fall in p’s visible
region. The reducer will execute the query phase and compute ef-
fect variables for all of the agents in its owned region (agent i s.t.
P(`(st

i)) = p). This requires no communication, since the query
phase of an agent in p’s owned region can only depend on the
agents in p’s visible region, all of which are replicated at the same
reducer. The reducer outputs agents with updated effect attributes
to be processed in the next tick.
Simulations with Non-Local Effects. The method above only
works when all effect assignments are local. If an agent a makes an
effect assignment to some agent b in its visible region, then it must
communicate that effect to the reducer responsible for processing
b. Figure 10 shows the map and reduce functions to handle sim-
ulations with non-local effect assignments. The first map function
task is same as in the local effect case. Each agent is partitioned and
replicated as necessary. As before, the first reduce function com-
putes the query phase for the agents in p’s owned set and computes
effect values. In this case, however, it can only compute interme-
diate effect values ft , since it does not have the effects assigned at
other nodes. This reducer outputs one pair for every agent, includ-
ing replicas. These agents are keyed with the partition that owns
them, so that all replicas of the same agent go to the same node.

The second map function is the identity, and the second reduce
function performs the aggregation necessary to complete the query
phase. It receives all of the updated replicas of all of the agents
in its owned region and applies the ⊕ operation to compute the
final effect values and complete the query phase. Each reducer will
output an updated copy of each agent in its owned set.

B. FORMAL SEMANTICS OF BRASIL
In this section, we provide a more formal presentation of the

semantics of BRASIL than the one presented in Section 4. In par-
ticular, we show how to convert BRASIL expressions into monad
algebra expressions for analysis and optimization. We also prove
several results regarding effect inversion, introduced in Section 4.2,
and illustrate the resulting trade-offs between computation and

communication.
For the most part, our work will be in the traditional monad alge-

bra. We refer the reader to the original work on this algebra [7, 31,
41, 48] for its basic operators and nested data model. We also use
standard definitions for the derived operations like cartesian prod-
uct and nesting. For example, we define cartesian product as

f ×g := 〈1 : f ,2 : g〉 ◦ PAIRWITH1 ◦ FLATMAP(PAIRWITH2) (1)
For the purpose of readability, composition in (1) and the rest of
our presentation, is read left-to-right; that is, (f ◦g)(x) = g

(
f (x)

)
.

We assume that the underlying domain is the real numbers, and
that we have associated arithmetic operators. We also add tradi-
tional aggregate functions like COUNT and SUM to the algebra;
these functions take a set of elements (of the appropriate type) and
return a value.

In order to simplify our presentation, we do make several small
changes that relax the typing constraints in the classic monad alge-
bra. In particular, we want to allow union to combine sets of tuples
with different types. For this end, we introduce a special NIL value.
This value is the result of any query that is undefined on the input
data, such as projection on a nonexistent attribute. This value has a
form of “null-semantics” in that values combined with NIL are NIL,
and NIL elements in a set are ignored by aggregates. In addition, we
introduce a special aggregate function GET. When given a set, this
function returns its contents if it is a singleton, and returns NIL oth-
erwise. Neither this function, nor the presence of NIL significantly
affects the expressive power of the monad algebra [47].

B.1 Monad Algebra Translation
For the purpose of illustration, we assume that our simulation

has only one class of agents, all of which are running the same
simulation script. It is relatively easy to generalize our approach to
multiple agent classes or multiple scripts. Given this assumption,
our simulation data is simply a set of tuples {t0, . . . , tn} where each
tuple ti represents the data inside of an agent. Every agent tuple has
a special attribute KEY which is used to uniquely identify the agent;
variables which reference another agent make use of this key. The
state-effect pattern requires that all data types other than agents be
processed by value, so they can safely be stored inside each agent.

We let τ represent the type/schema of an agent. In addition to
the key attribute, τ has an attribute for each state and effect field.
The value of a state attribute is the value of the field. The value
of an effect attribute is a pair 〈1 : n,2 : AGG〉 where n is a unique
identifier for the field and AGG is the aggregate for this effect.

During the query phase, we represent effects as a tuple 〈k : N,e :
N,v : σ〉, where k is the key of the object being effected, e is the
effect field identifier, and v is the value of the effect. As a shorthand,
let ρ be this type. Even though effects may have different types,
because of our relaxed typing, this will not harm our formalism.

