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Abstract—Creating good maps is the challenge of map general-
ization. An important generalization method is selecting subsets
of the data to be shown at different zoom-levels of a zoomable
map, subject to a set of spatial constraints. Applying these
constraints serves the dual purpose of increasing the information
quality of the map and improving the performance of data
transfer and rendering. Unfortunately, with current tools, users
must explicitly specify which objects to show at each zoom level
of their map, while keeping their application constraints implicit.
This paper introduces a novel declarative approach to map
generalization based on a language called CVL, the Cartographic
Visualization Language. In contrast to current tools, users declare
application constraints and object importance in CVL, while
leaving the selection of objects implicit. In order to compute
an explicit selection of objects, CVL scripts are translated into
an algorithmic search task. We show how this translation allows
for reuse of existing algorithms from the optimization literature,
while at the same time supporting fully pluggable, user-defined
constraints and object weight functions. In addition, we show
how to evaluate CVL entirely inside a relational database. The
latter allows users to seamlessly integrate storage of geospatial
data with its transformation into map visualizations. In a set
of experiments with a variety of real-world data sets, we find
that CVL produces generalizations in reasonable time for off-
line processing; furthermore, the quality of the generalizations
is high with respect to the chosen objective function.

I. INTRODUCTION

The goal of map generalization is to produce a map at a
given scale that achieves the right balance between render-
ing performance and information quality for end users. For
example, in a tourist attraction rating system, one needs to
efficiently visualize important attractions, and constrain object
proximity to allow space for user interaction. In a journalistic
piece that maps traffic incidents, however, maintaining the
underlying distribution of data is the most important aspect,
but at the same time object density must be constrained to
ensure high-performance data transfer and rendering.

Fully automatic generalization of digital maps [1], [2] is
relevant in many areas such as social networks, factivism and
data journalism [3], [4], [5], where there is a constant need
for visualizing new and often massive geospatial datasets.
Automatic generalization includes both data reduction and
graphical rendering [6], [7]. Increasingly, graphical rendering
is deferred to map clients. This trend leaves the challenging
problem of data reduction, i.e., selecting the right information
to be displayed across zoom levels of the map, to the map
service provider [8].
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Both the performance and quality of a generalized map
become important as the map gains a large audience. A map
generalization solution handling data reduction in this context
should be able to deal with big spatial datasets, consisting of
both point and polygon records, should be usable by novice
programmers, and should be able to finish processing quickly,
e.g., in time for a tight news agency deadline. Ideally, such
a system will allow users to control the important aspects of
generalization solutions using logical and concise measures
and reuse existing technology as much as possible, e.g.,
relational database technology.

Unfortunately, current approaches for data reduction in
map generalization fall short in one or many of the above
dimensions. Recent work has mostly considered only explicit
rules or pre-set constraints for map generalization, resulting
in solutions that are either too tedious [9], [10], or too
restrictive for users [1], [2]. In addition, previous solutions
have been poorly integrated with existing technology, resulting
in scalability bottlenecks such as being restricted to the main
memory capacity of a single node [1].

Spatial data is often stored in a database with powerful
spatial extensions installed, so a natural idea is to exploit
the processing capabilities of the database to perform map
generalization. In this work, we present a novel database-
integrated approach that is a complete solution to the data
reduction problem in map generalization. All operations are
performed entirely within the database process, and the result
is a preprocessing of spatial records for fast execution of
subsequent scale-parameterized queries [11]. Essentially, a
number is assigned to each spatial record corresponding to
the lowest zoom-level at which the record should be visible
in a zoomable map, allowing for efficient indexing.

Using a declarative language, we allow the user to concisely
express spatial constraints and object importance, which are
used to compute a multi-scale database from an input table of
spatial data. This gives users a large amount of control over
the map generalization process, while still being extremely
concise, expressing a generalization with as little as four lines
of code.

We term our approach declarative cartography, since it
combines a declarative language for data reduction with a com-
pilation procedure that results in efficient database programs
to transform data for cartographic visualization.



In this paper, we make the following four contributions:

1) We present a declarative language, Cartographic Vi-
sualization Language (CVL, pronounced “civil”), for
generalizing spatial datasets. CVL is designed to be
simple and concise to use for novice programmers. The
CVL language was designed in collaboration with the
Danish Geodata Agency and Grontmij in Denmark.'2

2) We convert the data reduction problem in map general-
ization to an instance of the well-known set multicover
problem [12], which makes constraints fully pluggable
and allows reuse of well-known algorithms [12], [13].

