
Intensional Associations in Dataspaces
Marcos Antonio Vaz Salles #1, Jens Dittrich ∗2, Lukas Blunschi +3

#Cornell University ∗Saarland University +ETH Zurich
1vmarcos@cs.cornell.edu 2jens.dittrich@cs.uni-sb.de 3lukas.blunschi@inf.ethz.ch

Abstract— Dataspace applications necessitate the creation of
associations among data items over time. For example, once
information about people is extracted from sources such as
webpages and blogs, associations among them may emerge as
a consequence of different criteria, such as their city of origin,
their elected hobbies, or their age group. In a set of personal
data sources, we may wish to associate documents and emails
based on their modification dates or their authors. In this
paper, we advocate a declarative approach to specifying these
associations. We propose that each set of associations be defined
by an association trail. An association trail is a query-based
definition of how items are connected by intensional (i.e., virtual)
association edges to other items in the dataspace. The benefit
of this mechanism is the creation of an intensional graph of
associations among previously disconnected data items coming
from different data sources.

We study in detail the problem of processing neighborhood
queries over these intensional association graphs. The naive ap-
proach to neighborhood query processing over intensional graphs
is to materialize the whole graph and then apply previous work on
dataspace graph indexing to answer queries. As the intensional
graph may have a number of edges quadratic in its number
of nodes, the naive approach has worst-case quadratic indexing
cost. We develop in this paper a novel indexing technique, the
grouping-compressed index (GCI), that exploits association trail
definitions to materialize the same intensional graph with linear
cost. In addition, we present a query answering algorithm over
GCI that avoids decompressing the graph to its quadratic size. In
our experimental evaluation, GCI is shown to provide an order
of magnitude gain in indexing cost over the naive approach, while
remaining competitive in query processing time.

I. INTRODUCTION

Dataspace systems have been envisioned as a new archi-
tecture for data management and information integration [1].
The main goal of these systems is to model, query, and
manage relationships among disparate data sources. So far,
relationships in these systems have been specified at the set
or schema level [2], [3]. These relationships are exploited
to rewrite queries posed to the system, by reasoning on
the containment of queries or on the schema relationships.
In several dataspace scenarios, however, it is important to
model associations between individual data items across or
within data sources. Such scenarios include scientific data
management [4], semantic web [5], [6], personal information
management [7], social content management [8], and metadata
management [9]. In scientific applications, it is necessary to
link information about the same entity spread across several
databases; in social content management, it is fundamental to
create relationships between persons; in personal information
management, it is useful to associate messages and documents
received in the same context or timespan.

In this paper, we propose a declarative approach, called
association trails, to specifying associations among items in a
dataspace. An association trail is a query-based definition of
how items in the dataspace are connected by virtual association
edges to other items. A set of association trails defines a logical
graph of associations over the dataspace. As this graph is
purely logical and in principle does not need to be explicitly
materialized, we call it in this paper an intensional graph. In
addition, we term the edges of this graph intensional edges
or intensional associations. In contrast to solutions that define
associations extensionally [4], [5], [6], [10], association trails
define associations logically and in bulk. As a consequence,
association trails are especially useful in scenarios in which
data sources have no explicit associations defined beforehand.

In addition to defining intensional graphs, we propose in
this paper novel techniques to process exploratory queries
over them. The queries we target are a generalization of the
neighborhood queries defined by Dong and Halevy [10] to
intensional graphs. A neighborhood query extends a search
query’s results by obtaining their immediate neighborhood in
the graph. In the following, we first show example scenarios
of association trails. We then discuss the challenges of neigh-
borhood query processing over intensional graphs.

A. Examples

While our techniques are applicable to many dataspace
scenarios, we will use as a running example for this paper the
modeling of an implicit social network. Figure 1(a) shows a
set of person profiles extracted from sources such as webpages
and blogs. Each profile states a person’s name, along with the
university she has attended, her year of graduation, and her
hobbies. Such profiles can be obtained by applying information
extraction techniques [11].
EXAMPLE 1 (IMPLICIT SOCIAL NETWORKS) Users would
like to navigate their social dataspaces to find other users
related to them or to their topics of interest. Unfortunately,
data extracted from loosely-connected sources is poor in
associations among users.
State of the art: Users may search their dataspaces with
keyword search engines. These systems have no knowlegde
about associations between data items. As a consequence, they
return only items that match the user’s specific request and
cannot enrich results with other relevant associated informa-
tion. While some dataspace approaches extend search results
with elements in a dataspace graph [10], they are of little use
when connections are not explicitly defined as in Figure 1(a).
Users could rely, instead, on a recommender system [12].

refs.bib

p425.pdf

bibliography

childOf

similarTime

similarContent

Association Trails

(a) Data Sources

inbox

Fw: Indexing paper

PIM

Latest Document

Re: Indexing Discussion

joe

(b) Logical Graph Overlay
Files & Folders Email

pim2006.tex

paper.tex

p618.pdf

projects

PIM

bibliography

refs.bib

p425.pdf

home

inbox

Fw: Indexing paper

PIM

Latest Document

Re: Indexing Discussion

joe

pim2006.tex

paper.tex

p618.pdf

projects

PIM

home

(modified = 25/04/2007)

(modified = 26/02/2007;
 title = "Indexing Dataspaces";
 references = {"A Dataspace Odyssey"})

(modified = 21/04/2007)

citedPaperinproceedings
(authors = {"Dong", "Halevy"};
 title = "Indexing Dataspaces";
 file = "p425.pdf")

inproceedings
(authors = {"Blunschi", ...}
 title = "A Dataspace Odyssey";
 file = "p618.pdf")

(received = 01/03/2007;
 title = "A Dataspace Odyssey")

(received = 01/03/2007;
 from = "Jane")

(received = 28/02/2007;
 from = "Jane")

(received = 26/04/2007;
 from = "Jane")

(received = 26/04/2007)

inproceedings

inproceedings

(modified = 25/04/2007)

(modified = 21/04/2007)

(authors = {"Dong", "Halevy"};
 title = "Indexing Dataspaces";
 file = "p425.pdf")

(authors = {"Blunschi", ...}
 title = "A Dataspace Odyssey";
 file = "p618.pdf")

(modified = 26/02/2007;
 title = "Indexing Dataspaces";
 references = {"A Dataspace Odyssey"})

(received = 26/04/2007;
 from = "Jane")

(received = 26/04/2007)

(received = 28/02/2007;
 from = "Jane")

(received = 01/03/2007;
 from = "Jane")

(received = 01/03/2007;
 title = "A Dataspace Odyssey")

paperPdf

citedPaper

citedPaper

paperPdf
paperPdf

similarContent

similarTime

similarTime

similarTime

similarTime

childOf

childOf

childOf

childOf

childOf

childOf

childOf

childOf

childOf

childOf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

isFriend
sameUniversity
sharesHobbies

Association Trails

graduatedSameYear
postedComment

university: ETH
hobbies: design, piano

gradYear: 2008

university: ETH
hobbies: design, yoga

gradYear: 2008

From: Alice
To: Design Community

Does anybody remember
this boy who used to play
the piano?

university: Cornell
hobbies: piano, pool

gradYear: 2000

university: PUC-Rio
hobbies: guitar, acting

gradYear: 1998

university: Cornell
hobbies: gardening

gradYear: 1998
university: CMU

hobbies: volleyball
gradYear: 1999

university: ETH
hobbies: swimming

gradYear: 2007

(a) A Social Network Today (b) A Social Network with aTrails

Frank

Bob

Fred

Alice

Kate

Fred

Anna

university: ETH
hobbies: design, piano

gradYear: 2008

university: ETH
hobbies: design, yoga

gradYear: 2008

university: Cornell
hobbies: piano, pool

gradYear: 2000

university: PUC-Rio
hobbies: guitar, acting

gradYear: 1998

university: Cornell
hobbies: gardening

gradYear: 1998
university: CMU

hobbies: volleyball
gradYear: 1999

university: ETH
hobbies: swimming

gradYear: 2007

Frank

Bob

Fred

Alice

Kate

Fred

Anna

From: Alice
To: Design Community

Does anybody remember
this boy who used to play
the piano?

university: Cornell
hobbies: gardening

gradYear: 1998

Bob

Bob
university: Cornell
hobbies: gardening
gradYear: 1998
...

sameUniversity
sharesHobbies

Intensional Edges

graduatedSameYear

MIT, 2008
likes design

& piano

MIT, 2008
likes design

 & yoga

NYU, 2000
 likes piano

& yoga

Berkeley, 1998
likes guitar

& acting

NYU,
likes gardening

1998
CMU, 1999

likes volleyball

MIT, 2007
likes swimming

sameUniversity

sameUniversity

sameUniversity

sameUniversity

sharesHobbies

sharesHobbies

graduatedSameYear

graduatedSameYear

(a) A Set of Integrated Person Profiles (b) An Intensional Graph defined by Association Trails

