
Hybrid Deterministic and Nondeterministic Execution of
Transactions in Actor Systems

Yijian Liu

University of Copenhagen, Denmark

liu@di.ku.dk

Li Su
∗

Alibaba Group, China

lisu.sl@alibaba-inc.com

Vivek Shah
∗

Deon Digital Denmark A/S, Denmark

bonii.vivek@gmail.com

Yongluan Zhou

University of Copenhagen, Denmark

zhou@di.ku.dk

Marcos Antonio Vaz Salles

University of Copenhagen, Denmark

vmarcos@di.ku.dk

ABSTRACT
The actor model has been widely adopted in building stateful

middle-tiers for large-scale interactive applications, where ACID

transactions are useful to ensure application correctness. In this

paper, we present Snapper, a new transaction library on top of

Orleans, a popular actor system. Snapper exploits the characteris-

tics of actor-oriented programming to improve the performance

of multi-actor transactions by employing deterministic transaction

execution, where pre-declared actor access information is used

to generate deterministic execution schedules. The deterministic

execution can potentially improve transaction throughput signif-

icantly, especially with a high contention level. Besides, Snapper
can also execute actor transactions using conventional nondeter-

ministic strategies, including S2PL, to account for scenarios where

actor access information cannot be pre-declared. A salient feature

of Snapper is the ability to execute concurrent hybrid workloads,

where some transactions are executed deterministically while the

others are executed nondeterministically. This novel hybrid execu-

tion is able to take advantage of the deterministic execution while

being able to account for nondeterministic workloads.

Our experimental results on two benchmarks show that deter-

ministic execution can achieve up to 2x higher throughput than

nondeterministic execution under a skewed workload. Additionally,

the hybrid execution strategy can achieve a throughput that is close

to deterministic execution when there is only a small percentage

of nondeterministic transactions running in the system.

CCS CONCEPTS
•Computingmethodologies→Concurrent computingmeth-
odologies; • Information systems→Database transaction pr-
ocessing.

∗
Work done mostly while the author was affiliated with the University of Copenhagen.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3526172

KEYWORDS
transaction processing, actor model

ACM Reference Format:
Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, andMarcos Antonio Vaz Salles.

2022. Hybrid Deterministic and Nondeterministic Execution of Transactions

in Actor Systems. In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3514221.3526172

1 INTRODUCTION
The actor model [1] is emerging as a promising concurrent and par-

allel programming abstraction for building stateful middle-tiers [10,

12] in large-scale interactive applications, including multi-player

games such as Halo 4 [48] and League of Legends [42], telecom-

munication such as Ericsson [26], E-commerce such as Paypal [50]

and Walmart [17], and Internet of Things [40]. There are plenty

of programming languages [24, 25] as well as libraries and frame-

works [2, 36, 37] that enable actor-based programming. With the

actor model, applications are decomposed into concurrent actors,

each encapsulating a private state and communicating with other

actors via asynchronous message passing.

In the actor model, each actor processes its incoming messages

sequentially. Such sequential behavior frees developers from han-

dling concurrency issues within each actor. However, there are

situations where concurrent cross-actor operations require trans-

actional properties. For example, in an online multi-player game,

player actors may exchange game equipment or purchase equip-

ment with digital currencies. As another example, in an e-commerce

application, actors maintaining product stocks and those respon-

sible for order checkouts have to interact to complete a purchase

transaction. Transactional properties are often needed to ensure

application correctness in these scenarios.

Transaction management in actor-based applications is compli-

cated by their design as stateful middle tiers, which react to changes

of states in real-time and asynchronously flush accumulated states

to database tiers [10]. In particular, with this architecture, trans-

actions are executed within the middle-tier servers rather than as

stored procedures in databases. Motivations of this trend include,

among others, the flexibility of encoding transaction logic using

programming abstractions different from database systems, and

being able to use the large memory and computing power of cheap

middle-tier servers to manipulate data and execute transactions

instead of using more expensive [8, 9] database servers [10].

https://doi.org/10.1145/3514221.3526172
https://doi.org/10.1145/3514221.3526172

To meet these new requirements and to alleviate the burden

on developers, there exist efforts in various actor systems provid-

ing high-level programming abstractions for efficient multi-actor

transactions while hiding their implementation complexities from

developers. Akka introduced the concept of transactors [4], which

employs two-phase commit (2PC) and software transaction mem-

ory (STM) to support atomic cross-actor transactions.
1
Orleans [37]

has recently made efforts to support distributed transactions [23]

across multiple actors. It adopts two-phase locking (2PL) and 2PC

with early lock release [7, 47], allowing for higher concurrency at

the price of cascading aborts.

One way to enable actor transactions is to implement transac-

tions on top of the actor abstraction itself without any modification

to the actor runtime. For example, Orleans Transactions [23] adopt

such an approach. This non-intrusive approach requires less system

development and maintenance effort in comparison to alternatives

with deep integration with the actor runtime. Therefore, we focus

on this approach due to its low development cost. However, un-

der this approach, multi-actor transactions are challenging. This is

because the state of an actor-based application is partitioned into

many fine-grained actor private states. Every multi-actor transac-

tion, no matter if the actors are collocated on the same machine or

not, is a cross-partition transaction and has to employ distributed

transaction mechanisms, which are expensive.

In this paper, we argue that the existing actor transaction mech-

anisms have not sufficiently exploited the characteristics of actor-

oriented applications to improve transaction performance, particu-

larly transaction throughput. An interesting characteristic is that

actors are accessed explicitly in an actor programming abstrac-

tion, e.g., by the names or process IDs in Erlang [25], by the paths

of the actor hierarchy in Akka [2], and by the user-defined actor

identities in Orleans [37]. It is often the case that the set of actors

involved and the number of times that they would be accessed in a

transaction are known before the transaction starts. For example,

in an e-commerce system, a CheckoutOrder transaction explicitly

specifies a list of product IDs, which targets a list of stock actors,

each being accessed once. Another example is, in a social network

application, when a user issues a JoinGroup transaction, which

updates the membership data in a determined user actor and group

actor, each being accessed once, respectively.

This characteristic of actor programming enables the exploration

of a novel actor-based transaction abstraction, where the identi-

ties of the participating actors and the number of times that they

are accessed in a transaction are pre-declared. With such apriori

information, an actor system would be able to pre-schedule the

transactions and execute them in a deterministic order. In compari-

son to nondeterministic concurrency control methods adopted by

existing approaches, such as 2PL, a deterministic ordering strategy

would avoid transaction aborts due to conflicts [43, 52]. The latter

holds the potential to significantly improve system throughput es-

pecially when the contention level is high. Furthermore, 2PC can

be optimized to enhance transaction concurrency [43, 52].

Despite that we envision most actor transactions in an actor-

based application can be implemented with the aforementioned

1
When this feature was deprecated in 2014 [3], developers have significantly com-

plained about its absence [20, 54].

transaction abstraction, there could exist transactions that do not

fall into this category. For example, in a social network application,

a user could issue a CleanUpFriendList request, which removes

friends who are in the user’s friend list but with no recent interac-

tions, and would then trigger the removed friends to also update

their friend lists. Such a transaction may need to look up a user’s

friend list and the recent interaction histories to determine the

set of actors that would be involved. In other words, the list of

participating actors of the transaction may not be known before

the transaction starts. Therefore, one may have to resort to con-

ventional actor transaction abstractions based on nondeterministic

concurrency control and 2PC, such as Akka transactor or Orleans

Transactions, to execute this type of transaction. Supporting both

types of abstractions in the same system is a challenge. Determin-

istic and nondeterministic concurrency control methods achieve

serializability based on different principles, and how to reconcile

these two methods in a single system is still an open problem.

In this paper, we propose Snapper, an actor transaction library

on top of Orleans that enables multi-actor transactions. Our goal

with Snapper is to improve the performance of cross-actor transac-

tions based on the fact that existing solutions such as Orleans Trans-

action do not perform so well especially under high contention and

on a significant observation that deterministic transaction execu-

tion is well-suited to the actor model. Specifically, Snapper supports
two types of actor transaction abstractions, namely Predeclared

ACtor Transaction (PACT) and ACtor Transaction (ACT), which

employ deterministic and nondeterministic concurrency control

mechanisms, respectively. A salient feature of Snapper is that it

supports a novel hybrid execution strategy that enables concurrent

execution of transactions specified using different actor transaction

abstractions. As the first cut at the problem, this paper focuses on

optimizing and evaluating the performance of single-server trans-

actions, i.e., transactions that only involve actors located on the

same server. We focus on this problem because we envision that,

in order to maximize transaction performance, the allocation of

actors should be optimized so that the majority of transactions are

single-server transactions as in high-performance OLTP database

systems [19, 39]. Besides, optimizing single-server transactions can

be of great value to many applications that are able to scale verti-

cally and are suited to exploiting locality. In summary, the main

contributions of this paper include:

• We propose a novel programming abstraction for multi-actor

transactions, namely PACT, which enables deterministic execution

of multi-actor transactions in an actor system.

• We propose a hybrid transaction execution method that en-

ables concurrent execution of PACTs and ACTs. To the best of our

knowledge, we are the first to study how to accommodate both

deterministic and nondeterministic transaction execution strategies

in a single system.

• To verify practicability, we implement the proposed actor

transaction abstractions and execution strategies as a library on

top of Orleans, a widely adopted actor system.

• We conduct a series of experiments to evaluate the effective-

ness of our transaction execution methods using SmallBank and
TPC-C benchmarks. The results show that comparing to ACTs and

Orleans Transactions, PACTs can achieve up to 2x higher through-

put. Additionally, the hybrid execution can achieve a throughput

that is close to PACTs when the percentage of ACTs is small.

2 BACKGROUND
In actor systems, actors are the basic unit of programming [1]. Sim-

ilar to object-oriented programming, each actor has its own private

state and methods. However, unlike objects, actors do not share

state in the same logical address space; rather, they communicate

with each other exclusively via asynchronous messages. Concep-

tually, each actor is single-threaded and processes each incoming

message before handling the next one. Upon receiving a message,

an actor may modify its own state, create other actors, or send mes-

sages. The actor model aims at providing a coherent and simplified

abstraction to build concurrent, parallel, and distributed systems.

Conventionally, actor runtimes, such as Erlang [25] and Akka [2],

provide constructs for programmers to explicitly manage the life-

cycle of actors, including creation/deletion, allocation, recovery,

etc. Orleans [12, 16] proposes the novel concept of virtual actor,

wherein the Orleans runtime system becomes responsible for actor

lifecycle management. A virtual actor is conceptually in perpetual

existence. The Orleans runtime automatically activates a virtual

actor when it is first invoked. Similarly, the Orleans runtime auto-

matically deactivates the actor when it is no longer under use based

on configurable policies. Virtual actors offer location transparency

and a basic level of fault tolerance by automatic re-activation.

