A Distributed Database System for Event-based Microservices

Rodrigo Laigner
University of Copenhagen

Copenhagen, Denmark
rnl@di.ku.dk

ABSTRACT

Microservice architectures are an emerging industrial approach to
build large scale and event-based systems. In this architectural style,
an application is functionally partitioned into several small and au-
tonomous building blocks, so-called microservices, communicating
and exchanging data with each other via events.

By pursuing a model where fault isolation is enforced at mi-
croservice level, each microservice manages their own database,
thus database systems are not shared across microservices. De-
velopers end up encoding substantial data management logic in
the application-tier and encountering a series of challenges on
enforcing data integrity and maintaining data consistency across
microservices.

In this vision paper, we argue that there is a need to rethink
how database systems can better support microservices and relieve
the burden of handling complex data management tasks faced by
programmers. We envision the design and research opportunities
for a novel distributed database management system targeted at
event-driven microservices.

CCS CONCEPTS

« Information systems — Database management system en-
gines.

KEYWORDS

microservices, event-driven architecture, database system

ACM Reference Format:

Rodrigo Laigner, Yongluan Zhou, and Marcos Antonio Vaz Salles. 2021. A
Distributed Database System for Event-based Microservices. In The 15th
ACM International Conference on Distributed and Event-based Systems (DEBS
'21), June 28-July 2, 2021, Virtual Event, Italy. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3465480.3466919

1 INTRODUCTION

Modern business scenarios require systems to make decisions in
real-time based on events. To tackle such scenarios, event-driven ar-
chitectures (EDAs) are often advocated as a compelling approach to
meet the stringent requirements required by data-intensive systems
that react to events [27]. An EDA is composed by highly decoupled,
single-purpose event processing components that asynchronously

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8555-8/21/06...$15.00
https://doi.org/10.1145/3465480.3466919

Yongluan Zhou
University of Copenhagen

Copenhagen, Denmark
zhou@di.ku.dk

Marcos Antonio Vaz Salles
University of Copenhagen
Copenhagen, Denmark
vmarcos@di.ku.dk

Product Legend
pa—
[il Cache

(0 g C==

ﬁl Eont Doapase TETCY
— Stock |[— Queue Sever
Cache Synchronous Request Event Queuing
Ej User [
@I Cache i —
Cart « Order = Payment : E]'
Front-end Cache @ Cache @ Cache @ Analytical

Request Engine

5

Figure 1: E-commerce microservice architecture example

receive and process events, each performing a singular task in
the application [23]. A particular approach to realizing an EDA
is through the microservice architectural style [16], an emerging
industry paradigm to design highly-modular and scalable appli-
cations [28]. In microservices, an application is designed as a set
of small and independent building blocks that communicate with
each other via pre-defined interfaces (e.g., HTTP APIs) or events.
Each microservice may manage its own database, and thus select its
underlying technology to best support the data formats and work-
loads for the computations encoded. Thus, microservices follow a
decentralized data management principle. In line with this principle,
the dominating practice is that microservices and their underlying
databases are deployed in separated containers to preclude errors
from propagating across microservice boundaries.

Motivating Example. Microservice applications deviate from tra-
ditional monolithic transaction processing, as illustrated by the
e-commerce application shown in Figure 1. After adding several
items to a cart, where a cart is an entity managed by the cart mi-
croservice, the customer may initiate the order’s payment process.
From here, different options could apply, e.g.: (i) for each cart item
added, the cart microservice acquires a temporal (i.e., expiring)
lock, a promise from the stock microservice that the stock item
is safeguarded from being acquired by other clients; (ii) the cart
items are added arbitrarily (i.e., without any synchronization) and
the order microservice is responsible for checking against the stock
microservice the availability of cart items by the time a checkout
request is issued by the user.

In either case, the stock microservice may verify whether the
products are available and whether mismatches exist (e.g., in the
product price). After confirming that all items are in stock, the or-
der is then confirmed. However, prior to proceeding with payment,
the order microservice retrieves user information from the user
microservice and checks the validity of the user’s discounts (e.g., in
case of no longer valid discounts applied previously). After apply-
ing all the proper updates (e.g., calculating totals) to the customer
order, the order microservice emits an event so that the payment
microservice can proceed with the payment confirmation.

https://doi.org/10.1145/3465480.3466919
https://doi.org/10.1145/3465480.3466919

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

The payment microservice processes the payment by acquiring
the confirmation of funds from the credit card holder (e.g., external
system, often a blocking operation), and afterwards updates the
user’s credit score by contacting the user microservice. Lastly, an
analytical engine is eventually updated with the new order.