Frank

Bob

John

Alice

Kate

Fred

Anna

isFriend
sameUniversity
sharesHobbies

Association Trails

graduatedSameYear
postedComment

university: ETH
hobbies: design, piano

gradYear: 2008

university: ETH
hobbies: design, yoga

gradYear: 2008

From: Alice
To: Design Community

Does anybody remember
this boy who used to play
the piano?

university: Cornell
hobbies: piano, pool

gradYear: 2000

university: PUC-Rio
hobbies: guitar, acting

gradYear: 1998

university: Cornell
hobbies: gardening

gradYear: 1998
university: CMU

hobbies: volleyball
gradYear: 1999

university: ETH
hobbies: swimming

gradYear: 2007

isFriend

sameUniversity

sameUniversity

sameUniversity

sameUniversity

sharesHobbies

sharesHobbies

postedComment

graduatedSameYear

graduatedSameYear

isFriend

isFriend

isFriend

isFriend

(a) A Social Network Today (b) A Social Network with aTrails

Frank

Bob

Fred

Alice

Kate

Fred

Anna

university: ETH
hobbies: design, piano

gradYear: 2008

university: ETH
hobbies: design, yoga

gradYear: 2008

university: Cornell
hobbies: piano, pool

gradYear: 2000

university: PUC-Rio
hobbies: guitar, acting

gradYear: 1998

university: Cornell
hobbies: gardening

gradYear: 1998
university: CMU

hobbies: volleyball
gradYear: 1999

university: ETH
hobbies: swimming

gradYear: 2007

Frank

Bob

Fred

Alice

Kate

Fred

Anna

From: Alice
To: Design Community

Does anybody remember
this boy who used to play
the piano?

MIT, 2008
likes design

& piano

MIT, 2008
likes design

 & yoga

, 2000
 likes piano

& yoga

NYU

Berkeley, 1998
likes guitar

& acting

,
likes gardening

NYU 1998
CMU, 1999

likes volleyball

MIT, 2007
likes swimming

Frank

Bob

John

Alice

Kate

Fred

Anna

isFriend
sameUniversity
sharesHobbies

Association Trails

graduatedSameYear
postedComment

ETH, 2008
likes design

& piano

ETH, 2008
likes design

 & yoga

From: Alice
To: Design Community
...

Cornell, 2000
 likes piano

& pool

PUC-Rio, 1998
likes guitar

& acting

Cornell,
likes gardening

1998
CMU, 1999

likes volleyball

ETH, 2007
likes swimming

isFriend

sameUniversity

sameUniversity

sameUniversity

sameUniversity

sharesHobbies

sharesHobbies

postedComment

graduatedSameYear

graduatedSameYear

isFriend

isFriend

isFriend

isFriend

(a) A Social Network Today (b) A Social Network with aTrails

Frank

Bob

Fred

Alice

Kate

Fred

Anna

ETH, 2008
likes design

& piano

ETH, 2008
likes design

 & yoga

From: Alice
To: Design Community
...

Cornell, 2000
 likes piano

& pool

PUC-Rio, 1998
likes guitar

& acting

Cornell,
likes gardening

1998
CMU, 1999

likes volleyball

ETH, 2007
likes swimming

Frank

Bob

Fred

Alice

Kate

Fred

Anna

isFriend

postedComment

isFriend

isFriend

isFriend

isFriend

1

2

4

5

6

7

8

3

1

4

6

7

8

3

,
likes swimming

USB 2001

JanesharesHobbies
2

,
likes swimming

USB 2001

Jane

5

Fig. 1. A set of person profiles extracted from sources such as webpages and blogs is transformed by association trails into an intensional graph of associations.

These systems are, however, limited to hard-coded heuristics
such as TF-IDF similarity to recommend related profiles. In
addition, current recommender systems can hardly be deployed
to a range of loosely-coupled data sources over which the
system has no control. Moreover, these systems do not model
associations among items, so users cannot browse connected
users, select a subset of associations of interest, or even extend
the system by defining associations based on new criteria.
Our goal: We provide a declarative technique to model
intensional associations among items in the dataspace. Users
or administrators provide to the system declarative association
definitions, called association trails. Consider that the follow-
ing association trails are given to the system:
1. People that went to the same university are related.
2. People that graduated on the same year are related.
3. People that share a hobby are related.

Now, users will have the view of the dataspace depicted in
Figure 1(b). They are able to navigate to other related users
by browsing a rich graph of associations. In addition, search
query results may be enriched by items in their neighborhoods
in the intensional graph. �

As an additional example, we discuss how association trails
may enrich a personal dataspace.
EXAMPLE 2 (PERSONAL DATASPACES) Consider a personal
dataspace in which users interact with a set of data sources
such as filesystems and email servers. Users have a hard time
understanding which items spread across their sources are
related to each other in the same context.
State of the art: While users may search their data sources
with search engines, the results returned by these systems
are not enriched with contextual information. Users may
want to access all other versions of a given file that exist
in their dataspace, see files and emails worked on around
the same time, or retrieve emails in the same project of a
given document. Dataspace approaches, such as iTrails [2] or
probabilistic mediated schemas [3], rewrite search queries to
obtain results that are semantically integrated across sources.
For example, these approaches allow the system to translate
queries on a virtual date attribute to the modified attribute on
the filesystem and the received attribute in the email server.

These approaches, however, do not model an intensional graph
of associations that would allow users to navigate to the neigh-
borhoods of query results obtained by their rewritten queries.
Our goal: We propose modeling associations among personal
items declaratively via association trails. Examples of associa-
tion trails are items touched around the same time, documents
with similar content, and items that reside in similar folder
hierarchies in the email server and in the filesystem. With these
association trails defined, users may browse an intensional
graph of connections about personal items. In addition, they
may find items that are most related to other items in their
dataspace by examining by how many edges these items are
connected in the intensional graph.

B. The Query Processing Problem

The naive approach to query processing over an intensional
graph is to simply materialize the whole graph and then apply
previous techniques for dataspace [10] or graph indexing [5],
[6], [13]. This approach may have prohibitive cost, however.
Given a set of n association trails over a dataspace with N
nodes, the number of intensional edges in the intensional graph
is O(n ·N2) in the worst case (Section IV-A). Thus, simply
materializing the intensional graph has cost quadratic on the
number of nodes.

In this paper, we focus on neighborhood queries over inten-
sional graphs. We develop techniques to answer neighborhood
queries at cost linear on both n and N. In particular, we
propose a new indexing method, the grouping-compressed
index (GCI). By eliminating redundant information from the
O(n ·N2) naive materialization, GCI represents large classes
of intensional graphs in worst-case O(n ·N) space (Section IV-
E). In addition, we present a query answering algorithm over
GCI that avoids decompressing the intensional graph to its
quadratic size during query processing.

C. Contributions

In summary, this paper makes the following contributions:
1. We present a new declarative formalism, termed associ-

ation trails, to define an intensional graph of connections
among instances in a dataspace. We also discuss how to ex-
press neighborhood queries on top this graph of connections

2

that is not given explicitly, but rather defined by association
trails. Association trails are introduced in Section III.

2. We propose query processing techniques for neighborhood
queries over the intensional graph defined by association
trails. These techniques take advantage of different amounts
of materialization of the intensional graph in order to make
query processing efficient. We discuss our query processing
techniques in Section IV.

3. In a set of experiments with real and synthetic datasets,
we evaluate the performance of our query processing tech-
niques over intensional graphs. Our best technique, the
grouping-compressed index, exhibits an order of magnitude
improvement in indexing cost over the naive approach,
while remaining competitive in terms of query processing
time. Experimental results are reported in Section V.

II. PRELIMINARIES

A. Data Model

We begin by defining the data model used to represent in
the dataspace the data extracted from the data sources.

DEFINITION 1 (DATA MODEL) The data in the dataspace is
represented by a graph G := (N,E), where:
1. N is a set of nodes {N1, . . . ,Nm}. Each node Ni is a set

of attribute-value pairs Ni := {(ai
1,v

i
1), . . . ,(a

i
k,v

i
k)}, where

each value is either atomic or a bag of words. We do not
enforce a schema over the nodes, i.e., the set of attributes
of each node may be different.

2. E is a set of directed edges (Ni,N j), s.t. Ni,N j ∈ N. �

EXAMPLE 3 The data in Figure 1(a) is represented in the data
model of Definition 1. Node 4 has a set of attribute-value pairs
{(name, Alice), (university, MIT), (gradYear, 2008), (hobbies,
design & yoga)} (for better visibility, attribute names have
been omitted in the figure). While E =∅ in the figure, it may
contain explicit source connections in general. For example,
in a personal dataspace, E will contain explicit filesystem
connections between folders and files. �

B. Query Model

For the purposes of this paper, we will use the following
simple keyword and path language.