The syntax of BRASIL forces the programmer to clearly separate
the code into a query script (i.e. run()) and an update script (the
update rules). A query script compiles to an expression whose input
and output are the tuple 〈1 : τ′,2 : {τ},3 : {ρ}〉. The first element
represents the active agent for this script; τ′ “extends” type τ in that
it is guaranteed to have an attribute for the key and each state field,
but it may have more attributes. The second element is the set of
all other agents with which this agent must communicate. The last
element is the set of effects generated by this script.

Let Q be the monad expression for the query script. Then the
effect generation stage is the expression

Q(Q) = (ID× ID)◦NEST2 ◦MAP
(
Q̂) (2)

where Q̂ is defined as
Q̂ = 〈1:π1,2:π2,3:{}〉◦Q◦ 〈1:π1,2:π3〉 (3)

[[const τ x = E]]V = 〈1:χx([[E]]V),2:π2,3:π3〉
[[effect τ x : f]]V = 〈1:χx(〈1 : ρ(x),2 : f 〉),2:π2,3:π3〉
[[x <- E]]V = 〈1:π1,2:π2,3:π3⊕

(〈1:π1 ◦πKEY,2:ρ(x),3: [[E]]V 〉 ◦ SNG)〉
[[R.x <- E]] = 〈1:π1,2:π2,3:π3⊕

(〈1: [[R]]v,2:ρ(x),3: [[E]]V 〉 ◦ SNG)〉
[[if (E) {B1} else {B2}]]V =

〈1 : π1,2 : π2,3 : SNG ◦σ[[E]]V ◦GET ◦ [[B1]]V⊕
SNG ◦σ¬[[E]]V ◦GET ◦ [[B2]]V 〉

[[foreach (τ x : E) {B}]]V =
〈1:π1,2:π2,

3:〈1:π1 ◦χx([[E]]V)◦ PAIRWITHx,2:π2,3:π3〉
◦ FLATMAP([[B]]V ◦π3)〉

Figure 11: Translation for Common Commands

This produces a set of agents and the effects that they have gener-
ated (which may or may not be local). In general, we will aggregate
aggressively, so each agent will only have one effect for each 〈k,e〉
pair. For the effect aggregation stage, we must aggregate the effects
for each agent and inline them into the agent tuple. If we only have
local effect assignments, then this expression is Q(Q)◦E where
E= MAP

(
〈KEY:πKEY,si :πsi ,e j :π2◦σπe=πe j ◦π1 ◦(πe j ◦π2)〉i, j

)
(4)

where the si are the state fields and the e j are the value of effect
fields. However, in the case where we have non-local effects, we
must first redistribute them via the expression
R= (π1×π2)◦MAP

(
〈1:π1,2: FLATTEN ◦σπk=π1◦πKEY 〉

)
(5)

So the entire query phase is Q(Q) ◦R ◦E. Finally, for the update
phase, each state si has an update rule which corresponds to an
expression Usi . These scripts read the output of the expression E.
Hence the query for our entire simulation is the expression

Q(Q)◦R◦E◦U(Us0 , . . . ,Usn) (6)
where the update phase is defined as
U(Us0 , . . . ,Usn) = MAP

(
〈KEY : πKEY,s0 : Us0 , . . . ,sn : Usn〉

)
(7)

The only remaining detail in our formal semantics is to define
semantics for the query scripts and update scripts. Update scripts
are just simple calculations on a tuple, and are straightforward.
The nontrivial part concerns the query scripts. A script is just a
sequence of statements S0; . . . ;Sn where each statement is a vari-
able declaration, assignment, or control structure (e.g. conditional,
foreach-loop). See the BRASIL Language manual for more in-
formation on the complete grammar [12]. It suffices to define, for
each statement S, a monad algebra expression [[S]] whose input and
output are the triple 〈1 : τ′,2 : {τ},3 : {ρ}〉; we handle sequences of
commands by composing these expressions.

Our query script semantics in BRASIL also depends upon the
visibility constraints in the script. In particular, it is possible that a
reference to another agent is fine initially, but violates the visibility
constraint as that agent moves relative to the one holding the refer-
ence. For that reason, BRASIL employs weak reference semantics
for agent references, similar to weak references in Java. If another
agent moves outside of the visible region, then all references to it
will resolve to NIL. To formally support the notion of weak refer-
ences, we represent visibility as a predicate V (x,y) which compares
two agents; for any statement S, we let [[S]] be its interpretation with
this constraint and [[S]]V be the semantics without.