Despite the apparent attractiveness of a loosely-coupled design
and an inherently decentralized data management architecture, the
presented application unavoidably requires substantial coordina-
tion across microservices, thus forcing developers to deal with chal-
lenges that would not arise in a traditional monolithic architecture.
In particular, by following a model reminiscent of BASE [22] and
OLEP [15], microservice developers end up encountering challenges
that should have been solved by database systems. For instance,
these models prescribe decomposing a schema and associated ap-
plication logic into functional partitions, hard-wiring functional
dependencies through asynchronous events. As result, these mod-
els force a substantial amount of data management tasks into the
application-level, such as enforcing constraints cutting across sev-
eral microservices (e.g., referential constraints) and ensuring live-
ness, since a transaction is often broken down into several steps due
to the functional decomposition as in our example. Furthermore,
microservices introduce challenges not originally envisioned by
the BASE and OLEP models, which we discuss next in the context
of our example application.

Cross-microservice synchronization and validations. The sub-
stantial data management logic encoded in the application-tier

creates a barrier for enforcing application safety across microser-
vices. Developers are offered neither efficient nor intuitive inter-
faces [10] for encoding distributed synchronization (e.g., locks and

leases) at the application level correctly. As a result, microservice

developers often end up resorting to eschewing synchronization

altogether, leading to data consistency issues. For instance, in eS-
hopContainers [1], the application we based our example scenario

on, an asynchronous event generated by the payment microservice

(after payment has been processed) triggers the removal of items

from stock. However, the application code does so unsafely, i.e.,

races and failures can lead to inconsistent state being recorded

across microservices.

Event-based constraint enforcement. Built from our example

in Figure 1, consider the case where a product-price-update event is

emitted concurrently with a checkout-cart event request. The order

in which the cart microservice should process these concurrent

events must depend on an ordering constraint, otherwise any ar-
bitrary order may apply. However, programmers have no way to

specify event processing order invariants related to the possible

interleaving of event streams and end up encountering challenges

to guarantee consistency.

Cross-microservice queries. Queries spanning multiple microser-
vices are popular in microservice architectures [6]. To implement

such queries, programmers often encode data processing logic for

aggregating and joining data from different microservices at the

application-level. By resorting to such ad-hoc mechanisms, pro-
grammers are exposed to a myriad of anomalies, such as fractured

reads [3]. Besides, faulty microservices are another challenge when

retrieving data from multiple microservices. Here, the impossibility

of accessing a microservice’s private state may lead to an incomplete

view of the state.

Rodrigo Laigner and Yongluan Zhou and Marcos Antonio Vaz Salles

For instance, based on our example, suppose an analyst neces-
sitates a report aggregating the last day’s worth of historical data
from users, their orders, and discounts. The lack of a principled
approach for state management across microservices forces devel-
opers to resort to ad-hoc and error-prone mechanisms to query and
join such data.

Data replication. Data replication is usually employed to alleviate
the amount of requests required in queries spanning multiple mi-
croservices. Through propagated events, the OLEP model predicates
that microservices can incrementally maintain materialized views
composed by data owned by other microservices. However, given
the heterogeneity of microservice databases, it is often the case
that practitioners resort to ad-hoc application-level mechanisms to
support data replication through events, a complex and error-prone
approach that leads developers to make do with only eventually
consistent views. In our example, suppose the Order microservice
maintains a materialized view of users’ discounts asynchronously
updated via events. Weak replication semantics may lead to issuing
an incorrect discount to an user.

Fault tolerance. Consider the case when a business transaction
performs writes to a microservice’s private state and queues an
event into a message broker (to trigger an operation in another
microservice, as observed in the order microservice). In these cases,
the BASE model advocates that all writes must be performed in the
same resource (i.e., data store) [22] to avoid a distributed commit
protocol. However, it is often the case such support is not available,
thus leading developers to resort to error-prone fault-tolerance
strategies at the application-level [26].