DEFINITION 2 (QUERY) A query Q is an expression that
selects a set Q(G)⊆N. The possible query expressions are:
1. Keyword Expression: denoted K, returns all nodes such

that keyword K occurs in some of their attribute-value pairs.
2. Attribute-value Expression: denoted A op V, returns all

nodes such that the condition on attribute A with operator
op and value V is true.

3. Intersect Expression: denoted exp1 exp2, returns all
nodes qualifying both exp1 and exp2.

4. Union Expression: denoted exp1 OR exp2, returns all
nodes qualifying either exp1 or exp2. �

EXAMPLE 4 In the graph of Figure 1(a), the following queries
exemplify the expression types described in Definition 2:
1. yoga returns Nodes 4 and 7.

2. university = NYU returns Nodes 7 and 8.
3. yoga NYU returns Node 7.
4. yoga OR NYU returns Nodes 4, 7, and 8. �

C. Basic Index Structures

Given the queries above, we assume two basic index struc-
tures, commonly found in state-of-the-art search engines [14]:
1. Inverted Index: a mapping from keyword to the list of

node identifiers of nodes containing that keyword. In order
to support both attribute-value and keyword expressions,
the inverted index may be implemented by concatenating
keywords with the attribute names in which those keywords
occur. Keyword expressions are then translated to prefix
queries [15], [10]. Keywords can be of any data type with
a total order (e.g., numbers, dates, or strings).

2. Rowstore (or repository): a mapping from node identifier
to the information associated with that node. This includes
the set of attribute-value pairs of that node as well as any
explicit edges that connect this node to other nodes.
Search engines use ranking schemes, e.g., PageRank, to sup-

port top-K query processing over the data structures desbribed
above [14]. In our work, we are agnostic to the ranking scheme
used by the search engine. We focus on efficient techniques
for neighborhood query processing over intensional graphs.

III. ASSOCIATION TRAILS

This section formalizes association trails and neighborhood
queries over intensional graphs.

A. Basic Form of an Association Trail

An association trail defines a set of edges in the intensional
graph. For example, in Figure 1(b), a single association trail
would define all sharesHobbies edges. Defining more associ-
ation trails adds more edges to the graph, potentially between
the same nodes. We may thus interpret each association trail
as defining an intensional graph overlay on top of the original
dataspace graph. When we take a set of association trails
together, they define an intensional multigraph, i.e., a graph
in which nodes may be connected by multiple labeled edges
(Figure 1(b)). The definition below formalizes this intuition.

DEFINITION 3 (ASSOCIATION TRAIL) A unidirectional asso-
ciation trail is denoted as

A := QL
θ(l,r)
=⇒ QR,

where A is a label naming the association trail, QL,QR are
queries, and θ is a predicate. The query results QL(G) are
associated to QR(G) according to the predicate θ, which
takes as inputs one query result from QL and one from QR.
Thus, we conceptually introduce in the association graph one
intensional edge, directed from left to right and labeled A, for
each pair of nodes given by QL Zθ QR. We require that the
node on the left of the edge be different than the node on the
right, i.e., no self-edges are allowed.

A bidirectional association trail is denoted as

A := QL
θ(l,r)⇐⇒ QR.

3

The latter also means that the query results QR(G) are related
to the query results QL(G) according to θ. �

An association trail relates elements from the data sources
by a join predicate θ. Therefore, association trails cover
relational and non-relational theta-joins as special cases. While
knowing the form of θ may allow us to improve performance
(see Section IV-E), conceptually θ may be an arbitrarily
complex function. This means that Definition 3 also models
use cases such as content equivalence and similar documents.

A straightforward extension to our model is to define θ as a
matching function generating several edges between a pair of
nodes. This may be useful to model individual matches created
by multi-valued attributes, e.g., modeling each hobby match
in sharesHobbies by a separate intensional edge.
A Word about Ranking. The attentive reader will notice
that it is easy to extend the definition of association trails
to incorporate edge weights. Each association trail may be
given a normalized weight value that represents the strength
of the association edges created by that trail. These weights
may then be exploited for ranking of results obtained by
navigating intensional edges. While a detailed treatment of
ranking exceeds the scope of this paper, our query processing
techniques compute information necessary as input to ranking,
such as the edge in-degree of query results. More information
on association trail ranking can be found in [16].

B. Association Trail Use Cases

USE CASE 1 (SOCIAL NETWORKS) The intensional graph of
Figure 1(b) is defined by the following association trails:

sameUniversity := class=person
θ1(l,r)⇐⇒ class=person,

θ1(l,r) := (l.university = r.university).

graduatedSameYear := class=person
θ2(l,r)⇐⇒ class=person,

θ2(l,r) := (l.gradYear = r.gradYear).

sharesHobbies := class=person
θ3(l,r)⇐⇒ class=person,

θ3(l,r) := (∃h ∈ l.hobbies : h ∈ r.hobbies).

The association trail sameUniversity (resp. graduated-
SameYear) defines that given any two persons, there will be
an edge between them if they have the same value for the
university (resp. gradYear) field. A more complex existential
predicate is introduced in sharesHobbies, which defines that
two people are related when they have at least one hobby
in common. These association trail examples show how to
define a logical graph of associations among elements in
the dataspace. This is achieved in terms of queries that
select elements to be related and predicates that specify join
semantics among those elements. When taken together, the
association trails above result in a multigraph (displayed in
Figure 1(b)). This intensional multigraph is actually a view,
which can be refined over time by adding more association
trails in a pay-as-you-go fashion. �

USE CASE 2 (PERSONAL DATASPACES) Consider the fol-
lowing association trails defined over a personal dataspace:

similarTime := class=file
θ6(l,r)⇐⇒ class=file,

θ6(l,r) := (r.date−1≤ l.date≤ r.date+1).

relatedFolder := class=email
θ7(l,r)⇐⇒ class=file mimeType=pdf,

θ7(l,r) := (∃ f1, f2 : (f1, l) ∈ E ∧ (f2,r) ∈ E
∧ f1.name = f2.name).

These association trails model the context of personal items as
discussed in Example 2. They define, respectively, associations
among items changed or received around the same time and
emails and files that reside in similar folders in the email
server and in the filesystem. The relatedFolder association trail
restricts intensional associations between files and emails to
occur only for pdf documents and not for any arbitrary file. �

C. Neighborhood Queries

The applications described in the Introduction must process
exploratory queries over the intensional graph of associations
defined by association trails. We focus on a special class of
exploratory queries termed neighborhood queries. For simplic-
ity, our presentation in the following sections is focussed on
unidirectional association trails, as it is simple to extend our
techniques to the bidirectional case.

Neighborhood queries were used by Dong and Halevy to
explore a dataspace graph [10]. They assume that the dataspace
graph is given extensionally, i.e., each edge in the graph is
explicitly materialized, and that the original queries to the
graph are keyword or union expressions. Unfortunately, their
definition does not apply to intensional graphs. As such, we
generalize neighborhood queries below to intensional graphs
and to any original query described in Definition 2. We first
define what a neighborhood is in our context.

DEFINITION 4 (NEIGHBORHOOD) Given a query Q and a
set of association trails A∗, the neighborhood NQ

A∗ of Q with
respect to A∗ is given by

NQ
A∗ :=


∅, if A∗ := ∅ ,

(Q ∩ Qi
L) Yθi Qi

R, if A∗ := {Ai} ,

NQ
{A1} ∪ NQ

{A2} ∪ . . . ∪ NQ
{An}, if A∗ := {A1,A2, . . . ,An}.

where Qi
L and Qi

R are the queries on the left and right sides
of trail Ai, respectively, and θi is the θ-predicate of Ai. �

The definition above states that the neighborhood includes
all instances associated through A∗ to instances returned by Q.
That is formalized in terms of a semi-join, as we wish to find
all instances from Qi

R which are connected to some element
of Q also appearing on Qi

L. Note that in the definition above,
nothing is said about self-edges. Self-edges are disallowed by
Definition 3. It is simple to exclude self-edges by removing
from Qi

R all nodes in Qi
L ∩ Qi

R for which θi generates a self-
edge and that do not have an edge to at least one other node
in Qi

L. For the remainder, we will not consider self-edges in
order to simplify our presentation.

4

EXAMPLE 5 Consider the keyword query alice, posed over
the intensional multigraph of Figure 1(b). It returns Node 4.
As Node 4 is of class person, then it qualifies the left sides
of all association trails in Use Case 1. If we take the semi-
join of Node 4 with all other person nodes for predicate θ1
of association trail sameUniversity, then we obtain Nodes 1
and 3. Repeating the semi-join for all other association trails
in Use Case 1 and taking unions yields Nodes 1, 3, and 7, i.e.,
the neighborhood of Node 4 in Figure 1(b). �

DEFINITION 5 (NEIGHBORHOOD QUERY) For a query Q
and a set of association trails A∗, the neighborhood query
{
QA∗ is given by

{
QA∗ := Q ∪ NQ

A∗

We call the results obtained by Q primary query results and
the results obtained by NQ

A∗ neighborhood results. �

In contrast to recursive queries over network overlays [17],
which traverse multiple hops of a single intensional graph,
neighborhood queries inspect a single-hop neighborhood of
multiple intensional graph overlays. As we will see below,
this allows us to process them much more efficiently than by
simply adapting methods from recursive query processing.