In Orleans, actors always interact through strongly-typed asyn-

chronous messaging, which is exposed to developers as asynchro-

nous RPCs [16]. Asynchronous RPCs allow actors to interact with

each other without blocking by overlapping method invocations,

which is one of the key factors that makes actor systems achieve

high concurrency. Orleans also allows users to explicitly wait for

the result of an asynchronous call by using the keyword await, in
a style reminiscent of promises [30]. Besides, in Orleans, message

delivery timing and order are non-deterministic, i.e., messages can

arrive at a destination actor in a different order than the sending

order. Therefore, implementing multi-actor transactions in Orleans

is non-trivial, requiring coordination under asynchrony, dealing

with out-of-order messages, and still achieving high throughput.

Orleans implements turn-based scheduling [16] on each actor,

which processes a request as discrete units of work called turns.
Turns are sequentially executed. By default, turns from different

requests are not allowed to interleave on the same actor activation.

However, Orleans provides a mechanism called reentrancy [16],

where an actor can switch to process the turn of another request

while one request is blocked by an asynchronous operation. Reen-

trancy allows multiple requests to be interleaved on the same actor,

which brings even higher concurrency with asynchronous RPCs.

In Orleans, actor failures are reported as exceptions thrown

from actor codes or actor runtime. Orleans propagates an exception

along the call chain to the caller actor. Snapper catches and handles
exceptions thrown by actor codes to correctly abort a transaction.

3 SNAPPER PROGRAMMING MODEL
3.1 Conceptual Overview
Snapper is a library that supports executing transactions involving

method calls over one or more actors. It provides transactional APIs

to access the state of the current actor and to invoke method calls on

other actors. These APIs are implemented in TransactionalActor
which is a base class of actor and has system functionality such as

persisting logs and committing/aborting transactions built on top

of it. To get transactional guarantees provided by Snapper, user-
defined actors must extend TransactionalActor and use its APIs

when accessing actor state and invoking method calls.

In Snapper, each transaction is a series of method invocations

performed on multiple actors. A transaction is initiated by one actor

where the first method is invoked. This actor will start executing the

transaction and invoke methods on other actors via asynchronous

RPCs. A transaction can invoke methods on the same actor multi-

ple times. The actor that initiates the transaction will also end the

transaction when the first invoked method has finished. This actor

is responsible for committing/aborting the transaction, thus there

is no need to explicitly issue such requests in application codes.

Snapper guarantees conflict serializability for all concurrent trans-

actions and provides built-in durability for TransactionalActor.
A transaction can run under one of the following two modes:

• Pre-declared ACtor Transaction (PACT): Transactions in
this mode must pre-declare the following information: (1) the ac-

tor that will initiate the transaction, (2) the first method that will

be invoked and the corresponding input data for this method,

and (3) actorAccessInfo – the set of actors the transaction will

access and the number of times each of such actors will be ac-

cessed. Based on the pre-declared actorAccessInfo, Snapper per-

forms deterministic scheduling for PACTs and each accessed ac-

tor will execute PACTs in the pre-determined order. Besides, each

TransactionalActor has reentrancy enabled to schedule trans-

actional method invocations since they may not arrive in order.

Under the pre-scheduling strategy, Snapper guarantees no PACTs

abort due to concurrency conflicts. However, users are allowed to

explicitly abort a PACT by throwing an exception to Snapper.
• ACtor Transaction (ACT): Transactions in this mode only

need to declare information (1) and (2) mentioned above. The ac-

tors accessed by an ACT are discovered when methods are invoked

during the ACT’s execution. Snapper applies a conventional nonde-
terministic concurrency control, e.g., S2PL, for ACTs. Unlike PACTs,

ACTs can be aborted due to deadlocks or read/write conflicts.

3.2 Transactional API of Snapper
Snapper exposes three APIs, StartTxn, CallActor and GetState.
Table 1 gives the definition of each API; Figures 1 and 2 give an

example of how to use those APIs.

ACT Task<object> StartTxn(string startFunc, object FuncInput)

PACT

Task<object> StartTxn(string startFunc, object FuncInput,
Dictionary<Guid, int> actorAccessInfo)

both Task<object> CallActor(TxnContext ctx, Guid actorID, FuncCall call)

both Task<TState> GetState(TxnContext ctx, AccessMode mode)

Table 1: Snapper’s transactional API
3.2.1 Submitting Transactions to Snapper. Fig.1 shows how clients

submit transactions to Snapper. A client submits a transaction by

calling StartTxn on the first actor that the transaction will access

(lines 9, 15). The client can choose to submit a transaction as a PACT

or an ACT by passing different data to StartTxn. As for the ACT
mode, the name of the first method that will be invoked and the

corresponding input data should be given by the client. As opposed

to ACT, the PACT mode additionally requires actorAccessInfo as
input. Snapper distinguishes transaction modes according to the

1 public class Client{

2 static void main(){

3 //

4 var funcInput=new Tuple <float ,long >(100,

toAccountID);

5 var actor=client.GetGrain <IAccountActor >(

fromActorID);

6

7 try{

8 // submit an ACT

9 var ACT_balance=await actor.StartTxn("Transfer",

funcInput);

10

11 // submit a PACT

12 var actorAccessInfo=new Dictionary <Guid ,int >();

13 actorAccessInfo.Add(fromActorID ,1);

14 actorAccessInfo.Add(toActorID ,1);

15 var PACT_balance=await actor.StartTxn("Transfer"

,funcInput ,actorAccessInfo);

16 }

17 catch (Exception e){

18 // ...

19 }

20 }

21 }

Figure 1: Submission of PACT/ACT to Snapper

1 public interface IAccountActor:ITransactionalActor{

2 Task Deposit(TxnContext ctx ,float money);

3 Task <float > Transfer(TxnContext ctx ,Tuple <float ,long > input);

4 }

5

6 public class AccountActor:TransactionalActor <float >,IAccountActor{

7 public AccountActor ():base(typeof(AccountActor).FullName){}

8

9 private Guid MapAccountIDToActorID(long accountID);

10

11 public async Task Deposit(TxnContext ctx ,float money){

12 float myBalance=await GetState(ctx ,AccessMode.ReadWrite);

13 myBalance +=money;

14 }

15

16 public async Task <float > Transfer(TxnContext ctx ,Tuple <float ,long > input){

17 var money=input.Item1;

18 float myBalance=await GetState(ctx ,AccessMode.ReadWrite);

19 if (myBalance <money) throw new Exception("balance␣insufficient");

20 myBalance -=money;

21

22 var toAccountID=input.Item2;

23 var toActorID=MapAccountIDToActorID(toAccountID);

24 var funcCall=new FuncCall("Deposit",money ,typeof(AccountActor));

25 await CallActor(ctx ,toActorID ,funcCall);

26 return myBalance;

27 }

28 } Figure 2: User-defined actor programs with Snapper’s API
input data. At last, StartTxn will return the transaction result (e.g.,

the balance after doing Transfer) as an object to the client. If the

transaction is aborted in Snapper, the transaction is rolled back by

Snapper and an exception will be thrown to the client.

3.2.2 User-Defined Transactional Actors. Fig.2 shows how de-

velopers program user-defined actors by using Snapper’s API.

AccountActor is a user-defined actor class with interface

IAccountActor, same as ordinary actor definitions in Orleans.

To inherit Snapper’s transactional actor features, the user-

defined actor interface and actor class should derive from

ITransactionalActor and TransactionalActor, respectively
(lines 1, 6). In addition, the type of the actor state should be explicitly

declared, which can consist of primitive or user-defined types. In

the example, float is the type of the AccountActor’s state, which
represents the balance of the account (line 6). The interface of the

user-defined actor should always contain two input parameters:

TxnContext and the input data for the method involved in the trans-

action (e.g., Deposit or Transfer). An instance of TxnContext is
an internal read-only data structure of Snapper. It contains the
transaction’s context information such as tid, txnMode, etc. It is
generated by Snapper after receiving the transaction request from

the client and before executing the transaction. It is passed as a pa-

rameter in all three APIs, so that Snapper can schedule and execute

method calls transactionally based on the context information.

As for the implementation of the user-defined actor class, the

method GetState should be used to access actor state (lines 12, 18).
Snapper supports two access modes: Read, which is read-only, and

ReadWrite, which reads and writes the state. CallActor should

be used to invoke method calls on other actors (line 25). Instead

of directly calling another actor’s method in user-defined code,

Snapper wraps this operation in CallActor. It is designed in this

way because Snapper has to gather and propagate transaction exe-

cution information along with actor method calls, and CallActor
abstracts these actions away from developers.

3.2.3 Aborting a Transaction. In Snapper, PACTs do not abort due
to concurrency conflicts, but can abort due to runtime exceptions or

user-defined transaction logic, e.g., a Transfer transaction might

abort because of insufficient balance. By contrast, ACTs can abort

due to all three reasons. Users can abort a PACT/ACT by throwing

an exception to Snapper (line 19 in Fig.2). Snapper catches both

internal exceptions caused by runtime issues or concurrency con-

flicts and external exceptions thrown by user codes. Any exceptions

that are not handled by user codes will be caught by Snapper and

treated by aborting and rolling back the relevant transactions. Note

that submission of a PACT with user-defined aborts should not be

the norm because it will lead to performance degradation (Section

4.2.3). A transaction with user-defined aborts is better submitted as

an ACT. Snapper supports the aborting of PACTs mainly for the

cases where unexpected runtime exceptions arise.

4 SNAPPER ARCHITECTURE
4.1 Overview
4.1.1 Components. Snapper consists of three components, includ-

ing two types of actors – coordinators and transactional actors –

and a group of loggers, which are in-memory C# objects shared by

all actors on the machine and responsible for writing logs.

Coordinator actors are responsible for assigning a unique trans-
action identifier (tid) to each transaction. For PACTs, the tids
should be assigned according to a global serial sequence order that

determines their execution order. The sequence of PACTs is divided

into batches in order to amortize the overhead of messaging and

logging. Coordinator actors interact amongst themselves to reach

consensus on such a global sequential order for PACTs and they

also coordinate transactional actors to execute and commit batches

in the pre-determined order.