Contributions and Outline. The paper is organized as follows.
Section 2 discusses the limitations of state-of-the-art database sys-
tems in light of the data management challenges described. Section
3 presents our contributions: (i) We argue that although tradition-
ally applications have been treated as black boxes, such a paradigm
is insufficient for addressing the data management challenges in
microservices, as it offers no way to expose the complex data inter-
play outside the database among microservices. We thus advocate
for identifying such complex interactions and data management
tasks taking place at the application-tier and then pushing them
down for database processing; (ii) We propose a novel abstrac-
tion called virtual microservices, to represent the computations
performed by microservices inside the database; (iii) We present
the declarative constructs to allow for the identification of virtual
microservices at the application-level, and; (iv) We present a vision
for a microservice-oriented event-driven database system. Section
4 discusses challenges and research avenues for this novel database
approach and Section 5 concludes the paper.

2 STATUS QUO AND LIMITATIONS
2.1 State-of-the-art database systems

Although it is possible to observe a variety of architectural designs
in classic databases, separation of database applications is enforced
at schema-level. This can be considered a weak functional isolation
scheme since the performance degradation of a application may
impact other applications. Besides, whenever distinct applications
need to share data, it is assumed to take place within the database-
tier, which does not meet the microservices’ state of the practice.

A Distributed Database System for Event-based Microservices

Cloud-native multi-tenant databases [4] logically isolate tenants
and provide elastic resources backed by the cloud infrastructure.
However, they fail to support event-based programming and ad-
vanced data management requirements, such as cross-tenant data
replication and computations. By assuming tenants are completely
isolated, these systems cannot capture dependencies and interac-
tions amongst microservices.

Taking a step back, there has been a tension yet not properly
addressed by the database systems community between the needs
and requirements of developers in the wild and the classic data-
base abstractions, which treat the application side as a black box.
This view clashes with the needs of programmers that prefer en-
coding their complex business logic in the application-tier, which
often relies on application-level feral validations [2]. This tension
is worsened by the emergence of distributed applications that take
advantage of the flexibility and cost-effectiveness offered by the
cloud. In this case, computations are no longer being held based on
a single database, but rather traverse several small building blocks
of the application, often making use of a myriad of data systems,
such as caching or pub/sub systems, to meet data management
challenges. A holistic solution incorporating selected data manage-
ment functions of multiple such building blocks is required to fully
address the needs of microservice applications.

2.2 Stream processing systems

Usually framed as a compelling abstraction for microservices [13,
25], stream processing systems (ak.a. dataflow systems) are
designed to perform continuous queries over unbounded data
streams [13]. The computational model of stream processing en-
gines contrasts with microservices, since microservices are often
independently developed by different teams and deployed sepa-
rately, instead of within a single streaming processing engine, to
provide strong isolation. At the same time, microservices are free to
communicate, often through non-blocking primitives, and operate
over data from other microservices. Besides, failures or changesina
microservice should not propagate over or interrupt other building
blocks of the system, which contrasts with existing stream engines.

It has been recently argued that microservice applications can be
built on streaming dataflow systems by making stream processors
full-fledged data management engines (e.g., by supporting for trans-
actions across microservices) [13]. However, it remains an open
question how to match static dataflow graphs prescribed by such
a solution with the loose-coupleness, autonomy, and dynamicity
principles of microservices [28].

2.3 Function as a Service

Although recent advances in serverless computing through the
function as a service (FaaS) API [12] aim at offering an easy-to-
use platform that provides programmers high-level computation
expressibility and automatic resource management, FaaS is usually
perceived as a fit for more stateless and less stringent data-intensive
computations.

By contrast, one may position stateful functions as a proper
abstraction for microservices, since they provide an API for state
management that is particular to the business logic encapsulated by
the function [25]. However, it remains an open question how state-
ful functions could support advanced data management features

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

required in microservices, e.g., ordering constraints in complex
interleaving of data streams, online queries, and cross-microservice
synchronization and validations.

2.4 Frameworks for distributed applications

Orleans. While Orleans can be used to develop stateful middle-tier
applications like microservices, for not being a full-fledged database
system, it still forces developers to reason about application safety at
the application level, such as the impact of the interleaving of events
to private state and explicitly handling data durability concerns.
Furthermore, applications must respect a strict set of characteristics
to benefit from the Orleans paradigm [21]. In this sense, it is unclear
how microservices, such as the example scenario, can be modeled
through virtual actors [27].