Before translating statements, we must translate expressions that
may appear inside of them. The only nontrivial expressions are ref-

erences; arithmetic expressions or other complex expressions trans-
late to the monad algebra in the natural way. References return ei-
ther the variable value, or the key for the agent referenced. Ignoring
visibility constraints, for any identifier x, we define

[[x]] =

PAIRWITH3 ◦σπ1◦πx◦π1=π3◦πe

◦σπ1◦πKEY=π3◦πk ◦GET
E is effect

π1 ◦πx otherwise
(8)

In general, for any reference E.x, we define
[[E.x]] = 〈1 : π2 ◦σπKEY=[[E]] ◦GET,2 : π2,3 : π3〉 ◦ [[x]] (9)

If we include visibility constraints, [[E]]V is defined in much the
same way as [[E]] except when E is an agent reference. In that case,

[[x]]V = 〈1: ID,2:π2 ◦σπKEY=[[E]] ◦GET〉 ◦ 〈1:V,2:π2〉 ◦ SNG

◦σπ1 ◦GET ◦π2 ◦πk
(10)

This expression temporarily retrieves the object, tests if it is visible,
and returns NIL if not.

To complete our semantics, we introduce the following notation.
• χa(f) is an operation that takes a tuple and extends it with

an attribute a having value f . It is definable in the monad
algebra, but its exact definition depends on its usage context.

• ⊕ is an operation that takes two sets of effects and aggregates
those with the same key and effect identifier. It is definable
on in the monad algebra, but its exact definition depends on
the effect fields in the BRASIL script.

• ρ(x) is the effect identifier for a variable x. In practice, this is
the position of the declaration of x in the BRASIL script.

Given these three expressions, Figure 11 illustrates the transla-
tion of some of the more popular statements in the monad alge-
bra. In general, variable declarations modify the first element of
the input triple (i.e. the active agent), while assignments and con-
trol structures modify the last element (i.e. the effects).

As we discussed in Section 4.2, this formalism allows us to apply
standard algebraic rewrites from the monad algebra for optimiza-
tion. For example, many of the operators in Figure 11 – particularly
the tuple constructions – are often unnecesary. They are there to
preserve the input and output format, in order to facilitate compo-
sition. There are rewrite rules that function like dead-code elimina-
tion, in that they remove tuples that are not being used. One of the
consequences is that many foreach-loops simplify to the form

F(E,B) = 〈1 : ID,2 : E〉 ◦ PAIRWITH2 ◦ FLATMAP(B) (11)
Note that this form is “half” of the cartesian product in (1); it joins
a single value with a set of values. Thus when we simplify the
foreach-loop to this form, we can often apply join optimization
techniques to the result.

Another advantage of this formalism is that it allows us to prove
correctness results. Note that the usage of weak references in
BRASIL gives a different semantics for visibility than the one
present in Section 3; BRASIL uses visibility to determine how
agent references are resolved, while the BRACE runtime uses vis-
ibility to determine agent replication and communication. The
BRASIL semantics are preferable for a developer, because they are
easy to understand and hide MapReduce details. Fortunately, our
formalism allows us to establish that these two are equivalent.

THEOREM 1 Let Q be a BRASIL query script whose references
are restricted by visibility predicate V . Then

NEST2 ◦MAP([̂[Q]]V) = σV ◦NEST2 ◦MAP([̂[Q]]) (12)
Furthermore, let

O(F) = F ◦ (π2×π3)◦σπ1◦πKEY=π2◦πk ◦MAP(π1) (13)

be the set of objects affected by an expression F . Then
MAP(〈1:π1,2:O([[Q]]V)〉)◦σV = MAP(〈1:π1,2:O([[Q]]V)〉) (14)

The significance of (12) is that, instead of implementing the over-
head of checking for weak references, we can filter out the agents
that are not visible and eliminate any further visibility checking.
The significance of (14) is that weak references insure one agent
can only affect other agents falling in its visible region.

B.2 Effect Inversion
As we saw in Section 4.2, there is an advantage to writing a

BRASIL script so that all effects assignments are local. It may
not always be natural to do so, as the underlying scientific models
may be expressed in terms of non-local effects. However, in certain
cases, we may be able to automatically rewrite a BRASIL program
to only use local effects. In particular, if there are no visibility
constraints, then we can always invert effect assignments to make
them local-only.

THEOREM 2 Let Q be a query script with no visibility constraints.
There is a script Q′ with only local effects such that [[Q]] = [[Q′]].

PROOF SKETCH. Our proof takes advantage of the fact that ef-
fect fields (as opposed to effect variables) may not be read dur-
ing the query phase, and that effects are aggregated independent
of order. We start with Q and create a copy script Q1. Within this
copy, we remove all syntactically non-local effect assignments (e.g.
E.x <- v). Some of these may actually be local in the semantic
sense, but this does not effect our proof.