IV. QUERY PROCESSING TECHNIQUES

In this section, we present techniques to process neighbor-
hood queries over intensional graphs. We start by discussing
the naive approach in Section IV-A and then proceed to present
our more specialized techniques in Sections IV-B to IV-E.

A. Naive Approach

The most intuitive query processing strategy is to explicitly
materialize all edges in the intensional graph at indexing time.
At query time, we can lookup this materialization to obtain the
neighborhoods for each element returned by the original query
Q. This query strategy is roughly equivalent to the technique
of [13] adapted to neighborhood queries. Other dataspace [10]
and graph indexing techniques [5], [6] could also be applied
on top of the naive materialization to reduce query time.
However, they will make indexing time even larger for the
naive approach. As we will see in our experiments (Section V),
indexing is the most dramatic cost driver for this strategy.

Given a set of association trails A∗ = {A1,A2, . . . ,An}, the
materialization of the intensional graph can be obtained by the
join Q1

L ./θ1 Q1
R ∪ . . . ∪ Qn

L ./θn Qn
R. This materialization could be

stored in a join index [18]. In our scenario, that would entail
using a single clustered B+-tree with the left OID as a key.
This representation has some unnecessary overhead. If a given
OID in the left maps to several OIDs in the right, then the join
index will repeat the left key several times, one time in each
〈OIDle f t ,OIDright , trailList〉 tuple. By employing an inverted list,
we factor out each occurrence of a left OID, representing it
only once for all right matching OIDs. Figure 2(a) shows the
resulting inverted list for the first two trails in Use Case 1.

Clearly, if the queries Qi
L and Qi

R each return N nodes, then
the association trail Ai may generate up to O(N2) edges in the
multigraph. We see an example of that effect in Figure 1(b):

Nodes 1, 3, and 4 form a clique when we consider the sameU-
niversity association trail. We believe this situation will occur
frequently in practice, given that association trails are based on
N:M join semantics. As association trails generate edges in the
multigraph independently, for n association trails, there will
be O(n ·N2) edges in the multigraph in the worst case. Thus,
we expect the naive approach to exhibit large indexing times.
In addition, query times will grow significantly whenever we
must retrieve a sizable portion the naive materialization at
query time. This situation may occur when the selectivity of
the original query Q is low. Both of these observations are
confirmed by our experiments (see Section V).

B. Canonical Plan

Instead of rushing into full materialization, we observe that
neighborhood queries can be answered without any material-
ization at all. In fact, we can use a query plan that follows
trivially from Definitions 4 and 5. We call this query plan the
canonical plan. We show an example in Figure 2(b).

The canonical plan must compute the query Q once for
each association trail. In addition, it always recomputes the
queries on left and right sides of the association trails. As we
have illustrated in Use Case 1, we frequently find common
expressions being used for these queries. What this means is
that the canonical plan will naturally contain a large number
of common subexpressions. Techniques to reuse common
subexpressions include spooling and push-based plans [19].
Spooling is simple to be implemented in pull-based query
processors, such as search engines and database systems. On
the other hand, it incurs in higher runtime overhead than
push-based plans. As the investment to convert a pull-based
query processor into push-based one is often equivalent to a
reimplementation of the query processing stack, we would like
to use pull-based plans while reducing the overhead of mate-
rializing and re-reading results from common subexpressions.
We discuss how to achieve this in the next subsection.

C. N-Semi-Join Plan

Instead of converting our algebra to push-based, we intro-
duce a new operator: the n-semi-join n-Yθ1,...,θn . Given a list
of θ-predicates θ1, . . . ,θn and two inputs R and S:

R n-Yθ1,...,θn S := (R Yθ1 S) ∪ . . . ∪ (R Yθn S).
N-semi-joins may improve the canonical plan by compressing
all semi-joins that have the same left and right inputs into one
single operator. For example, if Q1

L = Q1
R = . . . = Qn

L = Qn
R, then

the canonical plan is rewritten to a plan with a single n-semi-
join. An example is shown in Figure 2(c). If all left and right
sides are different, however, the n-semi-join plan is equivalent
to the original canonical plan. In this respect, n-semi-join
plans are “safe”, as they will not produce a plan that is worse
than the canonical plan. In practice, we expect n-semi-joins to
significantly compress query plans, replacing the n semi-joins
in the canonical plan by k� n n-semi-joins. For example, the
canonical plan for all association trails of Use Case 1 would
have 5 semi-joins; the equivalent n-semi-join plan would have
2 n-semi-joins. If another hundred association trails were

5

(a) Naive Approach (Full Mate-
rialization)

Q

ócontent ~

G G

U
U

ócontent ~
"pdf" "yesterday"

U

A1
L.Q

A1
R.Q

U

×è1Q

Q

U

An
L.Q

An
R.Q

×èn
...

è

è,æ×

Q

U

U

×è1
Q

Q

U

×è2

Q

U

U

×è1
Q

1
QL

1
QR

Q

U

×è2

2
QL

2
QR

class=person

class=person

class=person

class=person

(b) Canonical Plan

ócontent ~

G G

U

ócontent ~
"pdf" "yesterday"

U

U

è1
Q

Q

U

× è2

è

è,æ×

,n-

U

è1
Q

Q

U

× è2,n-

1,2
QL

1,2
QR

class=person

class=person

(c) N-Semi-Join Plan

OID university gradYear

1
3
4
5

7

MIT 2007
MIT 2008
MIT 2008

Berkeley

1999

NYU 2000
8 NYU 1998

6 CMU

1998

(d) Qi
L and Qi

R Mate-
rialization (MatLR)

(e) Grouping-Compressed In-
dex (GCI)

Fig. 2. Query processing alternatives for association trails sameUniversity and graduatedSameYear.

defined relating people as in the first four association trails of
Use Case 1, we would still have only 2 n-semi-joins, compared
to 105 semi-joins in the canonical plan.

It is straightforward to implement a hash-based version of
an n-semi-join operator. A hash-based n-semi-join is able to
handle all association trails presented in Use Case 1. We have
adapted this operator to also handle existential semantics, as
in sharesHobbies or in Experiment V-C. In fact, depending
on the θ-predicate, we may have to use a different join
implementation, even not only hash-based joins. We refer
the reader to the significant work on join processing in the
literature (e.g. [20], [21]), as discussing how to handle different
types of θ-joins efficiently exceeds the scope of this paper.

D. Materialize Qi
L and Qi

R (MatLR)

Recall from Section IV that even the improved n-semi-
join plan must execute the original user query Q as well as
the left (Qi

L) and right (Qi
R) sides of the association trails.

One important observation is that although the query Q is
not directly available to us at indexing time, the association
trails are. Thus, we may pre-compute Qi

L and Qi
R and save the

results as materialized views. The materialized views for Qi
L

and Qi
R are physically represented as lists of node identifiers

(OIDs) along with a projection of the attributes from the
nodes. This projection comprises all attributes referenced in
the θ-predicates of the association trails. We choose those
attributes to avoid costly lookups to the rowstore if Qi

L and Qi
R

are executed by accessing the inverted index (see Section II-
C). We show the materialized view for association trails
sameUniversity and graduatedSameYear in Figure 2(d). The
advantage of this technique is to improve at query time over
pure n-semi-joins, while only incurring modest indexing cost.

E. Grouping-Compressed Index (GCI)

The quadratic growth in the size of the naive materialization
of Section IV-A is often a consequence of grouping effects
in the association trail join predicates. In an equi-join, for
example, all nodes with the same value for a join key will
join with one another, generating a clique in the graph for
that association trail. In a clique of size C, we would naively
store C2 edges in the naive materialization. In this section, we
show how to eliminate grouping effects in the join at both
indexing and query time.
Compressing the Full Materialization with Lookup Edges.
As an alternative representation, we could: (1) explicitly

represent the edges from a given node n1 in the clique to all
the other nodes {n2, . . . ,nC} and (2) for each remaining node
in the clique, represent special lookup edges 〈n j,n1, lookup〉
that state n j connects to the same nodes as n1. Thus, we
represent the information in the clique with C normal edges
for n1 plus C−1 edges for the lookup edges of all remaining
nodes. In short, a reduction in storage space (and consequently
join indexing time) from C2 edges to 2 ·C−1 edges. We call
this representation grouping compression.