Transactional actors are the base actor class provided by Snap-
per to program user-defined actors where applications’ transac-

tional states are stored. Each transactional actor schedules PACTs

according to the deterministic sequential order generated by the

coordinator actors, and performs nondeterministic execution of

ACTs. With hybrid workloads of PACTs and ACTs, transactional

actors employ a novel hybrid concurrency control for them.

Figure 3: Transaction workflow Figure 4: Batching
Loggers implement Snapper’s persistence functionality. They

handle all logging requests sent from coordinators and transactional

actors. Each logger keeps access to a log file in the storage. An actor

can invoke the method call on one of the loggers, which is chosen

by a simple hash function on the actor ID. A logger may be shared

by multiple actors. Each task on the logger is scheduled by the actor

who issues the request [37]. In comparing to each actor persisting

their own logs, delegating the tasks to loggers, whose number is

much smaller than the number of actors, can constrain the number

of log files, reduce random IO access to storage, and amortize the IO

cost by batching. In addition, another option is to implement loggers

as actors, but this would require to copy data from coordinators

and transactional actors to the logger actors, which is inefficient.

For simplicity, in the remainder of the paper, "coordinator actors"

are always referred to as "coordinators", and "transactional actors"

and "actor" are used interchangeably.

4.1.2 Transaction Workflow. Fig.3 illustrates the workflows of

PACTs and ACTs. A client submits a transaction by calling the

StartTxn API on the first actor that should be accessed by the

transaction (Edge (1)). This actor then issues the NewTxn re-

quest to one of the coordinators, selected by a simple hash func-

tion on its own actor ID (Edge (2)). In return, the actor gets a

TxnContext instance, which includes the tid assigned by the

coordinator (Edge (3)). An actor may invoke method calls on

other actors via the CallActor API to execute operations in

a multi-actor transaction (Edge (5) in Fig.3a and (4) in Fig.3b).

Figure 5: Content of TxnData

Fig.5 shows the data

passed along with

such actor method

calls. After the callee

actor finishes executing the operation, it returns to the caller

with an instance of ResultObj containing data that should be re-

turned to the caller along with transaction execution information

(TxnExeInfo). The first actor is both the start and the endpoint of

the whole workflow. The client receives the result of the transaction

(Edge (8) in Fig.3a and (7) in Fig.3b) after it is either committed or

aborted. Each ACT requires two round-trip messages per transac-
tion (Edge (5) and (6) in Fig.3b) in order to perform 2PC, while each

PACT requires three one-way messages per batch (Edge (4), (6), and

(7) in Fig.3a) in order to control deterministic batch processing.

4.2 PACT Processing
4.2.1 Ordering. To assign deterministic execution order to PACTs,

one can use a single coordinator to sequentially assign a monotoni-

cally increasing tid to each PACT and uses the tid to determine

the order. However, using a single-threaded coordinator may not

be able to scale.Instead, Snapper exploits parallelism by employing

multiple coordinators and each independently receiving transaction

requests. To guarantee monotonicity of tid while using multiple

coordinators, we essentially need mutual exclusive access to the

latest tid that has been assigned. To achieve this, Snapper adopts

the classical token ring algorithm [49] for its simplicity and its

natural match with the message passing abstraction of actors. More

specifically, coordinators are logically placed in a ring, where each

coordinator has fixed left and right neighbors. A token is circulated

in a particular direction in this ring. The token carries all the infor-

mation that needs to be shared among coordinators, e.g., the latest

assigned transaction id (last_tid). A coordinator accumulates the

PACTs that it has received while waiting for the token. When it

receives the token, it allocates tids for those PACTs based on the

last_tid value stored in the token, updates the last_tid in the to-
ken, and then passes the token onward to its neighbor. By doing so,

we guarantee that the tid assignment is monotonically increasing

across multiple coordinators. Note that the token can be forwarded

to the next coordinator immediately when the new batch is formed

without waiting for the batch to be emitted, executed, or commit-

ted. Thus the token ring mechanism does not substantially increase

transaction latency. Conversely, while a coordinator is waiting for

the token, it can perform other tasks, such as communicating with

transactional actors, coordinating batch commitment, logging, etc.

4.2.2 Batching. With tid and actorAccessInfo of a PACT, the

coordinator can send messages to inform each accessed actor of the

existence of the PACT. However, delivering one tid per message

is inefficient. Therefore, Snapper chooses to deliver information

about a batch of transactions per message ((4) in Fig.3a).

Similar to epoch-based batching [18, 21, 32], the token ring mech-

anism naturally generates epoch boundaries. Every time a coor-

dinator receives the token, it puts all locally accumulated PACTs

into a new batch. The size of the batch depends on the transaction

rate and the time that the token takes to be passed around a cycle.

Besides, each batch uses the tid of the first PACT in the batch as

its batch ID (bid). As long as all actors execute the batches in the

order of bid and execute the PACTs within each batch in the order

of tid, the global sequential order can be guaranteed.

Since not every PACT will access all the actors, each actor may

only need to execute a subset of PACTs submitted to the system.

Given a batch, a coordinator should generate a sub-batch for each

accessed actor. For example, in Fig.4a, three actors will be accessed

by batch 2 and hence three sub-batches are generated based on

actorAccessInfo. A sub-batch can be delivered as one message

to an actor. Besides, each sub-batch should also carry a prev_bid
indicating its previous batch on this particular actor (Fig.4b). This

is necessary, because batches that need to be executed on an actor

may not have consecutive bids. Even if they do, the batch messages

may arrive out of order due to nondeterministic message delays.

With the prev_bid, an actor can know the order between batches,

thus it can start executing a batch when its previous batch has

completed. In Snapper, the prev_bid for each actor is stored in

the token, updated by the coordinator when a new batch is created

and removed if the corresponding batch has committed. After the

updates of last_tid and prev_bids, the coordinator can pass on

the token and emit BatchMsgs to related actors.

With batching, the overhead of sending messages is amortized

over multiple PACTs in a sub-batch. The efficiency of batching

can increase with skew in the workload, because more PACTs will

be included in one sub-batch. To reduce overhead and improve

transaction throughput, Snapper schedules, executes, and commits

PACTs at the batch granularity. This accrues benefits on both the

messaging ((4), (6), (7) in Fig.3a) and logging.

4.2.3 Deterministic Scheduling. Each actor maintains a local sched-

ule to control the transaction execution order. Such a schedule is

needed for two reasons. First, we cannot rely on the message arriv-

ing order to order the transactions. Second, each actor should have

its own schedule because the sets of transactions to be executed

on actors are different from each other. In the schedule of an actor,

batches are placed in a chain according to the prev_bid relation.
An actor gradually extends the schedule upon receiving batch mes-

sages and removes the batch when it is committed/aborted. If a

batch arrives at an actor earlier than its previous batch, this batch

creates a vacancy in the chain which is filled when the previous

one arrives. For example, in Fig.4b, on 𝐴2, 𝐵8 is currently main-

tained separately because its previous batch 𝐵2 has not arrived

yet. A batch message contains bid, prev_bid and a list of PACTs,

including their tids and the number of accesses on the actor.

When any method invocation of a PACT (called through the

CallActor API) arrives on an actor, the actor will execute it accord-

ing to the local schedule. More specifically, the actor first checks

the carried TxnContext of the received call. If the call comes from

a PACT whose turn is yet to come according to the local schedule,

the actor will suspend the execution of this method invocation by

awaiting an asynchronous task which is later resolved when the

scheduled previous PACT has completed. A PACT is considered

completed when an actor has been accessed the declared number

of times. Then the actor can resume the execution of the suspended

method invocation. Notice that when an execution is blocked by

an asynchronous operation, the actor is free to process another

request because Snapper has enabled reentrancy (Section 2) for

all TransactionalActors. In Orleans, a reentrant actor is allowed

to interleave the execution of multiple requests. As for the caller

actor, the invoked call is essentially an asynchronous RPC. Once

the callee actor enqueues the call into its message box, a future is

returned, and the corresponding promise can be fulfilled later.

Since PACTs are executed under a deterministic schedule and

are guaranteed not to abort due to conflicts, a sub-batch on an actor

can be speculatively executed as long as its previous sub-batches

have completed their operations on this actor without waiting for

them to commit. This allows for pipelined execution of batches

while respecting the schedules on individual actors without wait-

ing for coordination of batch commitment across different actors.

This also brings higher concurrency comparing to conventional

nondeterministic concurrency control such as S2PL where locks

are only released when a transaction commits. Besides, S2PL usu-

ally introduces non-deterministic blocking due to conflicts, while

PACTs can avoid this effect because pre-scheduling is applied.

However, if a PACT is aborted, the whole batch would be rolled

back along with all batches that have been speculatively executed.

So submitting a PACT that will eventually abort can cause perfor-

mance degradation. Thus, a transaction with user-defined aborts is

better submitted as an ACT.

Figure 6: PACT Logging

4.2.4 Commit and Logging Protocol. Snapper applies a specialized

two-phase commit protocol for PACTs, which logically includes

three-round one-way messages, the BatchMsg, BatchComplete
and BatchCommit messages ((4), (6) and (7) in Fig.3a). BatchMsgs
are the sub-batches sent from a coordinator to participating ac-

tors, which can be analogized to the prepare message in 2PC.

When an actor finishes executing the sub-batch, it acknowledges

BatchComplete to the coordinator who emitted the corresponding

batch, which is similar to "voting" in 2PC. When the coordinator

receives BatchComplete from all participating actors and if all vote

to commit, the coordinator can commit the batch and send the

confirmation message BatchCommit back to the actors, which will

return the final transaction results to clients for the PACTs within

the batch ((8) in Fig.3a). The commitment of a batch must be done

by coordinators because they are the only ones who know the list of

participating actors of a batch. Besides, the commit protocol should

guarantee that a batch 𝐵 commits after all the batches it depends

on – batches that have been scheduled before 𝐵 on the actors that

𝐵 accessed – have committed. To eliminate the overhead of main-

taining the complex dependency graph between batches, Snapper
instead tracks the logical dependency in which a batch 𝐵𝑖 always

logically depends on 𝐵 𝑗 if 𝑖 > 𝑗 . Further, Snapper forces all batches
to commit in the order of bid. This strategy works well especially

under a highly contended workload where logical dependencies

reflect actual dependencies. The overhead of tracking logical de-

pendencies between batches is negligible. Each coordinator only

needs to keep track of the last assigned batch ID for the batches it

generates. This batch ID is then passed along in the token.