We construct another copy Q2. For this copy, we pick a variable
a that does not appear in Q. We replace every local state reference x
in Q with a.x. We also remove all local effect assignments. Finally,
we replace each syntactically non-local assignment E.x <- v with
the conditional assignment if (E == this) {x <- v}. We then
let Q3 be the script

foreach(Agent a : Extent<Agent>) { Q2(a) }

That is, Q3 is the act of an agent running the script for each other
agent, searching for effects to itself, and then assigning them lo-
cally. The script Q1;Q3 is our desired script.

Note that this conversion comes at the cost of an additional
foreach-loop, as each agent simulates the actions of all other
agents. Thus, this conversion is much more computationally ex-
pensive than the original script. However, we can often simplify
this to remove the extra loop. As mentioned previously, a foreach-
loop can often be simplified to the form in (11). In the case of two
nested loops over the same set E, the merging of these two loops is
a type of self-join. That is,
F(E,F(E,B))=〈1: ID,2:E〉 ◦ PAIRWITH2◦

FLATMAP
(
〈1: ID,2:E〉◦PAIRWITH2◦FLATMAP(B)

)
= 〈1 : ID,2 : E,3 : E〉 ◦ PAIRWITH2◦

FLATMAP(PAIRWITH3 ◦ FLATMAP(B′))

= 〈1 : ID,2:(E×E)〉 ◦ PAIRWITH2 ◦ FLATMAP(B′′)

where B′ and B′′ are B rewritten to account for the change in tuple
positions. As part of this rewrite, one may discover that self-join is
redundant in the expression B′′ and eliminate it; this is how we get
simple effect inversions like the one illustrated in Section 4.2.

In the case of visibility constraints, the situation becomes a little
more complex. In order to do the inversion that we did the proof of
Theorem 2, we must require that any agent a1 that assigns effects
to another agent a2 must restrict its visibility to agents visible to a2;
that way a2 can get the same results when it reproduces the actions

of a1. This is fairly restrictive, as it suggests that every agent needs
to be visible to every other agent.

We can do better by introducing an information flow analysis.
We only require that, for each non-local effect assigned to agent,
that effect is computed using only information from agents visible
to the one being assigned. However, this property depends on the
values of the agents, and cannot (in generally) be inferred statically
from the script. Thus it is infeasible to exploit this property in
general.

However, there is another way to invert scripts in the phase of
visibility constraints. Suppose the visibility constraint for a script
Q is a distance bound, such as d(x,y) < R. If we relax the visibility
constraint for the script in the proof of Theorem 2 to d(x,y) < 2R,
then the proof carries through again. We state this modified result
as follows:

THEOREM 3 Let Q be a query script with visibility constraint V .
Let V ′ be such that V ′(x,y) if and only if ∃zV (x,z)∧V (z,y). Then
there is a script Q′ with only local effects such that [[Q]]V = [[Q′]]V ′ .

PROOF SKETCH. The proof is similar to that of Theorem 2. The
only difference is that we have to ensure that the increased visibility
for Q′ does not cause the weak references in a script to resolve to
agents that would have otherwise evaluated to NIL. In the construc-
tion of Q2, we use local constants to normalize the expressions so
that any agent reference in the original script becomes a local con-
stant. For example, suppose each agent has a field friend that is a
reference to another agent. If we have a conditional of the form

if (friend.x - x < BOUND) { ... }

then we normalize this expression as
const agent temp = friend;
if (temp.x - x < BOUND) { ... }

We then wrap these introduced constants with conditionals that test
for visibility with respect to the old constraints. For example, the
code above would become

const agent temp = (visible(this,friend) ?
friend : null);

if (temp.x - x < BOUND) { ... }

where visible is a method evaluating the visibility constraint and
evaluates to NIL in the monad algebra. Given the semantics of NIL,
this translation has the desired result.