3) We show how to fully evaluate CVL inside the database;
this enables us to reuse basic database technology for
data management and scalability. While CVL is de-
signed to compile to a variety of engines [14], we present
here an implementation using a relational database en-
gine with spatial extensions. The code for the project is
available as open source through the project website.?

4) We present experimental results for a variety of real
datasets. The results show that the proposed approach
has good performance and produces high-quality map
generalizations.

In Section II, we define the data reduction problem in
map generalization as a selection problem. In Section III, we
introduce the CVL language. In Section IV, we formalize the
selection problem as a combinatorial optimization problem
based on a mapping to the set multicover problem, and we
revisit algorithms for this problem in Section V. In Section VI,
we discuss the compilation procedure that enables us to run
CVL on a relational database backend. Experimental results
are presented in Section VII, and finally related work is
summarized in Section VIIL

II. SELECTION OF GEOSPATIAL DATA

In the selection problem, we wish to select the subset of a
geospatial dataset to be visualized on a map at a given scale.
Below we define the basic components of the problem, and
informally define the associated optimization problem.

A. Geospatial records and weights

The dataset is assumed to consist of a set of geospatial
records drawn from a database table. The schema of a
geospatial record consists of a geometry field (e.g. a point,
line or polygon), a unique ID field and any number of
additional textual and numeric fields, such as “city name” and
“population”.

Each record is assigned a user defined weight using CVL
(see Section II). The weight models the importance of a
record, with high weight corresponding to great importance.
Any subset of records — or all records for that matter — may
have the same weight. Therefore, the weights induce a partial
order of the records.

Uhttp://www.gst.dk/English/
Zhttp://grontmij.dk/
3http://github.com/dmslab/declarativecartography

B. Zoom levels and map constraints

For zoomable maps, different subsets of the data should be
selected for display at different scales or zoom levels. Let the
zoom-levels run from 1 (lowest scale) to Z (largest scale).
On a given zoom level, the map is rendered at a certain pixel
resolution. Thus, for a given zoom level, we know the distance
in pixels between geospatial locations. This gives rise to two
particularly important map constraints [15] when selecting
data for a given zoom level.

Firstly, the principle of constant information density implies
that the number of records that can be displayed within an area
of a certain pixel size should be bounded [16]. Assume that
we divide the complete map into cells (or tiles) of, say, 256
x 256 pixels. The visibility constraint states that each cell can
contain at most K selected records, where K is a user-defined
parameter [1].

Secondly, records cannot be too close to each other in
the map — otherwise the user will not be able to clearly
distinguish between them. The proximity constraint states that
every pair of visible records must be separated by at least d
pixels, where d is a user defined parameter.

In addition to these constraints that must hold separately for
each zoom level, there are constraints that must hold across
zoom levels. A particularly important constraint is the zoom-
consistency constraint, which states that when a record is
filtered out at a given scale, it should also be filtered out at all
lower scales [1]. When a user zooms out on a map, records
can only disappear — not reappear.

Apart from the zoom-consistency constraint, CVL supports
constraints based on simple measures that are satisfiable by
selection (see Section III). A simple measure is a function
that maps a set of records to a scalar value. A constraint
is violated if the measure exceeds a threshold. A constraint
is satisfiable by selection if we can always satisfy it by
simply deleting an appropriate subset of the records. Both the
visibility and proximity constraints respect these restrictions.
However, we cannot model constraints that have complex
measures or cannot be satisfied by using selection alone, such
as topology and spatial distribution constraints. We leave these
classes of constraints to future work.

C. Conflicts

Constraints such as visibility or proximity can be modeled
using the notion of conflicts. A conflict is a set of records that
cannot all be selected without violating the constraint.

For the visibility constraint, there is a conflict generated for
every cell that contains more than K records. For the proximity
constraint, there is a conflict generated for each pair of records
that is less than d pixels apart (see Figure 1). A record can be in
several conflicts, which is the case for point p in the example
shown in the figure. A solution to the selection problem is
feasible if there are no conflicts.