The grouping compression may be applied not only to equi-
join predicates in the association trails, but also to other types
of joins in which edges outgoing from one node nl point to
exactly the same nodes as the edges outgoing from another
node n j. In such situations, we may compress the edges of n j
by emitting the lookup edge 〈n j,nl , lookup〉. For example, in
the existential predicate of association trail sharesHobbies in
Use Case 1, whenever two nodes have the exact same set of
hobbies, they must point to the same set of nodes. So that
predicate is another example where grouping effects on the
join exist and, thus, grouping compression may be used.

Figure 2(e) shows our representation for the grouping-
compressed index. Unlike in the naive materialization, we store
two lists for each node ni: a list of all normal edges for that
node and a list of all lookup edges. For example, Node 3 has
a lookup list which includes the lookup edge 〈3,1, lookup〉 for
association trail sameUniversity (trail 1 in Figure 2(e)). If we
wish to know which nodes are connected to Node 3, then we
should include Node 1 along with nodes in the normal list of
Node 1. This means that Node 3 is connected to Node 1 and
to Node 4 by that association trail (note that we ignore self-
edges). In addition, the normal list of Node 3 includes Node 4
for association trail graduatedSameYear. Therefore, Node 3 is
also connected to Node 4 by this other association trail.
Grouping-Compressed Neighborhood Query Algorithm.
We present below a method to process neighborhood queries
over the grouping-compressed index that does not require each
clique to be decompressed to its original C2 edges. The core
idea of our method is to operate in two phases. In the build
phase, we create an aggregate table with information from all
lookup edges for the original query results. In the probe phase,
we may use this table to avoid looking up normal edges for
nodes in the same clique several times.

Algorithm 1 is a detailed description of this idea. The
algorithm is described assuming that all trails in A∗ should
be taken into consideration for query processing. Filtering for

6

a given subset of the trails, however, is straightforward. First,
we begin by processing lookup lists (Lines 1 to 8). For every
node in Q(G), we check the lookup list for that node (Line 4).
For each element in the lookup list, we record the trails in
which that element appears along with the number of times
it appears per trail (Lines 5 and 6). This comprises the build
phase, in which for each element in the lookup lists, we have
built a small mapping containing in-degree information for
each association trail (map oidToTrailCountMap). The next
phase comprises probing the normal lists of all nodes either in
Q(G) or oidToTrailCountMap in order to expand the result
(Lines 9 to 29). We first update the in-degree of each node
according to its lookup edges (Line 12). For each element
in the normal list of that node (Line 13), we calculate its
appropriate in-degree, depending on whether the lookup was
triggered by a primary query result (Lines 15 to 18) or by
an element from a lookup list (Lines 19 to 22). Note that
if the element appears in a lookup list, we must increase
its in-degree only for association trails in the intersection of
its trail list and the trails in oidToTrailCountMap (function
intersectTrailCounts, Line 21). Finally, if the element is indeed
connected through some edge, then we add it to the result,
updating its in-degree (Lines 23 to 27).
EXAMPLE 6 Suppose Q(G) := {3,4} and the grouping-
compressed index of Figure 2(e) are given as input to Al-
gorithm 1. In the build phase, the algorithm will inspect the
lookup lists for Nodes 3 and 4. It will find Node 1 represented
twice for sameUniversity and Node 3 represented once for
graduatedSameYear. That information will be saved in the
map oidToTrailCountMap := {(1→{(1,2)}),(3→{(2,1)}}.
The probe phase then calculates which nodes are related to one
of Nodes 1, 3, or 4 (Q(G) ∪ getNodes(oidToTrailCountMap.
keySet())). We first process Node 1, adding it to the result with
in-degree equal to 2 (Line 12). We then lookup the normal
list for Node 1. Both entries, again Nodes 3 and 4, qualify
for association trail sameUniversity and are thus added to the
result with a partial in-degree of 1 (Line 21; note that we
deduce self-edges). We proceed by processing Node 3. As
Node 3 is in oidToTrailCountMap with an edge count of 1,
we increase its in-degree to 2 (Line 12). We then process the
normal list of Node 3, updating the in-degree of Node 4 to 2
(Line 17) as Node 3 is also in Q(G). Note that the count of
Node 4 is not increased again in Line 21, as we deduce self-
edges. Finally, we try to lookup the normal list of Node 4,
but it is inexistent. The final result contains the nodes and in-
degrees Res := {(1,2),(3,2),(4,2)}, i.e., Nodes 1, 3, and 4
are all returned with in-degree 2. Contrast that result with
Figure 1. If Nodes 3 and 4 are in the original query result, then
Node 1 is in the neighborhood of both of them via association
trail sameUniversity. Nodes 3 and 4 are in the neighborhood
of one another and are connected by both association trails
sameUniversity and graduatedSameYear. �

F. Handling updates

Following the same design philosophy used for traditional
inverted list indexing, we may incorporate updates to the index

Algorithm 1: Grouping-Compressed Neighborhood Query
Input: Primary Query results Q(G)

Grouping-compressed index GCI

Output: Result Set Res =
{
QA∗

Create Map oidToTrailCountMap of type1
OID →{(trail1,count1), . . . ,(trailn,countn)}

// build phase — build oidToTrailCountMap from lookup2
edges:
for Node ni ∈ Q(G) do3

for Entry entryLookup ∈ GCI.lookupList(ni.OID) do4
TrailCountList trailCountList :=5

oidToTrailCountMap.getOrCreate(entryLookup.OID)
trailCountList.increaseTrailCounts(entryLookup.trailList)6

end7
end8
Res := (Q(G) ∪ getNodes(oidToTrailCountMap.keySet()))9
// probe phase — scan normal lists to expand Res:10
for Node ni ∈ Res do11

ni.inDegree := ni.inDegree+∑ all counts in list12
oidToTrailCountMap.get(ni.OID)

for Entry entryNormal ∈ GCI.normalList(ni.OID) do13
int entryInDegree := 014
// count all trails when access caused by primary query15
result:
if ni ∈ Q(G) then16

entryInDegree := entryNormal .trailList.length17
end18
// count extra lookup edges for entryNormal .OID:19
if oidToTrailCountMap.containsKey(ni.OID) then20

entryInDegree := entryInDegree+∑ all counts in21
list
intersectTrailCounts(oidToTrailCountMap.get(ni.OID),

entryNormal .trailList), deducing self-edges when
entryNormal .OID ∈ Q(G).getOIDs()

end22
// add entryNormal .OID to result if there is some edge23
to it:
if entryInDegree > 0 then24

Node nNormal := Res.getOrCreate(entryNormal .OID)25
nNormal .inDegree :=26
nNormal .inDegree+ entryInDegree

end27
end28

end29

structures described above via differential indexing [22]. When
association trails are added to the system, we build indexes for
those association trails and combine results from all indexes
at query processing. Likewise, when elements are added or
removed from the dataspace, we record their neighborhoods in
a differential index structure that is merged at query processing
time with the main indexes. Thus, update performance will
be proportional to the performance observed for small index
creations (see Section V).

V. EXPERIMENTS

In this section, we evaluate the query processing tech-
niques of Section IV. The main goal of our experiments
is to understand how our techniques compare to the naive
approach. Section V-B evaluates the query performance and
indexing costs of each technique as we scale on the number

7

of association trails. Section V-C explores the sensitivity of all
methods to the selectivity of the primary query Q.

A. Setup and Datasets

Datasets. We have implemented a synthetic data generator that
creates a set of person profiles as in the running example of this
paper. The generator creates N person nodes in the dataspace.
We scale up to a maximum of n association trails. All asso-
ciation trails follow the template Ai := class = person

θi(l,r)=⇒
class = person, θi(l,r) := l.ak = r.ak+1, where ak,ak+1 are
attributes from the profiles of people in the dataset. Therefore,
we create person profiles with 2n attributes, where each
attribute is generated following a Zipf distribution with skew
z and cardinality c [23]. Other than the profile attributes, each
person also has a randomly generated person name. For our
synthetic dataset, we have set N = 1,600,000; z = 0.5; and
c = 100,000. Each generated profile contained 200 attributes.

In order to generate data similar to online social networks,
our generator creates a scale-free graph [24] among person
nodes and also creates nodes for comments and communities.
We have generated on the order of 500,000 comments and 160
communities. This additional data is immaterial for our evalu-
ation, however, as we focus our evaluation on the intensional
graphs among person nodes created by association trails.