Now we explain the process of aborting a batch. An aborted

batch is detected by the actor who catches the exception thrown by

a PACT. Recall that an aborted batch may cause cascading aborts

of speculatively executed batches. To avoid unbounded numbers of

batches being aborted in this process, Snapper stops emitting new

batches whenever an aborted batch is detected and resumes when

the cascading abort has completed. The classic cascading abort will

abort transactions that depend on the aborted ones [15]. Again,

instead of maintaining the accurate dependencies between batches,

Snapper simply aborts all uncommitted batches in the system.

To ensure the durability of committed PACTs and ensure the

commit process survives failures, Snapper utilizes a Write Ahead

Log (WAL) to store related data prior to sending out any messages

such as BatchMsg, BatchComplete, and BatchCommit. Fig.6 shows
the logs written for a batch that accessed two actors. Three types

of log records should be written for a batch. (1) Before emitting a

batch, the coordinator persists the participating actors of the batch.

(2) Before sending BatchComplete, an actor logs the updated actor

state. If the batch has only read the actor, there is no need to persist

the actor state. (3) Before sending BatchCommit, the coordinator
logs the committed bid.

Based on the logged information, Snapper is tolerant to failures

that happen to both coordinators and actors at any time while

executing, committing, or aborting a batch. In the batch commit

protocol, the coordinator cannot decide to commit a batch until all

participating actors have voted. If an actor fails before sending the

BatchCompletemessage, the coordinator must wait until the failed

actor is recovered and the message is sent. The recovered actor will

retrieve its log records. If the BatchComplete record is not found,

it will tell the coordinator to abort the batch. If a coordinator fails

before sending the BatchCommit message, all related actors must

wait to return results to clients until the coordinator is recovered

and the message is sent. Those actors can autonomously ask the co-

ordinator about the decision to commit or abort the batch. Snapper
follows the principle that the batch that has BatchComplete log

records written in all participating actors can commit.

4.2.5 Recovery. Assume that the system can fail (crash) at any

time and some or all actors will lose their in-memory data. Snapper
relies on the failure recovery mechanism provided by Orleans that

a failed actor is automatically re-instantiated when it is called again.

In Snapper, failed actors are re-instantiated by loading the state

of the last committed batch. A failed coordinator is re-instantiated

by loading the information of emitted but uncommitted batches,

which needs to be used to continue the batch commit/abort process.

Besides, the token may also be lost with the failed coordinator. To

make sure the system has exactly one token, a recovered coordinator

must trigger a consensus protocol among all other coordinators

to check if the token is lost or not and elect a coordinator to re-

initiate a new token if needed. If a new token needs to be used, the

systemmust wait to emit new batches until all existing batches have

committed/aborted because the prev_bids stored in the old token

are lost. When all emitted batches have committed/aborted, all

actors also have their local schedules empty thus the old prev_bid
is not needed.

4.3 ACT Processing
4.3.1 Transaction ID Assignment. Unlike PACTs, ACTs need to be

assigned unique transaction IDs (tids), but not a deterministic

execution order. To achieve this in Snapper, every time the token is

received by a coordinator, it will pre-allocate a range of contiguous

tids for ACTs that may arrive in the future. Those ACTs will get

tids assigned immediately without having to wait for the token.

4.3.2 Nondeterministic Concurrency Control. When a method invo-

cation of an ACT arrives on an actor, the invocation is controlled by

a traditional nondeterministic concurrency control protocol. Cur-

rently, we have implemented S2PL in Snapper. Multiple ACTs can

invoke method calls on an actor concurrently. The S2PL protocol

is executed when an actor accesses the state using the GetState
API, which grants logical read/write locks to ACTs and releases

them after the second phase of 2PC. Besides, wait-die [44] is used

to proactively avoid deadlocks by aborting transactions if they are

suspected to be involved in a deadlock.

Figure 7: ACT Logging
4.3.3 Commit and Logging Protocol. ACTs are committed via

2PC [29] and presumed abort [34] is used to save messages and

logging. When an ACT completes its operations, all the actors

that have been accessed within the transaction context are known.

The list of participating actors of an ACT is propagated as part of

TxnExeInfo (Fig.3c) along the method call chain back to the first

actor who initiates the ACT. This information is utilized to perform

the 2PC protocol with all the participating actors. The actor where

the ACT is initiated is designated as the coordinator of the 2PC

protocol. While doing 2PC, logs are persisted before sending any

messages. Fig.7 shows logs written for an ACT that spans two ac-

tors. Again, if an actor involved in the ACT did not perform any

writes, there is no need to persist the state of that actor.

4.3.4 Recovery. Upon failure, every actor finds the latest

CoordCommit record and reloads the state of the latest commit-

ted ACT on all participating actors. And every actor reads the

CoordPrepare and Prepare records to resume the 2PC process.

Incomplete transactions will be aborted by the 2PC protocol.

4.4 Hybrid Processing
4.4.1 Hybrid Scheduling. With hybrid workloads of PACTs and

ACTs, each actor’s local schedule contains PACT batches in a sorted

order by bid and tid, and ACTs that are dynamically inserted

between two adjacent batches. When receiving an ACT method

invocation, the actor always appends the ACT to the tail of the

current schedule. Fig.8 gives an example. ACT 𝑇0 is appended after

𝐵6 on 𝐴1 and after 𝐵2 on 𝐴3. The existence of ACTs does not affect

the batch order, e.g., on𝐴3, 𝐵6 is still placed after its previous batch

𝐵2 even though ACT 𝑇0 and 𝑇5 are scheduled in-between them.

Figure 8: Actor local schedule

With a hybrid

schedule, actors need

to carefully switch the

execution between

PACTs and ACTs.

Snapper abides by the
following rules: (1) an

ACT can start execut-

ing when the previous

batch has completed

its operations, but not

necessarily committed; (2) a batch can start executing when all

previous ACTs have committed or aborted. By doing so, ACTs

will not see the results of a half-done PACT and a PACT will not

operate on data that will be aborted by an ACT. Thus, PACTs will

still not abort due to concurrency control. Besides, multiple ACTs

can be concurrently executed if they are placed between the same

two batches on an actor. For example, in Fig.8, on 𝐴3, 𝑇0 and 𝑇5 are

unblocked at the same time when 𝐵2 completes.

Despite the fact that these two rules nicely isolate the executions

of PACTs and ACTs on each individual actor, they are unfortu-

nately insufficient to guarantee deadlock-freedom or serializability

of hybrid workloads across multiple actors, which we address next.

Figure 9: Deadlock under hybrid execution
4.4.2 Deadlock. Under hybrid execution, deadlock can happen

between PACTs and ACTs due to nondeterministic scheduling of

ACTs and blocking method invocations. The following two cases

illustrate how such deadlocks occur: (a) an ACT 𝑇𝑖 is scheduled

before a batch 𝐵 𝑗 on one actor𝐴1, but scheduled after 𝐵 𝑗 on another

actor 𝐴2, and at the same time, a PACT of 𝐵 𝑗 on 𝐴2 has to wait for

𝐴1 to invoke the expected – by number of accesses information –

method call (Fig.9a). (b) An ACT 𝑇𝑖 is waiting for 𝑇𝑗 to release the

lock on an actor 𝐴3, and𝑇𝑖 is scheduled before a batch 𝐵𝑔 on 𝐴2,𝑇𝑗
is scheduled after a batch 𝐵𝑘 on 𝐴4, and at the same time, a PACT

of 𝐵𝑘 on 𝐴4 has to wait for 𝐴1 to invoke the method call (Fig.9b).

In both cases, the global waits-for graph is cyclic. In addition to

the patterns shown, a deadlock can easily involve more actors and

transactions. To solve such deadlocks, we need to abort one of the

transactions in the cycle. Since PACTs require more information

from clients and are deterministically scheduled, Snapper always
prioritises PACTs and aborts ACTs in the case of deadlocks. In our

current implementation, a simple timeout mechanism is applied to

detect deadlock [15].

Figure 10: Cyclic serialization graph

4.4.3 Serializability Check. To enforce serializability, Snapper em-

ploys deterministic transaction execution for PACTs and nonde-

terministic concurrency control for ACTs. However, under hybrid

execution, the nondeterministic interleaving between batches and

ACTs makes it challenging to achieve global serializability. Fig.10

illustrates two scenarios where the global serialization graph is

cyclic: (a) An ACT is scheduled before and after the same batch

on two different actors respectively. (b) Each single ACT does not

manifest cyclic dependencies between any other batches, but the

dependencies between ACTs make the global serialization graph

cyclic. Our deadlock mechanism already aborts some ACTs that

break global serializability. However, there exist cases that do not

form deadlocks, but still break serializability. Such cases can happen

when the dependency between two actors – any cross-actor edge,

e.g., in Fig.9 – is in the opposite direction.

Similar to the handling of deadlocks, Snapper enforces global

serializability by choosing to abort ACTs that cause the problem.

Snapper applies a serializability check for the ACTs that have fin-

ished execution. ACTs that fail to pass the check should thus be

aborted. We rely on scheduling information defined as follows.

Definition 4.1. Given a history 𝐻 generated by Snapper’s hybrid
processing and the corresponding serialization graph 𝑆𝐺 (𝐻), ∀
ACT 𝑇𝑖 ∈ 𝑆𝐺 (𝐻), its BeforeSet (𝐵𝑆𝑇𝑖) and AfterSet (𝐴𝑆𝑇𝑖) are

defined as:

1. 𝐵𝑆𝑇𝑖 = {𝐵.𝑏𝑖𝑑 | there exists a path 𝐵 → ... → 𝑇𝑖 }
2. 𝐴𝑆𝑇𝑖 = {𝐵.𝑏𝑖𝑑 |𝑇𝑖 → 𝐵}

In addition,𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖) and𝑚𝑖𝑛(𝐴𝑆𝑇𝑖) are the maximum and mini-

mum numbers (𝑏𝑖𝑑s) in 𝐵𝑆𝑇𝑖 and 𝐴𝑆𝑇𝑖 , respectively.

Above, we borrow the concepts of history and serialization graph

from [14]. 𝐵 denotes a PACT batch that can be considered as one

large transaction, while → denotes a precedence relation between

two conflicting transactions.

Furthermore, we propose the following theorem as the theoreti-

cal basis of the serializability check. The detailed formalization and

proof of the theorem can be found in the extended version [6].