Consider a conflict involving k; records, where at most
ko of these records can be selected (where ki > ko). Then
it is equivalent to state that at least A = k; — ko of these
records must be deleted. In the mathematical formulation of



Fig. 1. Conflicts generated by the proximity constraint for distance d. Notice
that point p is a member of more than one conflict.

the problem in Section IV, we will use this alternative way to
formulate conflicts.

D. Selection as an optimization problem

The notion of conflicts is used to define the feasibility of
solutions to the selection problem. This should be accompa-
nied by a way to discriminate between solutions. Assigning an
importance measure to each record, namely the record weights,
intuitively allows us to measure the “loss of importance” due
to records that are deleted.

In the optimization version of the problem, we seek the fea-
sible solution that minimizes the aggregate weight of records
that are deleted. In Section IV, we present a mathematical
formulation of the selection optimization problem.

For a zoomable map with Z zoom levels, we are interested
in finding Z solutions to the selection problem, one for each
zoom level ¢ € {1,...,Z}. We call this problem the multi-
scale selection problem. To control the way in which we
compute these solutions, we use an algorithmic framework
known as the ladder approach [17]. This is a recursive
approach, where the output of selection at large scale is used as
input to selection at a smaller scale. This means that the zoom-
consistency constraint (Section II-B) is automatically satisfied.

The ladder approach is not appropriate for all use cases.
For example, when regional labels are modeled as geospatial
records, e.g., the label “Europe”, we may wish to show a
record only on intermediate zoom levels, violating zoom con-
sistency. Handling these use cases would require an alternative
formulation, e.g., following the star approach [17]. This is an
interesting avenue for future work.

III. CVL LANGUAGE

The Cartographic Visualization Language (CVL) is a declar-
ative language that can be used to specify an instance of
the multi-scale selection problem (Section II-D). CVL is a
rule-based language with a similar goal as other rule-based
languages for selection over spatial datasets, i.e., to control
the density of information at each zoom-level [9], [10]. The
CVL approach is, however, markedly different. In the related
languages, the user must explicitly control the selection of
records at each zoom level, while also specifying how records
are to be visualized. First of all, CVL focuses only on se-
lection, not presentation. Furthermore, CVL controls selection
in a novel constraint-based way. Instead of having the user

GENERALIZE

{input} TO {output}
WITH ID {expression}
WITH GEOMETRY {expression}
AT {integer} ZOOM LEVELS

WEIGH BY
{float expression}

SUBJECT TO
{constraint} {float parameters} [AND
{constraint} {float parameters} [AND

.11

Fig. 2. Syntax of generalize statement.

explicitly control the selection of records at each zoom level,
CVL lets the user choose map constraints that are instead
enforced at all zoom levels. By making the constraints explicit
and the control implicit, a very concise formulation is obtained
(see Figure 4 for an example).

CVL is one of the first languages and frameworks to
implement the vision of reverse data management [18]. In
reverse data management, the core idea is that a user states a
set of constraints and an objective. These are given together
with an input database to an optimization algorithm which
computes an output database that is feasible and optimal
with regard to the constraints and objective (if a feasible
solution exists). This is exactly how CVL works. Furthermore,
a feasible solution is guaranteed to exist, as deleting all records
is always a feasible solution.

The CVL language has two statements, the generalize state-
ment (see Section III-A) and the create-constraint statement
(see Section III-B). The create constraint statement is used to
formulate new map constraints and the generalize statement is
used to specify a solution to the multi-scale selection problem
subject to those constraints.

The CVL language builds on top of SQL and reuses SQL as
a language for formulating constraints and record weighting
schemes.

A. Generalize statement

The generalize statement is the main statement in CVL.
This statement creates a new multi-scale dataset from an input
table of geospatial records, subject to user defined constraints.
The syntax is shown in Figure 2. The statement has several
clauses, beginning with the specification of input and output
tables. Instead of giving the name of an input table, the user
can optionally write a select statement in SQL of the form
(SELECT ...) t. The next clause is the with-id clause,
which is used to uniquely identify records. If records have
an id column, this clause could simply provide the name of
that column. The with-geometry clause is used to indicate the
geometry property of records, e.g., the name of an available
geometry column. The next clause is the zoom-levels clause
where the user writes a positive integer, which is the highest
zoom level at which the selection process will begin. The
weigh-by clause is used to give an arbitrary floating point
expression that is evaluated for each row in the input and used
as weight for that record. The subject-to clause lists the map



(a) Full Openflights Airport dataset

Fig. 3.

constraints along with any parameters (as a comma-separated
list). The AND keyword is used to separate constraints in the
case more than one is used.