We have also evaluated our system with a real dataset of
biographies and filmographies from IMDb [25]. Person pro-
files were obtained from the biographies of actors, actresses,
writers, and directors, totalling 1,909,796 people. Each profile
included the person’s first and last names, birthdate, place of
birth, and height. In addition, we imported all the explicit con-
nections between people and the movies they worked in. There
were a total of 1,414,654 movies and 14,250,548 person-movie
connections. We have created the following (self-explanatory)
association trails: sameLastName, sameBirthdate, samePlace-
OfBirth, sameHeight, and moviesInCommon. We have applied
the extension discussed in Section III-A for association trails
on multi-valued attributes to moviesInCommon, i.e., this as-
sociation trail generates one intensional edge for each movie
in common between two persons. The association trails above
create an intensional graph of person nodes from a dataset in
which these connections are not explicit.

parameter setting
number of trails n 0 . . . 100

query Q selectivity s 0.01% . . . 0.1% . . . 10%

TABLE 1
PARAMETER SETTINGS USED IN THE EXPERIMENTS

We summarize the main parameters varied in the experi-
ments in Table 1. Default settings are highlighted.
Setup. All experiments have been run on a dual AMD Opteron
280 2.4 Ghz dual-core server, with 6 GB of RAM, and a
400 GB ATA 7200 rpm hard disk with 16 MB cache. Associ-
ation trails have been implemented in the open-source iMeMex
Dataspace Management System [26]. The system already
provided the basic index structures described in Section II-
C and supported all query types described in Section II-B. In

addition, it provided reusable data structures for materialized
views, bulk-loaded B+-trees, and inverted lists. In our imple-
mentation, we have not made use of multi-threaded parallelism
for querying, so our code takes explicit advantage of only a
single core; for indexing, on the other hand, we have used a
multi-threaded mergesort implementation, resulting in a partial
usage of the cores available in the server. Our techniques could
easily be extended to work on a cluster. Consider the grouping-
compressed index. At indexing time, we compute association
trail joins and then load the results into a sorted structure. Both
of these activities are clearly parallelizable. At querying time,
all lookups performed during the build phase are independent
and may be done in parallel. Likewise, the lookups performed
in the probe phase may also be performed in parallel.

Dataset Orig Data Total Index Rowstore Inv Index Indexing
Size [MB] Size [MB] Size [MB] Size [MB] Time [min]

Synthetic 2,768 3,138 2,056 1,082 43
IMDb 564 924 676 248 48

TABLE 2
SIZE AND CREATION TIME FOR BASIC INDEXES (SECTION II-C)

We report in Table 2 the indexing time and index sizes
taken by the index structures of Section II-C for the datasets
above. In order not to have our query time measurements
influenced by the time necessary to process the original query
Q, we have simulated Q by choosing nodes randomly from the
persons in each dataset and creating a materialized view as an
OID list for those nodes. Thus, processing Q is equivalent
to a scan in an OID list and can be typically carried out in
subsecond response times. This means that the performance
differences observed in the experiments are due to association
trail processing strategies alone.

For all query processing strategies, we obtain as results not
only the nodes that qualify

{
QA∗ , but also an in-degree count

that states how many edges connect each node to a primary
query result. This information could be used as input for a
ranking algorithm on top of our query processing methods.
Note that exploring top-K algorithms in the style of [27]
exceeds the scope of this paper.
Methods Compared. We compare the following strategies:
1. Naive: materialization of the whole intensional graph as an

inverted list (Section IV-A). Note that the naive approach
will compute the join of all association trail queries at
indexing time. In order to optimize this computation, we
have applied a technique similar to n-semi-joins to reuse
common subexpressions in the joins.

2. Canonical: canonical plans without indexing except for
the basic structures in Section II-C (Section IV-B).

3. N-Semi-Join: n-semi-join plans also without indexing
(Section IV-C).

4. MatLR: materialization of the left- and right-side queries
of association trails as materialized views (Section IV-D).
For this strategy, note that, in our setup, the queries on both
sides of the association trails are the same (class=person)
and thus only one materialization is necessary.

5. GCI: the grouping-compressed index (Section IV-E).

8

We would like to point out that techniques such as those
proposed by Dong and Halevy [10] or graph indexing tech-
niques [28], [5], [6] expect as input a fully materialized,
extensional graph. As a consequence, any of these techniques
will have indexing times that equal the Naive approach.

B. Scalability in Number of Association Trails

We present below performance results when scaling on the
number of association trails. All results in this section are
reported using our synthetic dataset, as it allows us to scale
on the number of association trails.
Query Response Time. Figure 3(a) shows that query per-
formance degrades linearly as we scale on the number of
association trails, given an original query Q selecting 0.1% of
the person nodes in our dataset. The first point in the graph is
measured without association trails and the second with a sin-
gle association trail. Query response time without association
trails is in the order of 10 ms. With the addition of the first
association trail, query response time for strategies without
indexing, namely Canonical and N-Semi-Join, rises sharply,
reaching a time in the order of 3 min. This is due to our having
to process both the association trail left- and right-side queries
and the additional semi-join to calculate the association trail
neighborhood. As expected, N-Semi-Join brings no benefit for
a single association trail over canonical plans; in fact, it has
slight overhead. As we scale on the number of trails, however,
the differences between the two techniques become apparent.
N-Semi-Join processes the queries in the left and right sides
of the trails only once, while Canonical spools the association
trail queries and scans this spool multiple times.

Overall, association trail indexing has a significant impact
in query response time. The indexing strategies do not have
as dramatic a jump in query processing time when the first
association trail is added to the system as Canonical and N-
Semi-Join. N-Semi-Join has a processing time of 2.9 min for
that point, while MatLR takes around 4 sec and both Naive and
GCI take under 0.5 sec. Furthermore, all indexing strategies
exhibit faster query response times than both Canonical and
N-Semi-Join for all numbers of association trails.

Out of the indexing strategies, only MatLR and GCI could
be scaled up to 100 association trails, with GCI consistently
outperforming MatLR. At 100 association trails, GCI outper-
formed MatLR by a factor 4.6 (37.4 sec vs. 2.9 min) and was
up to a factor 18.8 better than Canonical. Naive exhibited
an interesting behavior: its query response time, while also
linearly increasing, remains rather low. It reaches 6.9 sec for
90 trails, in contrast to 29 sec for GCI. GCI must perform
more random lookups to process neighborhood queries using
Algorithm 1 than Naive at the selectivity level of 0.1% for
the original query Q. We could not scale Naive above this
point, however, due to large index sizes (reported below). In
particular, we did not have enough temporary disk space in our
server to materialize the whole intensional graph as required
by Naive. This point is marked in Figure 3(a) by a vertical
line. In addition, in a set of separate experiments, we have
also observed that the query performance of Naive is sensitive

to skew in the data, performing significantly worse than GCI
when the skew of the attributes is increased to 0.95. We omit
the detailed results for brevity.

In summary, while Naive can deliver good response times, it
is strongly affected by indexing time and skew in the dataset,
limiting its scalability. Among the methods that could support
up to 100 association trails, GCI had the best performance,
with response time gains of over an order of magnitude when
compared to Canonical.
Indexing Time and Index Size. Figures 3(b) and 3(c) report
indexing times and index sizes for the indexing strategies
discussed above when we scale in the number of association
trails. The figures show that both indexing time and index
size for Naive are dramatic. For 40 association trails, indexing
time is already 5 hours in comparison to 24.0 min for GCI
(factor 12.4) and 3.7 min for MatLR (factor 80). We have not
scaled Naive above 90 trails, a point in which indexing time
reached about 13.2 hours and index size was 17.8 GB. The
temporary disk space needed to build the index was excessive
beyond that point. The second most time-demanding strategy,
GCI, required only 54.9 min to build an equivalent index.
In addition, the indexing time for Naive is over an order of
magnitude higher than the 43 min time needed to build the
basic indexes over the dataset (Table 2, factor 18.4).

In spite of the large indexing times and index sizes ob-
tained for Naive, all indexing strategies scaled linearly on
the number of association trails. The second most time-
demanding indexing strategy, GCI, took about 1 hour to index
100 association trails, while MatLR took 5.1 min (factor 11.8).
Those differences in indexing times are not impressive given
the comparable differences in favor of GCI in query response
times. In terms of index sizes, GCI was in fact slightly more
space-efficient than MatLR. Note that GCI only needs to store
OIDs, while MatLR needs to store a projection containing the
attributes used in the θ-predicates of the association trails. As
more association trails are indexed, more attributes must be
materialized by MatLR.