Theorem 4.2. A history 𝐻 generated by Snapper’s hybrid pro-
cessing is conflict serializable if:

(1) ∀𝐵𝑖 → 𝐵 𝑗 , 𝑖 < 𝑗 (𝑖 , 𝑗 are batch IDs);
(2) the execution of all ACTs is conflict serializable;
(3) ∀𝐴𝐶𝑇 𝑇𝑖 ∈ 𝑆𝐺 (𝐻),𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖) < 𝑚𝑖𝑛(𝐴𝑆𝑇𝑖).
Conditions (1) and (2) of the theorem are enforced by Snapper’s

PACT and ACT concurrency control protocols, respectively, which

provide serializability for either purely deterministic or purely non-

deterministic processing. Condition (3) of Theorem 4.2 is the key

point for enabling serializability of hybrid schedules. For each ACT

𝑇𝑖 , Snapper must check if𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖) < 𝑚𝑖𝑛(𝐴𝑆𝑇𝑖) holds. If not, 𝑇𝑖
should abort. To calculate𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖), we have to consider batches

that have a path to 𝑇𝑖 in the serialization graph. On each actor that

is accessed by 𝑇𝑖 , we consider the 𝑏𝑖𝑑 of the batch that is before 𝑇𝑖
and closest to 𝑇𝑖 in the actor’s local schedule. This batch is guar-

anteed to have the maximum 𝑏𝑖𝑑 among all the batches that are in

the local schedule and belong to 𝐵𝑆𝑇𝑖 .

However, considering only the actors accessed by𝑇𝑖 is not enough.

There may exist batches that belong to 𝐵𝑆𝑇𝑖 but do not access any

actor accessed by 𝑇𝑖 . For example, if 𝐵𝑘 → 𝑇𝑗 on actor 𝐴1 and

𝑇𝑗 → 𝑇𝑖 on 𝐴2, then 𝐵𝑘 should also be included in 𝐵𝑆𝑇𝑖 . To take

such batches into account, on an actor accessed by 𝑇𝑖 , we also

consider𝑚𝑎𝑥 (𝐵𝑆𝑇𝑗
) in the calculation of𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖) if 𝑇𝑗 → 𝑇𝑖 is

true in the actor’s local schedule. Besides, as for the cases that a

transaction 𝑇𝑝 transitively precedes 𝑇𝑖 , e.g., 𝑇𝑝 → 𝑇𝑗 → 𝑇𝑖 , we

do not need to consider𝑚𝑎𝑥 (𝐵𝑆𝑇𝑝) directly in the calculation of

𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖), because𝑚𝑎𝑥 (𝐵𝑆𝑇𝑝) ≤ 𝑚𝑎𝑥 (𝐵𝑆𝑇𝑗
).

The intermediate results of𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖) and𝑚𝑖𝑛(𝐴𝑆𝑇𝑖) collected
on each participating actor after executing 𝑇𝑖 are propagated as

part of TxnExeInfo (see Fig.3c) all the way to𝑇𝑖 ’s local coordinator,
which calculates the final values of𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖) and𝑚𝑖𝑛(𝐴𝑆𝑇𝑖) and
performs the serializability check. If𝑇𝑖 passes the check,𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖)
should be propagated together with the Commit message to all of

𝑇𝑖 ’s participating actors when𝑇𝑖 commits. This value may be useful

for the serializability check for the subsequent ACTs.

Note that this implementation does not guarantee that we can

obtain the complete 𝐴𝑆𝑇𝑖 . When 𝑇𝑖 finishes execution on an actor,

there may not be any batch 𝐵 such that𝑇𝑖 → 𝐵. Due to asynchrony

in actor systems, a batch can take an arbitrarily long time to reach

an actor. It is also possible that there is no batch that is scheduled

after𝑇𝑖 on the actor. An incomplete𝐴𝑆𝑇𝑖 could result in an incorrect

𝑚𝑖𝑛(𝐴𝑆𝑇𝑖) and a wrong decision in the serializability check.

A possible solution is that 𝑇𝑖 ’s local coordinator obtains the

complete 𝐴𝑆𝑇𝑖 from the PACT coordinators. To achieve this, it has

to contact all the PACT coordinators and obtain the schedules of

all the actors involved in 𝑇𝑖 . This is costly and would increase the

commit latency of 𝑇𝑖 significantly.

For efficiency and simplicity, Snapper only performs the seri-

alizability check based on the information available in the local

coordinator. It fails an ACT 𝑇𝑖 ’s serializability check if 𝐴𝑆𝑇𝑖 is in-

complete. 𝐴𝑆𝑇𝑖 is said to be incomplete if there exists an actor 𝐴

involved in𝑇𝑖 such that no𝑇𝑖 → 𝐵 can be found, where 𝐵 is a PACT

batch. However, this approach may cause unnecessary aborts. To

mitigate the problem to a certain degree, Snapper adopts an opti-

mization in the cases where 𝐴𝑆𝑇𝑖 is incomplete: if 𝐵𝑆𝑇𝑖 is empty or

all the PACT batches in 𝐵𝑆𝑇𝑖 have already committed, 𝑇𝑖 can pass

the serializability check. This optimization is based on the fact that

all the batches in𝐴𝑆𝑇𝑖 have not yet started their execution, because

they must wait for 𝑇𝑖 to commit or abort. Since PACT batches are

executed in 𝑏𝑖𝑑 order, there will not exist 𝑏𝑖𝑑 ∈ 𝐴𝑆𝑇𝑖 such that

𝑏𝑖𝑑 ≤ 𝑚𝑎𝑥 (𝐵𝑆𝑇𝑖).
4.4.4 Commit Protocol. Under hybrid execution, PACTs and ACTs

can interleave and depend on each other. The commit protocol

guarantees that a transaction commits before the transactions that

depend on it. For PACTs, a batch starts executing after previous

ACTs have committed or aborted, so PACTs can commit the same

way as described in the PACT commit protocol (Section 4.2.5). By

contrast, ACTs may start executing before the previous batch has

committed, so an ACTmust wait for its dependent batches – batches

in its 𝐵𝑆 – to commit. Upon the completion of the operations of an

ACT 𝑇 , Snapper first carries out the serializability check on 𝑇 and

then commits it using 2PC when the batch with 𝑏𝑖𝑑 = 𝑚𝑎𝑥 (𝐵𝑆)
has committed, which indicates that all the batches that 𝑇 depends

on have been committed.

4.4.5 Recovery. Upon failure, with the log records written for

PACTs (Fig.6) and ACTs (Fig.7), each actor is able to rollback to the

state where the last ACT or last batch committed.

5 EVALUATION
In this section, we evaluate the performance of PACT, ACT and

hybrid execution of Snapper. Specifically, we investigate the char-
acteristics of PACT and ACT under different transaction sizes (Sec-

tion 5.2.1) and workload skewness (Section 5.2.2). In Section 5.3, we

present the performance of hybrid execution under different work-

load skewness and distribution of hybrid workload, and study the

trade-offs of hybrid execution with regards to transaction through-

put, latency, and abort rate. In Section 5.4, we study how well each

concurrency control method in Snapper can scale.

5.1 Experimental Settings
5.1.1 Benchmarks. We use two benchmarks throughout the exper-

iments: SmallBank [5] and TPC-C [53]. SmallBank is an OLTP

benchmark simulating basic operations on bank accounts [5]. Each

user account is implemented as an actor in the SmallBank bench-

mark. We employ SmallBank as it is a synthetic workload that

approximates well a realistic actor-oriented workload, which is

usually reactive, write-intensive, and latency-sensitive. To simulate

multi-actor workloads, we implement a MultiTransfer transaction
that withdraws money from one account and deposits money to

multiple other accounts in parallel [45]. SmallBank is used in most

of our experiments because it is easy to configure and has pre-

dictable behavior. A similar choice for a synthetic workload that

can be run under different access distributions was also used to

evaluate other actor-based transactional implementations [23, 45].

TPC-C is an industrial-standard OLTP benchmark. Similar to pre-

vious work [52], we only use the NewOrder transaction of TPC-C

in our evaluation, as the NewOrder transaction accesses products

stored in different warehouses and thus is naturally distributed. In

our experiments, we can flexibly control the distribution and the

size of NewOrder transaction by modeling a warehouse as an actor

and partitioning the stock table into multiple actors [52].

5.1.2 Deployment. We run Snapper on Orleans 3.4.3. We deploy

Orleans clients and server (the latter called silo in Orleans [37])

on two AWS EC2 instances (c5n), respectively. Each instance has

a 4-core 3.0GHz processor, 10.5GB memory and the silo instance

is attached with a 16GB io2 SSD volume with 8K IOPS. All the

instances are located in the same region and availability zone. In

the scalability experiment, as is shown in Fig.11a, all the computing

resources scale proportionally with the 4-core setting as a base unit.

On the client side, we implement a push-pull queue, where a

producer thread keeps generating transactions and pushing transac-

tion requests to the queue, and multiple client threads pull from the

queue concurrently. Each client thread simulates an Orleans client.

Instead of spawning a large number of threads per silo with each

sending one request at a time, a single client thread is used to asyn-

chronously emit a pipeline of transactions. Whenever a transaction

result returns, the client pulls a new transaction from the queue

and issues it to replenish the pipeline. The number of client threads

and their pipeline size decide the maximum number of concurrent

transactions running in the system. Fig.11b presents the pipeline

size we set for different workloads and concurrency control meth-

ods. The pipeline size is tuned such that PACT/ACT can reach a

good performance while the system is not over-saturated.

Figure 11: Experimental setting
5.1.3 Methodology. All our experiments are run in 6 epochs with

the first 2 epochs used for warming up the system. Each epoch lasts

for 10 seconds. Three metrics are measured in our experiments:

throughput, latency, and abort rate. Throughput and latency only in-

clude statistics of successfully committed transactions. Transaction

latency is recorded as the interval from the time that a transaction

Figure 12: Transaction overhead

Figure 13: Percentile latency

Figure 14: Throughput
is emitted by the client thread to the time that the client receives

the transaction result. Note that we only report the processing la-

tency, but not the queuing latency, i.e., the time that a transaction

is buffered in the push-pull queue. The latter heavily depends on

the input rate, and it increases exponentially when the input rate is

getting closer to the system throughput.

Besides comparing the different execution strategies provided

by Snapper, we also compare Snapper with non-transactional ex-

ecution (NT) on Orleans and Orleans Transaction (OrleansTxn)
shipped with Orleans 3.4.3.

5.2 PACT vs. ACT Execution
To examine the performance of PACT and ACT with different de-

grees of contention, we compare PACT and ACT under various

transaction sizes and workload skewness. This group of experi-

ments are run with MultiTransfer transactions on a 4-core silo

with 10K transactional actors.