An example of generalizing a dataset using the generalize
statement is shown in Figures 3 and 4. In this example a
dataset containing point records representing the location of
airports world-wide is generalized (Figure 3(a)). The records
are weighted by using the name of a column containing
the number of routes departing from each airport (shown in
Figure 4; CVL automatically handles the cast from integer
to floating point). The intuition is that airports with more
departures are more important. The single constraint that
is enforced is the visibility constraint, with a parameter of
K = 16. Recall that the visibility constraint says that each
tile can contain at most K records.

GENERALIZE

airports TO airports2
WITH ID airport_id
WITH GEOMETRY wkb_geometry
AT 18 ZOOM LEVELS
WEIGH BY

num_departures
SUBJECT TO

visibility 16

Fig. 4. Generalization of an airports dataset. The airports are weighted by
number of departures. See Figure 3 for a vizualization of the result.

The resulting map is shown in Figure 3(b) and (c) and has
at most 16 airports on each tile. For the single tile on the top
zoom-level, the world’s sixteen busiest airports are shown. The
CVL framework automatically gives priority to the airports
with the highest weight. How this is done is explained in
sections IV and V.

B. Create constraint statement

Map constraints are defined using the create-constraint
statement. The basic syntax of the statement is shown in
Figure 5. The body of the statement is a SQL select statement
that computes tuples that represent conflicts that are found at
a given zoom level in the map. A tuple (cid, rid) denotes that
record rid is a member of conflict cid. See Section II-C for
the exact semantics of conflicts.

The resolve-if-delete clause is used to compute the integer
number of records that must be deleted in order to resolve the
conflict with a given cid.

(b) Airports on zoom-level 5

MI
e =
e

(c) Airports on the top-most zoom-level.

Airport map (7K points) before (a) and after (b, ¢) running CVL. The output corresponds to the CVL statement in Figure 4.

CREATE CONSTRAINT
AS NOT EXISTS
{SQL select statement}

Ccl

RESOLVE cid IF DELETE (
{integer expression}

)

Fig. 5. Syntax of create constraint statement

CREATE CONSTRAINT Proximity
AS NOT EXISTS (

SELECT
1.{rid} || r.{rid} AS cid,
Unnest (array[l.{rid}, r.{rid}]) AS rid
FROM
{level_view} 1
JOIN
{level_view} r
ON
1.{rid} < r.{rid}
AND

1.{geom} && ST_Expand(r.{geom},
CVL_Resolution({z}, 256) =
{parameter_11})
AND
ST_Distance (1. {geom},
CVL_Resolution({z},

r.{geom}) <
256) x {parameter_1}
)

RESOLVE
1

cid IF DELETE (

)

Fig. 6. Definition of the proximity constraint.

Using this syntax, the definition of the proximity constraint
is given in Figure 6. The body of the constraint is a distance
self join using a distance function ST_Distance provided
by a spatial extension to SQL. This join finds all pairs of
records that are too close, e.g. less than 10 pixels apart.
For each conflict, the select statement outputs two tuples and
exactly once for each conflict. The resolve-if-delete clause is
simply the constant 1, because that is how many records must
be deleted to resolve a proximity conflict.

In Figure 6, some names are enclosed in curly braces, such
as {rid}. These are variables which are bound at runtime by



the CVL framework and are intended for making the definition
of constraints simpler. The variables {rid} and {geom} are
bound to the column names containing the ID and geometry
of the records. The {level_view} is bound to a view that
contains all records that are visible at the current level, i.e.,
the records that have not been filtered out at a higher zoom-
level. The function CVL_Resolution ({z}, 256) is one
of the utility functions defined by the CVL runtime, also with
the purpose of making the definition of constraints simpler.
This function returns the resolution (meter/pixel) at zoom-level
{z}, where {z} is a variable bound to the currently evaluated
zoom-level. The variable {parameter_1} is the constraint
parameter, e.g. 10 pixels.