In summary, the additional indexing investment necessary
for GCI can be easily offset by the savings it provides in
terms of query response times. The trade-off is much worse
for Naive, which exhibits index sizes and indexing times larger
by at least an order of magnitude. While MatLR has the fastest
indexing time, its non-interactive query response times greatly
limit its applicability.
Number of Join Tuples. Recall from Section IV-E that Naive
stores all edges in the association trail multigraph, while GCI
stores normal and lookup edges. Each edge, regardless of its
type, is counted in Figure 4(a) as one join tuple. The number of
join tuples is an implementation-independent metric for both
Naive and GCI. The number of join tuples for both strategies
grows linearly on the number of association trails. That is in
accordance with the number of join tuples being O(n ·N2)
for Naive and O(n ·N) for GCI. For comparison, we show in
the figure a curve with the predicted number of edges that
Naive would require if attributes were uniformly distributed.
As expected, the number of join tuples created on the actual

9

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

Q
u
e
ry

 T
im

e
 [
m

in
]

Association Trails

Naive
Canonical (no indexing)

N-Semi-Join (no indexing)
MatLR

GCI

(a) Query execution time vs. number of associa-
tion trails

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

T
ra

il
In

d
e
x
in

g
 T

im
e
 [
m

in
]

Association Trails

Naive
MatLR

GCI

(b) Indexing time vs. number of association trails

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100

T
ra

il
In

d
e
x
e
s
 S

iz
e
 [
M

B
]

Association Trails

Naive
MatLR

GCI

(c) Index size vs. number of association trails

Fig. 3. Association trails indexing: query processing and indexing performance.

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 0 20 40 60 80 100

#
 J

o
in

 T
u
p
le

s
 i
n
 I
n
d
e
x

Association Trails

Naive
prediction for uniform distribution

GCI

(a) Number of materialized join tuples (edges)
vs. number of association trails

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 0 20 40 60 80 100

#
 Q

u
e
ry

 R
e
s
u
lt
s

Association Trails

number of query results

(b) Number of query results vs. number of asso-
ciation trails

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100

A
v
g
 I
n
-d

e
g
re

e
 P

e
r

R
e
s
u
lt

Association Trails

avg in-degree per result

(c) Query-dependent in-degree vs. number of
association trails

Fig. 4. Implementation-independent metrics: number of join tuples, number of query results, and average result in-degree.

Naive materialization was even higher than predicted, because
the attributes in our generated dataset follow a Zipf distribution
with medium skew. For 90 trails, the maximum we could scale
Naive to, we had amazing 7.1 billion join tuples being created
by Naive vis-à-vis 279 million for GCI.
Number of Query Results and In-degree. We show in Fig-
ure 4(b) the number of query results returned by neighborhood
queries as we scale on the number of association trails. The
non-linear increase observed in the figure is expected, because
we have generated attribute values using a Zipf distribution
with medium skew. This means that some attribute values
are more likely to appear in query results and thus join with
more neighbors. We observe that not only is the increase in
the number of neighborhood query results sharp, but also the
absolute number of results reaches almost the whole set of
person nodes in our dataset for 100 association trails. This
result suggests that ranking could be beneficial for neighbor-
hood queries. We plot in Figure 4(c) the query-dependent
in-degree derived from connections between primary query
results and neighborhood results. This metric scales linearly
with the number of association trails. Contrasting the sharp
increase in number of results with the linear increase in in-
degree, we can conclude that some neighborhood results will
be more densely connected to the primary query results than
others. As a consequence, we recommend future work on
ranking over intensional graphs to consider query-dependent
in-degree as a feature for ranking.

C. Sensitivity to Selectivity of Original Query

We report in this section the sensitivity of the methods to the
selectivity of the original query Q. To run these experiments,

we have used the IMDb dataset. First, we show the indexing
performance for all methods in Table 3. The numbers we
obtained confirm the results discussed for synthetic data. In
short, Naive’s indexing time and index sizes are, respectively,
27 and 28 times larger than GCI, a difference of over an order
of magnitude. MatLR has modest indexing cost, being lower
than GCI by about a factor 2. Canonical and N-Semi-Joins do
not perform indexing.

Metric Strategy
Naive Canonical N-Semi-Join MatLR GCI

Indexing Time (min) 194 - - 3 7
Index Size (MB) 4769 - - 206 170

TABLE 3
ASSOCIATION TRAIL INDEXING TIMES AND INDEX SIZES FOR IMDB.

Figure 5 shows the corresponding query performance of the
methods. As expected, Canonical and N-Semi-Joins have the
worst query performance overall, with query response time
steadily increasing for lower selectivities. The performance
of these two methods was comparable, as we have only 5
association trails defined over the dataset. At 1% selectivity,
MatLR performed 9.3 times better than N-Semi-Joins, but still
3.6 times worse than GCI. It also proved to be robust to lower
selectivities. The gap in performance between GCI and MatLR
tended to diminish for lower selectivities, as more random
lookups in GCI lead to poorer processing times. The query
processing times for Naive were highly dependent on query
selectivity, increasing sharply as selectivity is lowered. At 10%
selectivity, Naive took 2.4 min, a factor 8.8 worse than the
16.2 sec taken by GCI. That behavior is consistent with the
fact that lower selectivities imply that a proportionally larger

10

fraction of the fully materialized intensional graph must be
processed in order to answer a neighborhood query.

 0

 1

 2

 3

 4

 5

 0.01 0.1 1 10

Q
u
e
ry

 T
im

e
 [
m

in
]

Selectivity [%], logscale

Naive
Canonical (no indexing)

N-Semi-Join (no indexing)
MatLR

GCI

Fig. 5. Query execution time vs. selectivity of original query

VI. RELATED WORK

Metadata and Associations. Systems such as Mondrian ex-
tend the relational model to include annotations [4]. These
systems, however, represent annotations extensionally, while
our approach allows users to relate any item in the dataspace
(including data and annotations) declaratively. In order to
model associations between relational tuples, Srivastava and
Velegrakis extend the relational model by using queries as data
values [9]. Their approach is similar to ours in two aspects: (i)
associations are defined intensionally and (ii) no distinction is
made between data and metadata. In contrast to [9], however,
our approach does not require a schema to be created from
the start for the data. Moreover, our approach applies not only
to the relational model but to a general graph data model.
Furthermore, our query interface is a simple extension of
keyword search with structural hints, which allows an end-user
to explore the dataspace once association trails are defined by
an administrator, while [9] adopts full-blown SQL.

Chapman et al.’s approach for provenance storage relies on
compressing an existing extensional database of provenance
information [29]. In contrast, we propose a grouping com-
pression scheme that can be applied without ever having to
materialize the full materialization created by the naive ap-
proach. In addition, we also present an algorithm to avoid full
decompression at query time. The idea of multiple hierarchies
modeled by different colors in Colorful XML is similar to
creating graph overlays that model different relationships on
the data [30]. Our framework, in contrast, uses a general graph
model for each overlay.
Graph Querying Languages. Many graph querying lan-
guages represent queries as graph patterns to be matched
against the input graph [31], [32]. Given an algebra of op-
erators on graphs, complex queries and graph patterns may be
specified in a compositional manner. While querying general
graph patterns is powerful, it is possible to make query
processing more efficient by restricting attention to a specific
query type. Our choice of neighborhood queries enables us
to propose indexing techniques that greatly improve over the

naive strategy of materializing the whole intensional graph.
The grouping-compressed index, in particular, is capable of
representing the intensional graph in linear space, even in
situations where it has a quadratic number of edges.
Recursive Queries. Much work has been done on the efficient
processing of recursive queries in deductive databases [33].
More recently, declarative networking has been proposed to
process multi-hop, recursive queries over a single intensional
graph, defined via datalog rules [17]. In contrast, we process
single-hop, neighborhood queries over multiple intensional
overlay graphs, defined by association trails. Applying semi-
naive evaluation techniques [17] to multiple intensional over-
lays is equivalent to processing neighborhood queries using
the canonical plan of Section IV-B. As we have shown in our
experiments, it is possible to outperform this canonical strategy
by at least an order of magnitude.
Indexing Graphs and XML. Extensive work has been done
on processing path queries on tree-structured XML data [34],
[35] and on combining paths with keyword queries [13].
Our focus is different, as we target exploratory neighborhood
queries on intensional graphs and not general path queries on
trees. An extension of that line of research explores indexing
techniques to efficiently answer reachability queries in graphs
instead of trees [28], [36]. Recent work has explored indexing
support for RDF query patterns [5], [6]. This previous graph
indexing work assumes that the graph is given extensionally as
input to the indexing system. In contrast, our approach enables
users to define and query the graph intensionally.