Dapr. Dapr is a framework for facilitating the development of
microservice applications [19]. By exposing a standard API for
microservices to connect to the Dapr middleware, Dapr is able to
intermediate message queuing across microservices. However, prac-
titioners are still forced to deal with the aforementioned challenges
at the application-level. Most importantly, Dapr offers a centralized
and homogeneous (i.e., key-value) state management abstraction,
contrasting with the prescribed data sovereignty of microservices.

3 MICROSERVICE-ORIENTED DATABASES

3.1 The gist

Although existing data systems partially support real-world mi-
croservice deployments, advanced data management features re-
quired by microservices are not explicitly or sufficiently addressed
in conjunction. Particularly, application semantics are mostly un-
known to the database, which hinders the database from being able
to capture data management tasks encoded at the application level.
Given this clear impedance, we advocate for rethinking how data-
base systems interact with this growing class of applications. We
hypothesize that through appropriate abstractions, we can proac-
tively identify and push data management functionality down to the
database and provide built-in advanced data management support
directly to the application.
Centralization vs. Decentralization. In order to achieve the nec-
essary isolation between microservices, the conventional wisdom
advocates a decentralized data governance paradigm, which is of-
ten implemented by using the database-per-service pattern. This
paradigm is the root cause to the aforementioned data management
challenges of microservices. To enable pushing down data manage-
ment tasks to the database system, in contrast to the conventional
wisdom, we propose a central data governance paradigm for mi-
croservices, i.e. using a single scalable and distributed database
system to manage the states of all microservices. We argue that
such a paradigm does not necessarily contradict the decentralized
data management principle of microservices, as long as the develop-
ers are able to express the logical boundaries of each microservice,
and the database system can consistently enforce such boundaries.
As demonstrated by the success of multi-tenant database systems,
which offer data management services to independent and isolated
tenants through a central database, we believe that providing fault-
isolation, performance isolation, and data sovereignty guarantees
to microservices is independent from the database being centralized

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

or decentralized. Furthermore, given the recent developments of
HTAP and Polystore database systems, which are able to respec-
tively cope with heterogeneous workloads and data formats, we
observe that a centralized data governance paradigm can be made
orthogonal from the database system being able to manage multiple
underlying databases.

3.2 Virtual microservices

In order to push down data management tasks to the database
system, a proper abstraction needs to faithfully characterize the
semantics of microservice applications inside the database. This
tension leads us to the following question: How can we map a
microservice application’s invariants and data management
tasks to an internal representation that the database can ef-
fectively manage?

To address this question, we envision the notion of virtualized
microservices as the core building blocks of a database architecture.
In other words, each microservice application ought to have an
abstract representation in the database, a virtual microservice twin.

More precisely, a virtual microservice is a construct that logi-
cally encapsulates the state of a particular microservice, along with
its constraints and data dependencies, as well as abstracts inbound
and outbound event streams. In other words, by exposing internal
representations of microservices, the database system gains knowl-
edge about the event dataflow across microservices in addition
to the constraints that cut across microservices. As a result, the
application is no longer a black box to the database.

As an idealized microservice twin, a virtual microservice is not
only an independent entity, but also an internal representation of
the application managed by the database. Thus, it inherits the same
characteristics of a microservice, which must then be enforced con-
sistently in the database, namely: (i) communication by event-based
asynchronous messages; (ii) private mutable state; (iii) shared data
that is not mutable. The objective is to natively support the data
management tasks encoded in microservices within the database,
but at the same time provide features that normal microservices
currently do not have, e.g., explicit data dependencies, integrity con-
straints, and atomic actions across private state and event streams.

3.3 A cross-stack architectural vision

The advanced data management requirements (§ 1) and short-
comings found in state-of-the-art database systems (§ 2.1) pose
significant challenges to effectively supporting data-intensive mi-
croservices. It is unclear how a database system can jointly sup-
port event-based querying APIs, cross-microservice queries, event-
based constraint enforcement, high consistency in data replication
across microservices, and proper cross-microservice synchroniza-
tion, while at the same time providing isolation boundaries between
microservices.