CREATE CONSTRAINT Visibility
AS NOT EXISTS (
SELECT
busted_tiles.cid,
busted_tiles.rid
FROM
busted_tiles
)

RESOLVE cid IF DELETE (
SELECT count (x) - {parameter_1}
FROM busted_tiles bt
WHERE Dbt.cid = cid

)

WITH SETUP (
CREATE TEMPORARY TABLE busted_tiles AS (
SELECT
t.cid,
Unnest (array_agg (t.cvl_id))
FROM
(
SELECT
CVL_PointHash (CVL_WebMercatorCells
({geometry}, {z})) AS cid,
{rid}

AS rid

FROM
{level_view}

) t

GROUP BY t.cid

HAVING count (*) > {parameter_1}

)

CREATE INDEX busted_tiles_id_idx ON
busted_tiles (cid);

)

WITH TEARDOWN (
DROP TABLE busted_tiles;
)

Fig. 7. Definition of the visibility constraint.

Figure 7 shows how the visibility constraint may be defined
using CVL. The CVL definition uses an extension of the
basic create-constraint syntax, namely the setup and tear down
clauses. The purpose of these clauses is to enable arbitrary
SQL statements to be run before and after the constraint body
is evaluated at each zoom-level. During the setup phase we

create an auxiliary table called busted_tiles which con-
tains tuples (tile_id, rid) identifying tiles that are intersected
by more than K records, and the ID of those records. The
body of the constraint simply iterates over the auxiliary table,
using the tile_id column as the conflict ID.

The user does not need to know how the conflicts are
handled, because all conflicts are automatically resolved by
the CVL framework using one of the algorithms presented in
Section V.

IV. SELECTION OPTIMIZATION PROBLEM

In this section, we formally define the selection problem as
an optimization problem. Let R be the set of records in the
dataset. Each record € R has an associated weight w, > 0
which models the importance of the record.

Evaluating a CVL query generates a number of conflicts,
i.e., all sets of records that violate a constraint. Let C' be the
set of conflicts. A conflict ¢ € C'is a set of records R, C R,
where at least A\, > 1 records must be deleted. The selection
problem can now be modeled as a 0-1 integer program. Let
xz, be a 0-1 decision variable for each record r € R that is 1
if record r is deleted, and O otherwise. Then at a single-scale,
the problem can be stated as follows:

min Zwrxr (D
reR
Yorr=h, ceC @)
reR.
z. €{0,1}, r€R 3)

The goal (1) is to minimize the total weight of the records
that are deleted. The inequalities (2) model the conflicts in
the selection optimization problem. This is the set multicover
problem — a generalization of the well-known set cover
problem where each element needs to be covered multiple
times instead of just once [12]. In our formulation, conflicts
correspond to elements in the set multicover problem, while
records correspond to sets. Each conflict ¢ € C must be
“covered” A, > 1 times by choosing a subset of records that
are deleted (i.e., for which z, = 1). Because the selection of
records is modeled using a 0-1 decision variable, each record
can be chosen at most once.

The general selection optimization problem is clearly equiv-
alent to the set multicover problem. Since the set multicover
problem is NP-hard, so is the general selection optimization
problem. The selection optimization problem is even NP-hard
for very restricted cases. Consider the vertex cover problem:
Given a graph G = (V, E), find a minimum size subset of the
vertices S such that every edge in F has an endpoint in S.
The vertex cover problem is equivalent to the restricted case
of the selection optimization problem where all records have
unit weight, and all constraints contain exactly two records.
(The records are the vertices and the conflicts are the edges
in the vertex cover problem.)

The vertex cover problem is NP-hard, even for very re-
stricted cases. For example, if G is a planar graph and every



vertex has degree at most 3, the problem remains NP-hard [19],
[20]. This corresponds to a selection optimization problem
where the conflicts contain two records each, and each record
is involved in at most 3 conflicts. It is hard to imagine that
any interesting application is more restrictive.

In the next section, we discuss algorithmic approaches for
solving the selection optimization problem. We include a fur-
ther discussion on the objective value (1) in the experimental
evaluation of our approach.

V. ALGORITHMS FOR SELECTION PROBLEM

As mentioned in Section II-D, we solve the multi-scale
selection problem using the ladder approach. For each of the
Z zoom levels, we generate and solve a separate instance of
the selection optimization problem (Section IV). The solution
gives us the records that should be deleted from zoom-level
1. The remaining records are (conceptually) copied to zoom
level 7 — 1, unless we have reached the last zoom level (i = 1).
This approach is illustrated schematically in Figure 8.