5.2.1 Effect of Transaction Size. Wedefine transaction size (𝑡𝑥𝑛𝑠𝑖𝑧𝑒)

as the number of actors accessed by a transaction, which reflects

the transaction complexity. In this experiment, we vary 𝑡𝑥𝑛𝑠𝑖𝑧𝑒

to measure the overhead of the transactional support provided by

Snapper. Transaction overhead is measured as the relative through-

put of PACT and ACT with regards to the throughput of a non-

transactional (NT) implementation. As NT only processes actor calls

without any logic of concurrency control, its throughput comprises

an upper bound for executing transactions on Orleans. In this sec-

tion, we set the workload skewness to be uniform and fix the

pipeline size to 64.

Fig.12 shows that, compared to NT, when 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 = 2, 4, 8, concur-

rency control (CC) brings more throughput degradation for PACT

than ACT. It is because PACT costs more messages per transaction

under low contention. In this case, each BatchMsg can only deliver

one transaction to an actor. For example, when 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 = 2, each

PACT costs 6 one-way messages (2 BatchMsg + 2 BatchComplete
+ 2 BatchCommit) while each ACT only costs 2 double-way mes-

sages (Prepare + Commit) to commit a transaction (Fig.3). When

𝑡𝑥𝑛𝑠𝑖𝑧𝑒 increases, the throughput of ACT decreases much faster

than PACT because ACT suffers a lot from workload contention.

When 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 grows, more conflicts arise, and thus more transac-

tions will be blocked during execution and possibly aborted to avoid

deadlock. As is shown in Fig.12, the abort rate of ACT reaches 90%

when 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 = 64. By contrast, PACT guarantees no transaction

abort due to conflicts by pre-scheduling and PACT benefits more

and more from batching because it can amortize the messaging

overhead (Section 4.2.2).

As for the overhead of logging, the throughput of PACT (CC
+ Logging) and ACT (CC + Logging) are 70% and 50% compared

with the case without logging, respectively. PACT always has lower

logging overhead than ACT because PACT writes less to the log

than ACT. PACT can amortize the logging overhead by batching

even under low contention because the coordinator always writes

BatchInfo and BatchCommit log records for a batch of PACTs

no matter which actors they access. When the contention level

grows, the BatchComplete log record benefits more and more from

batching (Fig.6). Instead, an ACT always writes two times to logs on

the ACT coordinator (CoordPrepare and CoordCommit) and two

times to logs (Prepare and Commit) per accessed actor (Fig.7). With

the combined effects of CC and logging, PACT outperforms ACT

under all contention levels.

Fig.13 shows the difference between PACT and ACT in terms of

transaction latency when both CC and logging are enabled. When

𝑡𝑥𝑛𝑠𝑖𝑧𝑒 < 64, PACT has almost the same median latency as ACT.

When 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 = 64, however, PACT exhibits higher median la-

tency than ACT, namely 189 vs. 125 milliseconds. The latter occurs

because all PACTs are delayed to be executed and committed in

batches. When 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 < 64, this impact is not very evident because

PACT does logging in a more efficient way. When 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 = 64, the

enforced batching dominates the influence on latency. By contrast,

ACT always has much higher 90th- and 99th-percentile latencies

than PACT. When 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 = 64, ACT gets almost 2x higher 99th-

percentile latency than PACT. This effect emerges as ACTs that

experience high contention would be blocked for a significantly

long time. PACT has its tail latency lying in a moderate range

(around 1.3x of 90th-percentile latency), because every actor fol-

lows a deterministic schedule without non-deterministic blocking.

In conclusion, ACT introduces more overhead than PACT be-

cause ACT suffers from high contention and its logging protocol

is less efficient. In contrast, PACT reaches good throughput and

predictable transaction latency under different 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 .

5.2.2 Effect of Workload Skewness. Workload skewness defines the

asymmetry in the chance that each actor is accessed by a transaction.

In a highly skewed workload, transactions access only a small set of

actors, which causes high contention on them. We use a zipfian
function implemented in the MathNet.Numerics.Distributions
package [33] to generate different skewed workloads by varying

the zipfian constant. Fig.11b gives the zipfian value of five skew
levels we used in the experiments.

In this section, we compare the throughput of PACT and ACT

under different workload skewness. We fix 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 to 4 and en-

able both CC and logging. We also run the same experiment using

OrleansTxn. Both ACT and OrleansTxn have S2PL as concurrency
control method and 2PC as commit protocol [10]. The main proto-

col differences between them are that ACT does not perform Early

Lock Release [7, 23, 47] and ACT uses wait-die to avoid deadlocks,

while OrleansTxn uses a timeout mechanism. We set the pipeline

size for OrleansTxn the same as for ACT and implement its trans-

actional storage provider [38] by forwarding logging requests to

the same number of loggers as ACT does.

Fig.14 shows that the throughput of both ACT and OrleansTxn
decreases with increasing skewness. Both ACT and OrleansTxn suf-
fer from high contention. We also ran OrleansTxnwith a deadlock-

free workload, which is generated by accessing actors in the order

of actor ID. Without deadlocks, OrleansTxn gets 0% abort rate

and relatively higher throughput compared to the one with possi-

ble deadlocks. Either with or without deadlocks, OrleansTxn gets

lower throughput than ACT.

By contrast, the throughput of PACT increases under higher

skewness. PACT benefits from high skewness because batching be-

comes more efficient. As discussed in Section 4.2.2, one message can

deliver more transactions for processing under a skewed workload,

and one log record can cover committed data of more transactions.

In conclusion, ACT is more sensitive to contention, while PACT

can benefit from it by batching. Changing from ACT to PACT can

thus bring about performance improvements in this scenario.

5.2.3 Microbenchmarking ACT and Orleans Transaction. In Fig.14,

we observe a surprisingly significant performance gap betweenACT

and OrleansTxn even on the cases without deadlocks. This effect

is unexpected because both of them adopt very similar mechanisms

in concurrency control (2PL) and transaction commit (2PC). In this

section, we microbenchmark both systems to investigate the causes

of this performance gap. As OrleansTxn adopts early lock release,

which may suffer from high abort rate when the workload has high

contention, we run the experiment with a conflict-free workload

as described below to eliminate this effect.

We use a variant of the MultiTransfer transaction that allows

for a varying number of actors to perform no-op grain calls in each

transaction instead of calls with ReadWrite (RW) operations. Actors
that perform a no-op will not be involved in the commit protocol.

We use 𝑥𝑊 + 𝑦𝑁 to represent a transaction that accesses 𝑥 + 𝑦

actors with the first 𝑥 actors each performing a RW operation and

the subsequent𝑦 actors executing a no-op. The experiments are run

on a 4-core silo with 4 transactional actors. Logging is enabled, and

the pipeline size is set as 1 so that the workload has no conflicts.

Figure 15: Breakdown latency

As is shown in Fig.15, the transaction life cycle is divided into 9

time intervals (𝐼1, ..., 𝐼9). For example, 𝐼2 is the time that the coor-

dinator in Snapper or the TransactionAgent (TA, an in-memory

singleton object) in OrleansTxn assigns a tid for the transaction.
𝐼6 is the time that the first accessed actor serially invokes calls to

other actors. 𝐼8 is the time to commit the transaction.

In Fig.15, for 0𝑊 + 1𝑁 , ACT and OrleansTxn have almost the

same total latency. For 0𝑊 +4𝑁 , 𝐼6 is the time for serially performing

3 actor calls. OrleansTxn takes 1.6x more time on 𝐼6 than ACT

(0.32ms vs. 0.2ms). This difference indicates that actor calls under a

transaction context are more expensive for OrleansTxn.
For 1𝑊 + 3𝑁 , one RW operation is performed on the first ac-

cessed actor and the actor needs to carry out one-phase commit.

OrleansTxn takes substantially more time on 𝐼8 than ACT (0.2ms

vs. 0.01ms). This effect occurs because OrleansTxn incurs on one

Preparemessage from the TA to the first accessed actor to start the
commit process, while in this case ACT requires no messages for

2PC since the first accessed actor is designated as the coordinator

of the 2PC protocol. Furthermore, OrleansTxn spends significantly
more time on performing 2PC than ACT does. The gap increases

as more actors are involved in the commit.

ACT and OrleansTxn have distinct codebases and they adopt

disparate software stacks. So despite similar algorithms being used

in both systems, we observe that dissimilarities in performance are

spread over many operations and components. Thus, we ascribe

their performance gap to their differences in implementations. A

more detailed analysis and comparison of implementation details,

e.g., data structure overheads, between OrleansTxn and ACT exceed

the scope of our work.

5.3 Performance of Hybrid Execution
In this section, we investigate the performance of hybrid execution

under different transaction distributions, namely the percentage

of PACTs among all transactions (𝑃𝐴𝐶𝑇%) and different workload

skewness. We use the SmallBank benchmark for this group of

experiments. We fix 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 as 4 and enable both CC and logging.

On the client side, we spawn two client threads to handle PACT

and ACT requests, respectively. The settings of pipeline size are

shown in Fig.11b. To vary the 𝑃𝐴𝐶𝑇%, we let the producer randomly

generate 𝑃𝐴𝐶𝑇% PACTs among all transactions.

5.3.1 Throughput. Fig.16a shows the throughput of hybrid execu-

tion. Under each level of skewness, we vary 𝑃𝐴𝐶𝑇%. In each bar,

different colors represent the part of the throughput contributed

by PACT or ACT. We observe that the total throughput decreases

with decreasing 𝑃𝐴𝐶𝑇%. Ideally, 𝑡𝑜𝑡𝑎𝑙_𝑡𝑝 = 𝑃𝐴𝐶𝑇% × 𝑃𝐴𝐶𝑇_𝑡𝑝 +
𝐴𝐶𝑇% × 𝐴𝐶𝑇_𝑡𝑝 , but the actual throughput is lower. This effect

arises because: (1) the scheduling of PACTs and ACTs influences

each other, i.e., PACTs force ACTs to wait for batch processing,

and PACTs are blocked until the previous ACTs are committed or

aborted; (2) ACTs will also be aborted due to conflicts with PACTs,

in addition to conflicts between ACTs themselves.

This mutually and transitively blocking behavior between PACTs

and ACTs is even more severe under high skew levels, where most

transactions access the same one or two actors. That is why there

is a notable throughput degradation in this case from 100% to 99%

PACT and from 0% to 25% PACT under high and very high skew

Figure 16: Hybrid execution

Figure 17: Scalability
levels. So with an extremely skewed workload, we can benefit from

hybrid execution only if we have a small percentage of ACTs.

In conclusion, hybrid execution can bridge the performance gap

between pure PACT and pure ACT in most scenarios. Under higher

skew levels, hybrid execution performs better than pure ACT if the

𝑃𝐴𝐶𝑇% is high.