To address this conundrum, we now turn our attention to our
success criteria: enabling pushing data management tasks to the
database and materializing the virtual microservice abstraction into
a principled database architecture that tackles the challenges of data
management in microservices by design. Our vision is shown in
Figure 2, which depicts an event-driven microservice-oriented data-
base architecture. Broadly, the architecture provides an application
framework, which controls the interaction of the application-tier

Rodrigo Laigner and Yongluan Zhou and Marcos Antonio Vaz Salles

Application

---1{ Framework ~—~

——> Messaging bt

Request/ Data

—_— s
Response persistence

Transaction Processing

Query Processor
NAME BALANCE RISK
MARY 10000.0 40000
JOSE ‘I‘:liz\l\"-IE
GAB

Data Storage

06 0
= looe

Figure 2: A microservice-oriented event-driven database

RIO 2
KVN 34
MAD 56

with the system, and a set of well-defined components that target
particular data management concerns and can scale independently.

We explain in the following the interconnection between the

components, how the key insight and abstraction are enabled, and
how the pressing challenges are met.
Application abstraction. To enable pushing data to the database,
it is necessary to enrich the abstraction provided to the application
to allow for identifying the complex data management tasks en-
coded. A simple but powerful tool that has been historically used
to add functionalities seamlessly to applications is a framework [8].
Frameworks provide a dynamic introduction of behavior in the
application without the need for user-defined code.

A framework is a key-enabler not only because it is responsible
for identifying data management logic and informing the database
about the application semantics concerning complex data manage-
ment tasks, but also due to its ability to control the application [8],
a necessary condition to enforce event-based constraints and to
control the scheduling order of functions.

We envision such a framework should provide programming
constructs in sync with the state-of-practice. We use as inspiration
the Java Persistence API [20] and declarative transaction imple-
mentation in industry-strength web frameworks like Spring [9] to
demonstrate our framework constructs, shown in Listing 1, but the
approach is generalizable to other programming languages.

In our example, the Cart microservice is equipped with a suf-
ficient abstraction to safeguard a given item is correctly locked
(lines 2 and 10). The safety guarantee is encapsulated in a query
directive that is pushed down for database enforcement. In line 18,
we exhibit an order dependence, a necessary condition to safeguard
consistency guarantees on the total price of an order. The order is
enforced both by the database (in terms of concurrent operations)
and the framework (at the application-level).

A Distributed Database System for Event-based Microservices

// Stock microservice

@Lease("FROM Stock s WHERE s.id = :itemId FOR UPDATE
DECREMENT s.qtd BY :qtd WITH PERIOD :lease")

public Optional<Item> getStockItemInfo(String itemId, int
gtd, Lease lease);

// Cart microservice
@Inbound(event=AddCartItemRequest)
@outbound(event=AddCartItemAttempt)
@Transactional (type="RW", isolation="serializable")
public void handleAddCartItem(String customerId, String
itemId, int qtd) {
Optional<Item> item = getStockItemInfo(itemId, qtd,
Lease.byHours(1));
if (item.isPresent()){
Cart cart = findCartByCustomer (customerId);
cart.add(new CartItem(itemId, qtd));
3
send(AddCartItemAttempt.build(customerId, qtd,
item.isPresent()));

@Inbound(event=ProductPriceUpdate,
precedence=CheckoutRequest)

@Transactional (type="RW", isolation="snapshot")

public void handlePriceUpdate(Event productPriceUpdate)

// code omitted, handles updates to cart items

// Order microservice

@Query("FROM CustDiscounts cd, Customer c JOIN c.id =
cd.c_id WHERE c.id = :custId AND cd.disc_id IN
(:discounts[id]) AND cd.expired() <> FALSE")

List findDiscounts(List discounts, String custId);

@Inbound(event=CheckoutStarted)
@outbound(event=0rderPlaced)
@Transactional (type="RW", isolation="serializable")
public void processOrder(Checkout checkout) {
List discounts = findDiscounts(checkout.discounts,
checkout.custId);
if (discounts.size() != checkout.discounts.size()) {
// adjust total price
3
/* perform necessary data integrity checks, including
cart items' leases, and build new Order's object */
send(OrderPlaced.build(order));
¥

Listing 1: Example abstractions provided to the application

Lastly, we demonstrate a compelling abstraction to allow for API-
oriented encoding of directives in defined queries. Line 24 shows
the API provided by the User microservice ("expired()") that encap-
sulates the business logic regarding the expiration of a discount
(defined as a query in the producer side). Flexibility is provided
such that data management logic does not need to be hard-coded
in the consumer side. The query traverses the Order’s microservice
without the need to encode error-prone, synchronous calls with
weak isolation, since the request is in fact shipped to the database.
Pushing data to the database. We now describe how the encoded
data management tasks are recognized and pushed down to the

DEBS 21, June 28-July 2, 2021, Virtual Event, Italy

database. In Figure 2, a microservice in an application is encoded
by its application logic encapsulated in: (a) functions; (b) logical
input and output queues (#1 and #2, respectively); (c) invariants
(e.g., unique and foreign keys); and (d) external data dependencies.