Zoom levels Create and solve instances

Find conflicts

Create instance

Solve instance

Delete subset of records

Copy records to i-1

Fig. 8.  Algorithmic framework: At each zoom level ¢ € {1,...,Z} we
solve a selection optimization problem. In the ladder approach, the problem
is solved for the “highest” zoom level first.

Below we describe two different heuristic algorithms for
solving the selection optimization problem. Let n = |C| be
the number of conflicts (or elements in the set multicover
problem), and let m = |R| be the number of records (or sets
in the set multicover problem). Recall that R. C R is the set
of records in conflict ¢ € C. The largest number of records in
any conflict is f = max.cc |R.|, and is called the maximum
frequency.

A. Static greedy algorithm (SGA)

In this algorithm, we consider each conflict ¢ € C' in turn,
and simply choose the ). records with minimum weight from
the records R. — independently of what has been chosen
earlier. If the sets R. are disjoint, the algorithm is clearly
optimal. However, in general no approximation guarantee can
be provided. The algorithm runs in O(nflog f) time, as we
just need to sort the records by weight for each conflict set;
alternatively we can sort all records by weight in O(m logm)
time and pick the minimum weight records from the conflicts
in linear time in the total number of records in all conflict sets.

B. LP-based greedy algorithm (LPGA)

In this algorithm, we first solve a linear programming (LP)
relaxation of the set multicover problem. This LP-problem is
obtained by relaxing the constraint x,, € {0,1} to 0 < z, < 1.
Then we choose all records € R for which the LP-solution
variable x, is at least 1/f. Intuitively, we round up to 1
all fractional values that are large enough; the remaining
fractional variables are rounded down to 0.

This algorithm provides a feasible solution to the selection
optimization problem, and the approximation guarantee is
f [13]; thus, if f is small, the algorithm provides a good
approximation guarantee. As the LP-problem can be solved in
polynomial time, the complete algorithm is polynomial.

VI. IMPLEMENTATION

In this section, we describe how our implementation makes
use of in-database execution to provide scalability and engine
reuse for CVL (Section VI-A). In addition, we discuss a
number of extensions to CVL that we found to be useful for
practical applications (Section VI-B).

A. In-Database Execution

Overview. Since CVL is declarative, and CVL constraints are
already expressed in SQL, it is natural to attempt to reuse
as much existing DBMS technology as possible to execute
CVL. Figure 9 shows how CVL is compiled for execution
in a relational DBMS, which acts as the language runtime.
The output of the CVL compiler is a database script for the
target host, containing both SQL and stored procedures, and
following the algorithmic framework of Figure 8. The script
is pushed down to the database engine, and operates against
the appropriate input data stored in the system. This strategy
offers us two main advantages:

1) Since all code is pushed down and both input and output
reside in the database, we do not need to transfer any
data outside of the database engine. This co-location
of code and data is a significant advantage for large
datasets.

2) By expressing as much as possible of the generated
code in SQL, we can reuse decades of optimizations
built into database engines, especially for geospatial
data [21], [22]. This opens up many opportunities, such
as automatic optimization, parallelism, and selection of
specialized algorithms and indexes.

While the general strategy of compiling declarative lan-

guages to SQL has been pursued in other contexts, e.g., for
XQuery [23] and LINQ [24], our context poses a particular
challenge of integrating the language with algorithmic solvers
inside the database.
Solvers. In Section V, we presented two different algorithmic
approaches for solving CVL generalizations: static greedy
(SGA) and LP-based greedy (LPGA). We now show how to
express each of these approaches in SQL along with stored
procedures.

SGA is the simplest algorithm, and operates independently
on the conflicts generated by each constraint. Suppose the
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Fig. 9. CVL and in-database execution.

conflicts C' generated by the active constraints are stored in a
conflicts table. Then SGA is tantamount to the query:

SELECT rid
FROM (
SELECT ROW_NUMBER ()
OVER (PARTITION BY cid
ORDER BY cvl_rank)
rid, cvl_rank, lambda_c
FROM conflicts) h
WHERE h.r <= h.lambda_c

AS r,

For each conflict ¢, we order records by rank, and ensure
that we pick at least A\, records. The declarative formulation
allows us to reuse optimized sorting code in the database
engine for execution.

LPGA solves a linear programming relaxation of the set
multicover problem. We express LPGA by a stored procedure.
The procedure accesses the conflicts for the constraints via
SQL, constructs an appropriate LP, and then calls into an LP
solver library. Since the solver library does not use built-in
database optimizations, this execution strategy for LPGA only
leverages the first advantage of data and code co-location listed
above.