C. DETAILS OF SIMULATION MODELS
This section describes the simulation models we have imple-

mented for BRACE single-node performance and scalability ex-
periments.
Traffic Simulation. Traffic simulation is required to provide accu-
rate, high-resolution, and realistic transportation activity for the de-
sign and management of transportation systems. MITSIM, a state-
of-the-art single-node behavioral traffic simulator has several dif-
ferent models covering different aspects of driver behavior [54].
For example, during each time step, a lane selection model will
make the driver inspect the lead and rear vehicles as well as the av-
erage velocity of the vehicles in her current, left, and right lanes
(within lookahead distance parameter ρ) to compute the utility
function for each lane. A probabilistic decision of lane selection
is then made according to the lane utility. If the driver decides to
change her lane, she needs to inspect the gaps from herself to the
lead and rear vehicles in the target lane to decide if it is safe to
change to the target lane in the next time step. Otherwise, the vehi-
cle following model is used to adapt her velocity based on the lead
vehicle. The newly computed velocity will replace the old veloc-
ity in the next time step. Note that if the driver cannot find a lead

Lane Change Frequency Avg. Density Avg. Velocity
1 8.93% 7.42% 0.007%
2 5.57% 10.38% 0.007%
3 7.67% 9.38% 0.007%
4 21.37% 19.72% 0.007%

Table 2: RMSPE for Traffic Simulation (LookAhead = 200)

or rear vehicle within ρ, she will just assume the distance to the
lead or rear vehicle is infinite, and adjust the velocity according to
a free-flow submodel.

One note is that since the MITSIM implementation hand-coded
nearest neighbor indexing for accessing the lead and rear vehicles
for performance reasons, its lookahead distance actually varies for
each vehicle. In our reimplementation we fix the lookahead dis-
tance to 200 and apply single-node spatial indexing. In order to
make sure this implementation difference does not generate drasti-
cally different aggregate driving behavior, we validate consistency
of the MITSIM model encoded in BRASIL in terms of the sim-
ulated traffic conditions. We compare lane changing frequencies,
average lane velocity and average lane density with the segment
length 20,000 on both simulators. The statistical difference is mea-
sured by RMSPE (Relative Mean Square Percentage Error), which
is often used as a goodness-of-fit measure in the traffic simulation
literature [10]. The results for all these three statistics are shown
in Table 2. We can see that except for Lane 4’s average density
and changing frequency, all the other statistics demonstrate strong
agreement between the two simulators. This exception is due to
the fact that in the MITSIM lane changing model drivers have a
reluctance factor to change to the right most lane (i.e., Lane 4).
As a result there are only a few vehicles on that lane (56.33 vehi-
cles on average compared to 351.42 on other lanes), and small lane
changing record deviations due to the fixed lookahead distance ap-
proximation can contribute significantly to the error measurement.
Fish School Simulation. Couzin et al. have built a behavioral fish
school simulation model to study information transfer in groups
of fish when group members cannot recognize which companions
are informed individuals who know about a food source [13]. This
computational model proceeds in time steps, i.e., at each time pe-
riod each fish inspects its environment to decide on the direction
which it will take during the next time period. Two basic behav-
iors of a single fish are avoidance and attraction. Avoidance has the
higher priority: Whenever a fish is too close to others (i.e., distance
less than a parameter α), it tries to turn away from them. If there
is no other fish within distance α, then the fish will be attracted to
other fish within distance ρ > α. The influence will be summed and
normalized with respect to the current fish. Therefore, any other in-
dividuals out of the visibility range ρ of the current individual will
not influence its movement decision. In addition, informed individ-
uals have a preferred direction, e.g., the direction to the food source
or the direction of migration. These individuals will balance the
strength of their social interactions (attraction and avoidance) with
their preferred direction according to a weight parameter ω.
Predator Simulation. Since both the traffic and the fish school
simulations only use local effect assignments, we designed a
new predator simulation, inspired by simulations of artificial soci-
eties [30]. In this simulation, a fish can “spawn” new fish and “bite”
other fish, possibly killing them, so density naturally approaches an
equilibrium value at which births and deaths are balanced. Since
effect inversion is not yet implemented in the BRASIL Compiler,
we program biting behavior either as a non-local effect assignment
(fish assign “hurt” effects to others) or as a local one (fish collect
“hurt” effects from others) in otherwise identical BRASIL scripts.

	Introduction
	Requirements for Simulation Platforms
	Contributions

	Behavioral Simulations in the State-Effect Pattern
	MapReduce for Simulations
	Simulations as Iterated Spatial Joins
	Iterated Spatial Joins in MapReduce
	The BRACE MapReduce Runtime

	Programming Agent Behavior
	Overview of BRASIL
	Optimization

	Experiments
	Setup
	BRASIL Optimizations
	Scalability of the BRACE Runtime

	Related Work
	Conclusions
	References
	Spatial Joins in MapReduce
	MapReduce
	Formalizing Simulations in MapReduce

	Formal Semantics of BRASIL
	Monad Algebra Translation
	Effect Inversion

	Details of Simulation Models