Some approaches study how to combine items in
the database to generate meaningful results for keyword
queries [37], [38]. XML/IR search engines tackle a similar
problem in a different way, through score aggregation on
related items that satisfy a keyword query [39], [15]. These
systems inspect (implicitly or explicitly) the neighborhood of
primary query results to form answer graphs (e.g. LCAs) or
compute aggregated scores. In contrast to our work, all of
this previous work is concerned with extensional graphs and
their techniques would have to be revisited when the graph is
defined intensionally.
Similarity Search. One could argue that association trails
actually create a declaratively-specified metric space among
the elements of a dataspace. That argument would naturally
lead to the use of metric-space structures to index association
trails [40]. In reality, however, applying metric-space struc-
tures to association trails implies that the metric computation
itself must be made efficient. As such, the query processing
techniques proposed in Section IV are necessary to avoid an
inefficient metric implementation based on the naive approach.
Dataspaces. Dataspaces were envisioned by Franklin, Halevy,
and Maier [1]. Indexing for exploratory queries in dataspaces
has been studied by Dong and Halevy [10]. As in our
approach, they also aim to process neighborhood queries;
however, their approach is restricted to extensional graphs.
Directly applying [10] to intensional graphs implies using the
the naive approach of Section IV-A to build the input graph.
Therefore, in order to create an inverted list in the style of [10]

11

over intensional graphs, the techniques studied in this paper
are a prerequisite.
iTrails. One could argue that the set-level trails introduced by
the authors in previous work [2] could be used to represent
item-level association trails. In order to do that, we would
have to create one set-level trail with a set of one item to
another set of one item for each intensional edge in the
association trail multigraph. As a consequence, we would need
to define a quadratic number of set-level trails to represent an
intensional graph that could be alternatively specified with a
single association trail. Using the trails of [2] here would in
fact be equivalent to the naive approach (full materialization of
the intensional graph). Apart from the incovenience of defining
such a large number of trails, our experiments demonstrate that
this approach is an order of magnitude less efficient than the
grouping-compressed index.

VII. CONCLUSIONS

In this paper, we have presented association trails, a
declarative technique to define a logical, intensional graph of
associations among instances in a dataspace. Our technique
is general and may be applied to model such intensional
graphs on a variety of scenarios, such as social networks
and personal dataspaces. We have shown how to process
exploratory neighborhood queries on top of the intensional
graph defined by association trails. Our query processing
techniques combine partial materialization of the intensional
graph with specialized query processing algorithms in order
to avoid the naive approach of completely materializing the
intensional graph.

Our evaluation showed that the grouping-compressed index
(GCI), our best query processing technique, scales well when
the number of association trails is increased and when the
selectivity is varied. In addition, GCI may bring over an order
of magnitude gain in query response time when compared to
the canonical plan without indexing. At the same time, GCI
may provide over an order of magnitude gain in indexing time
when compared to the naive approach.

As future work, we plan to adapt our techniques to better
support top-K query processing in the style of [27]. In that
vein, we would like to compare different ranking schemes
when computing top-K answers over the association trail
multigraph. In addition, we would like to evaluate how our
techniques perform over large real social networks.

REFERENCES

[1] M. Franklin, A. Halevy, and D. Maier, “From Databases to Dataspaces:
A New Abstraction for Information Management,” SIGMOD Record,
vol. 34, no. 4, pp. 27–33, 2005.

[2] M. A. V. Salles et al., “iTrails: Pay-as-you-go Information Integration
in Dataspaces,” in VLDB, 2007.

[3] A. D. Sarma, X. Dong, and A. Halevy, “Bootstrapping Pay-As-You-Go
Data Integration Systems,” in ACM SIGMOD, 2008.

[4] F. Geerts, A. Kementsietsidis, and D. Milano, “MONDRIAN: Anno-
tating and Querying Databases through Colors and Blocks,” in ICDE,
2006.

[5] T. Neumann and G. Weikum, “RDF-3X: a RISC-style Engine for RDF,”
JDMR (formerly Proc. VLDB), vol. 1, 2008.

[6] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple Indexing
for Semantic Web Data Management,” JDMR (formerly Proc. VLDB),
vol. 1, 2008.

[7] J.-P. Dittrich and M. A. V. Salles, “iDM: A Unified and Versatile Data
Model for Personal Dataspace Management,” in VLDB, 2006.

[8] S. Amer-Yahia, L. V. S. Lakshmanan, and C. Yu, “SocialScope: Enabling
Information Discovery on Social Content Sites,” in CIDR, 2009.

[9] D. Srivastava and Y. Velegrakis, “Intensional Associations Between Data
and Metadata,” in ACM SIGMOD, 2007.

[10] X. Dong and A. Halevy, “Indexing Dataspaces,” in ACM SIGMOD,
2007.

[11] R. Grishman, “Information Extraction: Techniques and Challenges,” in
SCIE, 1997.

[12] G. Adomavicius and A. Tuzhilin, “Toward the Next Generation of
Recommender Systems: A Survey of the State-of-the-Art and Possible
Extensions,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[13] R. Kaushik et al., “On the Integration of Structure Indexes and Inverted
Lists,” in ACM SIGMOD, 2004.

[14] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[15] D. Carmel et al., “Searching XML Documents via XML Fragments,” in
ACM SIGIR, 2003.

[16] M. V. Salles, “Pay-as-you-go Information Integration in Personal and
Social Dataspaces,” Ph.D. dissertation, ETH Zurich, 2008.

[17] B. T. Loo et al., “Declarative Networking: Language, Execution and
Optimization,” in ACM SIGMOD, 2006.

[18] P. Valduriez, “Join Indices,” ACM Transactions on Database Systems
(TODS), vol. 12, no. 2, pp. 218–246, 1987.

[19] T. Neumann, “Efficient Generation and Execution of DAG-Structured
Query Graphs,” Ph.D. dissertation, University of Mannheim, 2005.

[20] P. Mishra and M. H. Eich, “Join Processing in Relational Databases,”
ACM Computing Surveys, vol. 24, no. 1, pp. 63–113, 1992.

[21] E. H. Jacox and H. Samet, “Spatial Join Techniques,” ACM Transactions
on Database Systems (TODS), vol. 32, no. 1, 2007.

[22] D. Severance and G. Lohman, “Differential Files: Their Application to
the Maintenance of Large Databases,” ACM Transactions on Database
Systems (TODS), vol. 1, no. 3, 1976.

[23] J. Gray et al., “Quickly Generating Billion-Record Synthetic Databases,”
in ACM SIGMOD, 1994.

[24] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[25] “IMDb. http://www.imdb.com/.”
[26] iMeMex project web-site. http://www.imemex.org.
[27] R. Fagin, “Combining Fuzzy Information: an Overview,” SIGMOD

Record, vol. 31, no. 2, pp. 109–118, 2002.
[28] S. Trissl and U. Leser, “Fast and Practical Indexing and Querying of

Very Large Graphs,” in ACM SIGMOD, 2007.
[29] A. Chapman, H. V. Jagadish, and P. Ramanan, “Efficient Provenance

Storage,” in ACM SIGMOD, 2008.
[30] H. V. Jagadish et al., “Colorful XML: One Hierarchy Isn’t Enough,” in

ACM SIGMOD, 2004.
[31] H. He and A. Singh, “Graphs-at-a-Time: Query Language and Access

Methods for Graph Databases,” in ACM SIGMOD, 2008.
[32] M. Fernández, D. Florescu, A. Y. Levy, and D. Suciu, “Declarative

Specification of Web Sites with Strudel,” VLDB Journal, vol. 9, no. 1,
pp. 38–55, 2000.

[33] F. Bancilhon and R. Ramakrishnan, “An Amateur’s Introduction to
Recursive Query Processing Strategies,” in ACM SIGMOD, 1986.

[34] N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins: Optimal
XML Pattern Matching,” in ACM SIGMOD, 2002.

[35] T. Milo and D. Suciu, “Index Structures for Path Expressions,” in ICDT,
1999.

[36] H. Wang et al., “Dual Labeling: Answering Graph Reachability Queries
in Constant Time,” in ICDE, 2006.

[37] C. Yu and H. V. Jagadish, “Querying Complex Structured Databases,”
in VLDB, 2007.

[38] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A System for
Keyword-Based Search over Relational Databases,” in ICDE, 2002.

[39] S. Amer-Yahia and M. Lalmas, “XML Search: Languages, INEX and
Scoring,” SIGMOD Record, vol. 36, no. 7, pp. 16–23, 2006.

[40] E. Chávez et al., “Searching in Metric Spaces,” ACM Computing
Surveys, vol. 33, no. 3, pp. 273–321, 2001.

12

	Introduction
	Examples
	The Query Processing Problem
	Contributions

	Preliminaries
	Data Model
	Query Model
	Basic Index Structures

	Association Trails
	Basic Form of an Association Trail
	Association Trail Use Cases
	Neighborhood Queries

	Query Processing Techniques
	Naive Approach
	Canonical Plan
	N-Semi-Join Plan
	Materialize QLi and QRi (MatLR)
	Grouping-Compressed Index (GCI)
	Handling updates

	Experiments
	Setup and Datasets
	Scalability in Number of Association Trails
	Sensitivity to Selectivity of Original Query

	Related Work
	Conclusions
	References