5.3.2 Latency. Fig.16b shows the latency of PACT and ACT un-

der hybrid execution. Similarly to Fig.13, PACT has higher 50th-

percentile latency than ACT because of batching. Under hybrid

execution, PACT’s 90th-percentile latency is influenced by ACT.

When the workload skewness is fixed, for both PACT and ACT,

both the 50th- and 90th-percentile latencies increase first and then

decrease when 𝑃𝐴𝐶𝑇% decreases.

As for PACT, when adding some ACTs to a pure PACT workload,

PACTs scheduled after ACTs are blocked until the ACTs finish 2PC.

When more ACTs are added, PACT latencies start to decrease. The

latter is because there are less and smaller batches, which indicates

a lower possibility that a batch be influenced by transitive blocking.

Besides, PACT latency starts to decrease at higher 𝑃𝐴𝐶𝑇% under

higher skewness. This effect arises because more ACTs are quickly

aborted due to high contention.

As for ACT, when adding a few PACTs to a pure ACT workload,

ACTs have their latency increased due to the blocking caused by

PACTs. Then, ACT latency decreases when adding more PACTs.

The latter occurs because many long-latency ACTs were actually

aborted due to deadlocks between PACTs and ACTs as well as ACTs

failing the serializability checks. Recall that the aborted ACTs are

not counted in latency statistics.

5.3.3 Abort Rate. In hybrid execution, an ACT can be aborted in

multiple scenarios: (1) aborted due to read/write conflicts between

ACTs; (2) aborted due to deadlocks between PACTs and ACTs; (3)

aborted to guarantee global serializability even though we are not

sure whether the ACT breaks global serializability because the ACT

has an incomplete 𝐴𝑓 𝑡𝑒𝑟𝑆𝑒𝑡 ; (4) aborted because the ACT surely

breaks the global serializability. Fig.16c shows the breakdown of

transaction abort rate. Most of the aborts are from (1) and (3). Under

higher skewness, more ACTs are aborted due to (2). When adding

a few PACTs to a pure ACT workload, (3) emerges and causes the

total abort rate to become higher than for a pure ACT workload.

5.4 Scalability
In this experiment, we evaluate the scalability of Snapper with

both SmallBank and TPC-C benchmarks by increasing the number

of cores in the silo from 4 to 32.

5.4.1 SmallBank. We set up the silo as shown in Fig.11a. We fix

𝑡𝑥𝑛𝑠𝑖𝑧𝑒 as 4 and enable both CC and logging. We present results un-

der uniform and skewed workloads. By following the experiments

in [52], the skewed workload is generated by a ℎ𝑜𝑡𝑠𝑝𝑜𝑡 method that

has 1% of the actors in the hot set and each transaction accesses

three such actors in the hot set. For the skewed workload, we set

pipeline size as 64 for PACT and 4 for ACT. As shown in Fig.17a,

PACT, ACT, and hybrid execution all scale nearly linearly with

the uniform workload. With the skewed workload, however, PACT

outperforms ACT.

Figure 18: TPC-C Setup
5.4.2 TPC-C. In this experiment, we model each warehouse as

an actor. Within one warehouse, different actors are used to store

different tables and the tables are partitioned as shown in Fig.18. In

our implementation, every NewOrder transaction accesses on aver-

age 15 actors, three of which are read-only, allowing us to control

the footprint of state updates and to spread transaction processing

across multiple actors. We deploy two warehouses for a 4-core silo

and the number of warehouses scales with the number of CPUs.

We run the experiment with workloads under two skew levels by

varying the number of partitions of the Order table. Fig.17b shows

that both PACT and ACT can scale nearly linearly under low skew.

Similarly to the result of SmallBank, PACT performs better than

ACT under high skew.

Compared to NT, both PACT and ACT introduce around 90%

throughput degradation, which is comparable with the 85% degra-

dation observed for MultiTransferwith 𝑡𝑥𝑛𝑠𝑖𝑧𝑒 = 16 (Fig.12). The

degradation is mainly due to inefficient logging. In our implemen-

tation, all the actors always log the whole actor state instead of

doing incremental logging. The latter is due to the fact that we have

not implemented a data model for actor states in Snapper, which
then treats each actor’s state as a value blob. It is inefficient to log a

whole table when it is insertion-only such as the Order, NewOrder
and Orderline tables. In an avenue for future work, data models

can be implemented in Snapper to enhance logging performance.

6 RELATEDWORK
Actor-Oriented Databases (AODBs). The concept of AODBs is
to enrich actor systems with database abstractions in a pluggable

fashion [13]. In recent years, several studies have contributed to

enriching the features of AODBs, including indexing [13] and geo-

distribution [11] of actor states, and distributed transactions across

actors [23]. Snapper also contributes to this direction by introduc-

ing novel transaction execution techniques to actor systems.

Deterministic Database Management Systems (DDBMS).
DDBMS like Calvin [52] also apply deterministic pre-scheduling

to execute transactions in a pre-determined order. Deterministic

database systems primarily focus on ordered state machine replica-

tion, such that given the same sequence of transactions, replicas

would end up in a consistent state [43]. Therefore, DDBMS assumes

transactions being deterministic, i.e., generating the same results

when executed multiple times. To process non-deterministic trans-

actions, the system has to employ a pre-processing layer to analyse

the procedure calls and substitute any non-deterministic codes

with deterministic ones. By contrast, Snapper does not require the
computation logic of PACTs to be deterministic, but only requires

the actors that are accessed by PACTs and the number of times

they are accessed to be declared upon invocation. Snapper lever-
ages deterministic execution in order to gain performance. Besides,

DDBMS usually handle failures by replaying transactions. Snapper
does not follow this design. With hybrid execution, recovering by

replaying may not be more efficient than loading the logged states

because a PACT batch may depend on ACTs. Moreover, Snapper
supports transactions implemented using the actor model, which

is significantly different from the programming model of stored

procedures in deterministic database systems.

In addition to the above, Snapper proposes the hybrid execution
strategy to concurrently execute transactions with and without

pre-declared information, thus providing developers with flexibility

to execute transactions in two different modes instead of forcing

the deterministic paradigm. Some DDBMS support transactions

whose read/write set is unknown by inferring the read/write set

through a read-only reconnaissance query [51] or an offline sym-

bolic execution [28]. Other recent work [22, 31] applied determinis-

tic optimistic concurrency control (DOCC), which does not require

a known set of data items in the execution phase and performs

a validation phase in a deterministic order. All of these existing

methods only consider executing transactions deterministically.

Transaction Dependency Analysis. Transaction dependency

analysis has been exploited in many studies with an aim to achieve

higher throughput [27, 35, 41, 46, 55, 56] and lower latency [57].

Existing approaches usually decompose a transaction into pieces

according to different rules, such as SC-cycle [46], and analyze de-

pendencies between transaction pieces.With the dependency graph,

a schedule can be generated, where independent pieces of trans-

actions are executed in parallel and conflicting operations across

transactions are serialized. By contrast, a transaction in Snapper is

already naturally decomposed by developers into pieces, one per

actor. Snapper analyzes transaction dependencies at actor granular-
ity and ensures that every actor executes transactions by following

the same global order. Some approaches make assumptions about

the execution order of transaction pieces [46, 57]; Snapper, how-
ever, does not constrain how and how many times each actor is

accessed by a transaction. Some approaches may still have transac-

tions abort [46, 57], while Snapper guarantees PACTs do not abort

due to concurrency conflicts. Some approaches combine transaction

decomposition with batching and resolve dependencies between a

batch of transactions [41, 56] to facilitate dynamic data partitioning

at the batch level. Differently, Snapper applies batching to amortize

the overhead of messaging and logging.

7 CONCLUSION
This paper presents Snapper, which is a transaction library for

actor systems providing two actor transaction abstractions, namely

PACT and ACT. Transactions using ACT are executed using con-

ventional nondeterminisic strategies, while those using PACT can

be executed deterministically and can achieve a significantly higher

transaction throughput than ACTs, especially under a highly con-

tended workload. The hybrid execution strategy of Snapper is able
to execute both types of transactions concurrently to improve sys-

tem performance under a hybrid workload. It is especially beneficial

when most of the transactions in the system are PACTs. Further-

more, all the execution strategies in Snapper scale well with the

number of CPUs under both benchmarks used in our experiments.

As future work, we intend to extend the optimization and evalu-

ation of Snapper in a multi-server environment, investigating the

trade-offs in algorithms and mechanisms to partition and coordi-

nate transactions across multiple servers. Deploying Snapper in a

distributed environment is non-trivial. First of all, consider that in

a system with both distributed and non-distributed transactions,

it is obvious that non-distributed transactions do not need to be

globally ordered. In this case, a hierarchical ordering service may be

needed to differentiate these two types of transactions. In addition,

different deployments can affect system performance differently.

For example, the placement of coordinators may significantly influ-

ence the token circulation latency, which will also have impact on

transaction latency. In future work, we plan to thoroughly explore

different alternatives based on the current single-server design.

ACKNOWLEDGMENTS
This work was supported by Independent Research Fund Denmark

under Grant 9041-00368B.

REFERENCES
[1] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press. https://doi.org/10.5555/7929

[2] Akka. 2021. Akka Documentation. https://akka.io/. (July 2021).

[3] Akka. 2021. Migration Guide 2.3.x to 2.4.x. https://doc.akka.io/docs/akka/2.4/

project/migration-guide-2.3.x-2.4.x.html. (July 2021).

[4] Akka. 2021. Transactors (Java). https://doc.akka.io/docs/akka/2.0.5/java/

transactors.html. (July 2021).

[5] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The

Cost of Serializability on Platforms That Use Snapshot Isolation. In Proceedings
of the 2008 IEEE 24th International Conference on Data Engineering. 576–585.

[6] Anonym. 2021. Unpublished Manuscript. (Sep 2021).

[7] Manos Athanassoulis, Ryan Johnson, Anastasia Ailamaki, and Radu Stoica. 2009.

Improving OLTP Concurrency through Early Lock Release. Technical Report. EPFL.
[8] AWS. 2021. Amazon Aurora Pricing. https://aws.amazon.com/rds/aurora/pricing/.

(July 2021).

[9] Azure. 2021. Azure SQL Database pricing. https://azure.microsoft.com/en-

us/pricing/details/azure-sql-database/single/. (July 2021).

[10] Philip A. Bernstein. 2019. Resurrecting Middle-Tier Distributed Transactions.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
42, 2 (June 2019), 3–6.

[11] Philip A. Bernstein, Sebastian Burckhardt, Sergey Bykov, Natacha Crooks, Jose M.