At start-up time, the framework, by using AOP [14] for exam-
ple, can proactively identify data management tasks encoded in
annotation directives, package them into contextual information
representing the microservice, and inform the database. The data-
base then builds an internal representation of the microservice, a
virtual microservice, and coordinates with the framework when
the register operation has succeed. Then, the framework is able to
start to react to and push events, as well as push tasks downward.
Transaction processing. We now describe the entry point of our
database, the transaction processing system, a distributed trans-
action executor responsible for handling concurrency control and
event ordering constraints by managing a virtual representation of
microservices. This system targets fulfilling the challenges related
to cross-microservice synchronization and validation, event-based
constraints enforcement, and strong isolation.

Mapping virtual microservices to computational resources. We envi-
sion the database being deployed in both single multi-core machine
to be used in small to moderate scale scenarios, and in distributed
settings, deployed in a cluster of machines to cope with large scale
microservice applications. To support the mapping of computa-
tional resources and performance-and-fault isolation, the compo-
nent will leverage container-based deployments [5]; these need,
however, to be adapted to respect virtual microservice isolation
boundaries. We leave further details about a virtual microservice
execution model for future work, but we believe one would not
deviate from the following: (a) Input queue of requests (#4); (b)
Scheduler, to map an input event to a transaction worker; (c) Trans-
action workers, for processing transactions and interacting with the
query processing component whenever necessary (#5); (d) Private
mutable state; and (e) an output queue (#6).

Query processing. We envision a distributed query processor to
tackle three principled challenges (§ 1): (a) the impossibility of
accessing a microservice’s private state when the service is down;
(ii) to refrain developers from encoding ad hoc data replication
error-prone mechanisms on application-tier; and (iii) to effectively
allow for cross-microservice queries through system-level support,
including appropriate consistency guarantees.

Specifically, the strong modularity and the prevalence of short
update transactions within a microservice’s private state (that may
present increased contention) suggests that microservices are bet-
ter served by specific-purpose transaction workers that share no
state and resources across virtual microservices. On the other side,
given the ubiquity of accesses to several microservices’ private
states in online queries, sharing resources while still respecting
the strong isolation principle may decidedly improve performance.
The design of the query processing component will balance these
competing trade-offs to incorporate the event-based processing
nature of microservices.

Persisting data. This layer is a distributed storage system aimed to
store microservices’ data and query results. We assume the storage
exposes proper interfaces for handling blocks of data that will be
processed by the upper layers, namely, the transaction processing
and query processing subsystems. The reasoning for a decoupled

DEBS ’21, June 28-July 2, 2021, Virtual Event, Italy

storage alternative is to allow for flexibility in plugging different
storage solutions as well as to offer opportunities to adapt dynami-
cally to varied workloads often found in microservice architectures.
We leave further details about data persistence to future work.

4 OPPORTUNITIES AND CHALLENGES

Holistic coordination. Through the virtual microservice abstrac-
tion, a dataflow of microservices’ interactions can be derived based
on the defined inbound and outbound events and the data depen-
dencies that cut across microservices. Treating cross-microservices
constraints as event requests within the database opens up oppor-
tunities to enforce a processing order across virtual microservices
that would conflict otherwise, discharging the virtual microservices
to engage in coordination.

Asynchronous code. The abstraction presented in this work ex-
pects asynchronous event sending to take place at the end of a
procedural function, which is a condition that satisfies most data-
intensive microservices [7, 17]. However, we are witnessing an
increasing interest in the use of asynchronous function calls that
return promises [18]. Asynchronous calls allow for increased op-
portunities of parallelism and non-blocking application logic inside
the database [24]. Investigating the integration of asynchronous
primitives for data management logic and virtual microservices is
a worthy avenue to pursue.