Finally, note that the code for finding conflicts is already

expressed in SQL by the user for each constraint. As a
consequence, this user code can make use of all built-in
database optimizations available in the target engine.
CVL runtime functions. In the definition of the visibil-
ity constraint in Section III-B, we reference two stored
procedures in the CVL runtime library, CVL_PointHash
and CVL_WebMercatorCells. These functions are imple-
mented in SQL and make use of the spatial extension of the
database.

The procedure CVL_PointHash wuses a call to
ST_GeoHash to implement an injective mapping from
points to strings. The GeoHash algorithm corresponds to a
Z-order curve, and we exploit this for uniquely naming tiles
when evaluating the visibility constraint, i.e. finding tiles with
more than K records.

The CVL_WebMercatorCells function maps a geome-
try at a given zoom level to centroids of all intersected tiles
(on that zoom level). We experimented with several ways to do
this for general geometries (points, line segments, polygons)
and found that rasterizing the geometry (using the function
ST_AsRaster in the spatial extension of the database)
and iterating over the indices was the fastest for general
geometries. For point records it is significantly faster to use
the standard transformation function ST_SnapToGrid.

B. Extensions

When designing CVL, we realized a number of interesting

use cases for the language that we had not initially considered.
This realization, along with our implementation experience of
CVL use cases, led us to a set of extensions over the core
language targeted at improving convenience of use. We present
these extensions below.
Partitioning and merging of datasets. A single input table
may contain geospatial objects of different classes, e.g., roads
and points of interest. When this is the case, users often wish
to generalize some of these classes of objects independently,
but obtain a single result map. While this can be done by
merging the results of multiple GENERALIZE statements, we
found it useful to add syntactic sugar to support this case. We
extend the GENERALIZE statement with PARTITION BY
and MERGE PARTITIONS clauses. PARTITION BY allows
us to effectively segregate the input into multiple independent
sets. MERGE PARTITIONS combines a few of these sets back
together before providing them as input to generalization. For
example, assume a geo_objects table contains highways, roads,
restaurants, and hotels, tagged by a type attribute. We could
then generalize geo_objects as follows:

GENERALIZE geo_objects
TO network_and_poi_map

PARTITION BY type
MERGE PARTITIONS ’'restaurant’,
AS ’'poi’

"hotel’

In the example, we overlay independent generalizations of

highways, roads, and points of interest into a single map.
However, restaurants and hotels are generalized as a single
input set.
Forced and all-or-nothing visualization. Intuitively, con-
straints let users specify what is not allowed in a given map,
by forbidding the existence of conflicts. However, users also
find it helpful to control certain behaviors that must occur in
their map. We extended the GENERALIZE statement with
support for two types of behaviors: (1) the ability to mandate
a minimum zoom level for a particular partition of the input,
and (2) the ability to force that either all or none of the
objects of a given partition be displayed. For example, a user
may wish to specify that highways must only appear at zoom
level 10 or lower in their map. In addition, for topological
consistency, either the whole highway skeleton is displayed
or no highways should show up. To achieve this goal, we
extend the GENERALIZE statement by a FORCE clause with
MIN LEVEL and ALLORNOTHING specifiers. Continuing
the example above:

FORCE MIN LEVEL 10 FOR ’'highway’ AND
ALLORNOTHING FOR ’roads’

In the evaluation of CVL, the minimum level specifier
controls what data is given as input for a zoom level. The
all-or-nothing specifier, on the other hand, controls filtering of
the output of the level generalization process. If the specifier



is present, all records of a partition are deleted if any record
from the partition input is not present in the output. By
filtering output, we ensure that the result also respects all other
constraints specified by the user.

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results with our
implementation of CVL. Our experiments have the following
goals:

o Evaluate the performance and solution quality of CVL
generalizations with a variety of real-world datasets,
including point data as well as complex shapes such as
polygon and line data.

o Analyze the performance and solution quality of CVL
generalizations produced under the proximity and visibil-
ity constraints presented in Section III by both the SGA
as well as the LPGA solvers of Section V.

e Observe how the performance of CVL with different
constraints and solvers scales with the number of objects
in the geospatial dataset.