Faleiro, Garbriel Kliot, Alok Kumbhare, Muntasir Raihan Rahman, Vivek Shah,

Adriana Szekeres, and Jorgen Thelin. 2017. Geo-Distribution of Actor-Based

Services. In Proceedings of the ACM on Programming Languages. 1–26.
[12] Philip A. Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin.

2014. Orleans: Distributed Virtual Actors for Programmability and Scalability.
Technical Report. Microsoft Research.

[13] Philip A. Bernstein, Mohammad Dashti, Tim Kiefer, and David Maier. 2017.

Indexing in an Actor-Oriented Database. In Conference on Innovative Database
Research (CIDR).

[14] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Addison-Wesley Longman Publishing

Co., Inc. https://doi.org/10.5555/12518

[15] Philip A. Bernstein and Eric Newcomer. 1996. Principles of transaction processing:
for the systems professional. Morgan Kaufmann Publishers Inc. https://doi.org/

10.5555/261193

[16] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen

Thelin. 2011. Orleans: Cloud Computing for Everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing. 1–14.

[17] Akka case study. 2021. Walmart Boosts Conversions By 20% With Lightbend

Reactive Platform. https://www.lightbend.com/case-studies/walmart-boosts-

conversions-by-20-with-lightbend-reactive-platform. (July 2021).

[18] Natacha Crooks, Matthew Burke, and Ethan Cecchetti. 2018. Obladi: Oblivi-

ous Serializable Transactions in the Cloud. In Proceedings of the 13th USENIX
conference on Operating Systems Design and Implementation. 727–743.

[19] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel RMadden. 2010.

Schism: a workload-driven approach to database replication and partitioning.

(2010).

[20] dbyrne. 2015. Looking for alternatives of transactor. https://stackoverflow.com/

questions/29154913/scala-replacement-for-akka-transactors. (March 2015).

[21] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Optimistic Con-

currency Control Through Transaction Batching and Operation Reordering. In

Proceedings of the VLDB Endowment. 169–182.
[22] Zhi-Yuan Dong, Chu-Zhe Tang, Jia-Chen Wang, Zhao-Guo Wang, Hai-Bo Chen,

and Bin-Yu Zang. 2020. Optimistic Transaction Processing in Deterministic

Database. Journal of Computer Science and Technology 35, 2 (March 2020), 382–

394.

[23] Tamer Eldeeb and Philip A. Bernstein. 2016. Transactions for Distributed Actors
in the Cloud. Technical Report. Microsoft Research.

[24] Elixir. 2021. Elixir Documentation. https://elixir-lang.org/. (July 2021).

[25] Erlang. 2021. Erlang Documentation. https://www.erlang.org/. (July 2021).

[26] Erlang. 2021. Who uses Erlang for product development? http://erlang.org/faq/

introduction.html. (July 2021).

[27] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High Per-

formance Transactions via Early Write Visibility. In Proceedings of the VLDB
Endowment. 613–624.

[28] Shady Issa, Miguel Viegas, Pedro Raminhas, Nuno Machado, Miguel Matos, and

Paolo Romano. 2020. Exploiting Symbolic Execution to Accelerate Deterministic

Databases. In 2020 IEEE 40th International Conference on Distributed Computing
Systems (ICDCS). 678–688.

[29] Butler Lampson and Howard E. Sturgis. 1979. Crash Recovery in a Distributed
Data Storage System. Technical Report. Microsoft Research.

[30] Barbara Liskov and Liuba Shrira. 1988. Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls in Distributed Systems. In Proceedings of the ACM
SIGPLAN’88 Conference on Programming Language Design and Implementation
(PLDI). 260–267.

[31] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: a fast and practical

deterministic OLTP database. In Proceedings of the VLDB Endowment. 2047–2060.
[32] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2021. Epoch-based Commit

and Replication in Distributed OLTP Databases. In Proceedings of the VLDB
Endowment. 743–756.

[33] mathdotnet. 2021. Zipf. https://numerics.mathdotnet.com/api/MathNet.Numerics.

Distributions/Zipf.htm. (July 2021).

[34] C.Mohan and B. Lindsay. 1985. Efficient commit protocols for the tree of processes

model of distributed transactions. ACM SIGOPS Operating Systems Review 19, 2

(April 1985), 40–52.

[35] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014. Extracting

More Concurrency from Distributed Transactions. In Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation. 479–494.

[36] Orbit. 2021. Orbit Documentation. https://www.orbit.cloud/orbit/. (July 2021).

[37] Orleans. 2021. Orleans Documentation. https://dotnet.github.io/orleans/docs/

index.html. (July 2021).

[38] Orleans. 2021. Orleans Transactions. https://dotnet.github.io/orleans/docs/grains/

transactions.html. (July 2021).

[39] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic

database partitioning in shared-nothing, parallel OLTP systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. 61–72.

[40] Per Persson and Ola Angelsmark. 2015. Calvin–Merging Cloud and IoT. Procedia
Computer Science 52 (June 2015), 210–217.

[41] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Contended

OLTP Workloads Using Fast Dynamic Partitioning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 527–542.

[42] Michal Ptaszek. 2015. Chat Service Architecture: Servers. https://technology.

riotgames.com/news/chat-service-architecture-servers. (September 2015).

[43] Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2014. An Evaluation of the

Advantages and Disadvantages of Deterministic Database Systems. In Proceedings
of the VLDB Endowment. 821–832.

[44] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. 1978. System

level concurrency control for distributed database systems. ACM Transactions on
Database Systems 3, 2 (June 1978), 178–198.

[45] Vivek Shah andMarcos Antonio Vaz Salles. 2018. Reactors: A Case for Predictable,

Virtualized Actor Database Systems. In Proceedings of the 2018 International
Conference on Management of Data. 259–274.

[46] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez. 1995. Trans-

action chopping: algorithms and performance studies. ACM Transactions on
Database Systems 20, 3 (September 1995), 325–363.

[47] Eljas Soisalon-Soininen and Tatu Ylönen. 1995. Partial Strictness in Two-Phase

Locking. In Proceedings of the 5th International Conference on Database Theory.
139—-147.

[48] Hoop Somuah. 2014. Using Project “Orleans” in Halo. https://hoopsomuah.com/

2014/04/06/using-project-orleans-in-halo/. (April 2014).

[49] Andrew S. Tanenbaum and Maarten van Steen. 2006. Distributed Systems: Prin-
ciples and Paradigms (2nd Edition). Prentice-Hall, Inc. https://doi.org/10.5555/

1202502

[50] @theotown. 2016. How Reactive systems help PayPal’s squbs scale to billions of

transactions daily. https://www.lightbend.com/blog/how-reactive-systems-help-

paypal-squbs-scale-to-billions-of-transactions-daily. (June 2016).

[51] Alexander Thomson and Daniel J. Abadi. 2010. The case for determinism in

database systems. In Proceedings of the VLDB Endowment. 70–80.
[52] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip

Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Parti-

tioned Database Systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 1–12.

[53] TPCC. 2021. TPC-C is an On-Line Transaction Processing Benchmark. http:

//www.tpc.org/tpcc/. (July 2021).

[54] Akka user. 2021. Transactors and STM are gone. What conception to use instead?

https://groups.google.com/g/akka-user/c/XS-Pk3SOzbw?pli=1. (July 2021).

[55] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.

Scaling Multicore Databases via Constrained Parallel Execution. In Proceedings
of the 2016 International Conference on Management of Data. 1643–1658.

[56] Chang Yao, Divyakant Agrawal, Gang Chen, Qian Lin, Beng Chin Ooi, Weng-Fai

Wong, and Meihui Zhang. 2016. Exploiting Single-Threaded Model in Multi-Core

In-Memory Systems. IEEE Transactions on Knowledge and Data Engineering 28,

10 (October 2016), 2635–2650.

[57] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera, and

Jinyang Li. 2013. Transaction chains: achieving serializability with low latency

in geo-distributed storage systems. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 276–291.

https://doi.org/10.5555/7929
https://akka.io/
https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.0.5/java/transactors.html
https://doc.akka.io/docs/akka/2.0.5/java/transactors.html
https://aws.amazon.com/rds/aurora/pricing/
https://azure.microsoft.com/en-us/pricing/details/azure-sql-database/single/
https://azure.microsoft.com/en-us/pricing/details/azure-sql-database/single/
https://doi.org/10.5555/12518
https://doi.org/10.5555/261193
https://doi.org/10.5555/261193
https://www.lightbend.com/case-studies/walmart-boosts-conversions-by-20-with-lightbend-reactive-platform
https://www.lightbend.com/case-studies/walmart-boosts-conversions-by-20-with-lightbend-reactive-platform
https://stackoverflow.com/questions/29154913/scala-replacement-for-akka-transactors
https://stackoverflow.com/questions/29154913/scala-replacement-for-akka-transactors
https://elixir-lang.org/
https://www.erlang.org/
http://erlang.org/faq/introduction.html
http://erlang.org/faq/introduction.html
https://numerics.mathdotnet.com/api/MathNet.Numerics.Distributions/Zipf.htm
https://numerics.mathdotnet.com/api/MathNet.Numerics.Distributions/Zipf.htm
https://www.orbit.cloud/orbit/
https://dotnet.github.io/orleans/docs/index.html
https://dotnet.github.io/orleans/docs/index.html
https://dotnet.github.io/orleans/docs/grains/transactions.html
https://dotnet.github.io/orleans/docs/grains/transactions.html
https://technology.riotgames.com/news/chat-service-architecture-servers
https://technology.riotgames.com/news/chat-service-architecture-servers
https://hoopsomuah.com/2014/04/06/using-project-orleans-in-halo/
https://hoopsomuah.com/2014/04/06/using-project-orleans-in-halo/
https://doi.org/10.5555/1202502
https://doi.org/10.5555/1202502
https://www.lightbend.com/blog/how-reactive-systems-help-paypal-squbs-scale-to-billions-of-transactions-daily
https://www.lightbend.com/blog/how-reactive-systems-help-paypal-squbs-scale-to-billions-of-transactions-daily
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://groups.google.com/g/akka-user/c/XS-Pk3SOzbw?pli=1

	Abstract
	1 Introduction
	2 Background
	3 Snapper Programming Model
	3.1 Conceptual Overview
	3.2 Transactional API of Snapper

	4 Snapper Architecture
	4.1 Overview
	4.2 PACT Processing
	4.3 ACT Processing
	4.4 Hybrid Processing

	5 Evaluation
	5.1 Experimental Settings
	5.2 PACT vs. ACT Execution
	5.3 Performance of Hybrid Execution
	5.4 Scalability

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