Application-aware concurrency control. We envision the defi-
nition of isolation levels that are most appropriate for the under-
lying microservice’s computation. In our example (Listing 1, line
19), the reasoning is that for client-driven requests, it is assumed
that cart items that are already locked face no concurrency issues
with requests from other clients, which makes serializable isolation
not strictly necessary in this case. At the same time application-
defined consistency semantics creates opportunistic window for
performance, it creates challenges for concurrency control design
within the database.

5 CONCLUSION

The data management challenges brought about by microservices
necessitate that we rethink the traditional database architecture.
With state-of-the-art abstractions, database systems in microservice
architectures are unaware of the significant data flowing outside
of the database [11] and hence are condemned to play a secondary
role, mostly relegated to only providing data durability.

In this work, we make a case for event-driven microservice-
oriented databases. By pushing down virtualized representations
of microservices into the database, the database system is able to
natively support all benefits pursued by practitioners on adopting
microservices, e.g., strong isolation, data ownership, and autonomy,
but at the same time offer advanced data management features
practitioners currently lack in state-of-the-art database systems.

Realizing this new class of database systems opens up a wealth
of research opportunities, including — but not limited to — holis-
tic virtual microservice coordination, asynchronous in-database
programming, and application-aware concurrency control.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie

Rodrigo Laigner and Yongluan Zhou and Marcos Antonio Vaz Salles

Sktodowska-Curie agreement No 801199 and Independent Research
Fund Denmark grant No 9041-00368B.

REFERENCES

[1] .NET Application Architecture Reference Apps. [n.d.]. eShopOnContainers. https:

//github.com/dotnet-architecture/eShopOnContainers

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,

and Ion Stoica. 2015. Feral Concurrency Control: An Empirical Investigation of

Modern Application Integrity. In Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data. 1327-1342.

[3] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. 2016.

Scalable atomic visibility with RAMP transactions. ACM Transactions on Database

Systems (TODS) 41, 3 (2016), 1-45.

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin

Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,

Jiansheng Huang, et al. 2016. The snowflake elastic data warehouse. In Proceedings

of the 2016 International Conference on Management of Data. 215-226.

[5] docker docs. 2021. Run multiple services in a container. https://docs.docker.com/
config/containers/multi-service_container (Accessed on 2021-03-15).

[6] B2W Engineering. 2018. restQL: Tackling microservice query complex-
ity. https://medium.com/b2w-engineering-en/restql-tackling-microservice-
query-complexity-27def5d09b40 (Accessed on 2021-02-28).

[7] Uber Engineering. 2020. Revolutionizing Money Movements at Scale with Strong
Data Consistency. https://eng.uber.com/money-scale-strong-data (Accessed on
2021-03-08).

[8] Martin Fowler. 2005. InversionOfControl. https://martinfowler.com/bliki/
InversionOfControl.html (Accessed on 2021-03-19).

[9] Spring Frawework. 2021. 16. Transaction Management. https:
//docs.spring.io/spring-framework/docs/4.2.x/spring-framework-reference/
html/transaction.html (Accessed on 2021-03-02).

[10] Pat Helland. 2017. Life beyond distributed transactions. Commun. ACM 60, 2
(2017), 46-54.

[11] Pat Helland. 2020. Data on the Outside vs. Data on the Inside, Vol. 18. ACM
Queue. Issue 3.

[12] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless Com-
puting: One Step Forward, Two Steps Back. arXiv:1812.03651 [cs.DC]

[13] Asterios Katsifodimos and Marios Fragkoulis. 2019. Operational Stream Pro-

cessing: Towards Scalable and Consistent Event-Driven Applications.. In EDBT.

682-685.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming. In

ECOOP’97 — Object-Oriented Programming. 220-242.

Martin Kleppmann, Alastair R. Beresford, and Boerge Svingen. 2019. Online

Event Processing: Achieving Consistency Where Distributed Transactions Have

Failed. Queue 17, 1 (2019), 116-136.

Rodrigo Laigner, Marcos Kalinowski, Pedro Diniz, Leonardo Barros, Carlos

Cassino, Melissa Lemos, Darlan Arruda, Sergio Lifschitz, and Yongluan Zhou.

2020. From a Monolithic Big Data System to a Microservices Event-Driven Ar-

chitecture. In 46th Euromicro Conference on Software Engineering and Advanced

Applications. 213-220.

Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and

Marcos Kalinowski. 2021. Data Management in Microservices: State of the

Practice, Challenges, and Research Directions. arXiv:2103.00170 [cs.DB]

[18] B. Liskov and L. Shrira. 1988. Promises: Linguistic Support for Efficient Asyn-
chronous Procedure Calls in Distributed Systems. SIGPLAN Not. 23, 7, 260-267.

[19] Microsoft. 2021. Dapr. https://github.com/dapr/dapr

[20] Oracle. 2021. The Java EE 6 Tutorial Part VI Persistence. https://docs.oracle.com/
javaee/6/tutorial/doc/bnbpy.html (Accessed on 2021-03-02).

[21] Orleans. [n.d.]. Best Practices. https://dotnet.github.io/orleans/docs/resources/
best_practices.html (Accessed on 2021-05-16).

[22] Dan Pritchett. 2008. Base: An Acid Alternative. In File Systems and Storage, Vol. 6.
ACM Queue. Issue 3.

[23] Mark Richards. 2015. Software Architecture Patterns (1st ed.). O'Reilly.

[24] Vivek Shah and Marcos Antonio Vaz Salles. 2018. Reactors: A Case for Predictable,

Virtualized Actor Database Systems. In Proceedings of the 2018 International

Conference on Management of Data. 259-274.

Tzu-Li (Gordon) Tai. 2020. Stateful Functions Internals: Behind the scenes of

Stateful Serverless. https://flink.apache.org/news/2020/10/13/stateful-serverless-

internals.html (Accessed on 2021-03-05).

[26] GitHub user arielmoraes. 2018. #700. https://github.com/dotnet-architecture/

eShopOnContainers/issues/700 (Accessed on 2021-03-22).

Yiwen Wang, Julio Cesar Dos Reis, Kasper Myrtue Borggren, Marcos Antonio Vaz

Salles, Claudia Bauzer Medeiros, and Yongluan Zhou. 2019. Modeling and Build-

ing IoT Data Platforms with Actor-Oriented Databases. In EDBT. 512-523.

Olaf Zimmermann. 2017. Microservices Tenets. Comput. Sci. 32, 3-4 (2017),

301-310.

[2

—_
=t

[14

[15

=
&

=
=

~
2

&
=

™~
&

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://docs.docker.com/config/containers/multi-service_container
https://docs.docker.com/config/containers/multi-service_container
https://medium.com/b2w-engineering-en/restql-tackling-microservice-query-complexity-27def5d09b40
https://medium.com/b2w-engineering-en/restql-tackling-microservice-query-complexity-27def5d09b40
https://eng.uber.com/money-scale-strong-data
https://martinfowler.com/bliki/InversionOfControl.html
https://martinfowler.com/bliki/InversionOfControl.html
https://docs.spring.io/spring-framework/docs/4.2.x/spring-framework-reference/html/transaction.html
https://docs.spring.io/spring-framework/docs/4.2.x/spring-framework-reference/html/transaction.html
https://docs.spring.io/spring-framework/docs/4.2.x/spring-framework-reference/html/transaction.html
https://arxiv.org/abs/1812.03651
https://arxiv.org/abs/2103.00170
https://github.com/dapr/dapr
https://docs.oracle.com/javaee/6/tutorial/doc/bnbpy.html
https://docs.oracle.com/javaee/6/tutorial/doc/bnbpy.html
https://dotnet.github.io/orleans/docs/resources/best_practices.html
https://dotnet.github.io/orleans/docs/resources/best_practices.html
https://flink.apache.org/news/2020/10/13/stateful-serverless-internals.html
https://flink.apache.org/news/2020/10/13/stateful-serverless-internals.html
https://github.com/dotnet-architecture/eShopOnContainers/issues/700
https://github.com/dotnet-architecture/eShopOnContainers/issues/700

	Abstract
	1 Introduction
	2 Status quo and limitations
	2.1 State-of-the-art database systems
	2.2 Stream processing systems
	2.3 Function as a Service
	2.4 Frameworks for distributed applications

	3 Microservice-oriented databases
	3.1 The gist
	3.2 Virtual microservices
	3.3 A cross-stack architectural vision

	4 Opportunities and Challenges
	5 Conclusion
	Acknowledgments
	References