We start by presenting our experimental setup (Sec-
tion VII-A), and then show results for both point data (Sec-
tion VII-B) and complex shapes (Section VII-C). Each result
section discusses performance, quality, and scalability.

A. Experimental Setup

Datasets. We have tested CVL using four real-world datasets,
the largest of which containing 9 million points, and one
synthetic dataset containing 30 million points. We list all
datasets in Table I.

We have used three point datasets. The airports dataset is
from Openflights and contains 7411 airports.* The tourism
dataset contains 500 thousand points representing tourist at-
tractions worldwide from the OpenStreetMap database.’ The
fractal dataset (synthetic) was created by iteratively copying
and displacing points from the tourism dataset within a 10km
radius until 30 million records were reached. We use this
dataset for scalability experiments.

We have used two line datasets. The US rivers/streams
dataset contains roughly 4 thousand rivers and roughly 27
thousand streams in the United States from the OpenStreetMap
database. Records with identical name attributes have been
merged into one. In the original dataset, most rivers are
represented by multiple records, which is unfortunate in a
selection situation (we wish to either select the waterway
completely or not at all).

We have used a single polygon dataset, the area informa-
tion dataset from The Danish Natural Environment Portal,
published by the Danish government.® This dataset contains
30 thousand high-fidelity administrative protection zone poly-
gons, ranging from small polygons the size of buildings to
large polygons the size of entire regions. The largest polygon
has more than 36 thousand vertices.

“http://openflights.org/data.html
Shttp://www.openstreetmap.org/
Shttp://internet. miljoeportal.dk/

We have tested the scalability of CVL using both point
and line datasets. A east-west unrolling approach is employed
for gradually increasing the size of a dataset. First, we order
records by x-coordinate, and then select increasingly larger
prefixes of this order to derive larger datasets. The advantage
of this approach over random sampling is that the spatial
density of records is better preserved.

TABLE 1
DATASETS USED IN EXPERIMENTS

Origin Dataset Type Records | Points
Real Airports Points TK TK
Real Tourism Points 500K 500K

Synthetic Fractal Points 30M 30M
Real US rivers Line segments 4K 2M
Real US rivers/streams | Line segments 30K 6M
Real Proctection zones Polygons 30K IM

Hardware, software, and methods. The machine used for
testing was an Amazon EC2 instance with 17GB RAM, 2
x Intel(R) Xeon(R) CPU E5-2665 0 @ 2.40GHz and 20MB
cache, running Amazon Linux 3.4.48-45.46.amznl.x86_64.7

The database used for testing was PostgreSQL 9.2.4 with
PostGIS 2.0 built against the libraries GDAL 1.9.2 and GEOS
3.3.8. For the LP solver, we integrated the database with
the convex optimization library CVXOPT version 1.1.6.3 We
installed Python language bindings in the database against
Python 2.6.8.

We ran each test three times on this installation, taking
averages. We observed that measurements were very stable,
with negligible difference in compute time between runs.

PostgreSQL always uses a single core to compute a trans-

action. Because the generalization process in CVL runs as a
single long transaction, each job in CVL runs on a single core.
A future direction would be to investigate parallel execution
of CVL queries using a different language runtime such as a
parallel database or a MapReduce environment.
Average optimality ratio. In our approach, we solve the
multi-scale selection problem as a series of selection optimiza-
tion problems. To get an indication of the solution quality,
we compute for every selection optimization problem a lower
bound using an LP-relaxation of the integer program. The
numbers we present in Table II and Table III include the
average ratio between our solution value and the corresponding
lower bound.

B. Point Data

In this section, we present experimental results with point
datasets, namely the Openflight airports and the tourism
datasets. We first discuss performance and quality for CVL
and then proceed to analyze CVL’s scalability behavior. Even
though we experimented with all combinations of solvers

7An image of the instance we used for testing is available through
Amazon EC2 as an AMI. More information is available on the website for
the project.

Shttp://cvxopt.org/
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Fig. 10. Performance breakdown by zoom level, Airport dataset (7K points). The black line indicates number of conflicts

(SGA / LPGA) and constraints (visibility / proximity / com-
bined), we show only representative results for brevity. Results
for the combined visibility and proximity constraints exhibited
the same performance trends as of the most expensive of the
two constraints. All other results followed similar trends as
the ones explored below.
Overall performance and quality. An overview of running
times and solution qualities for the point datasets are shown
in Table II. In Section V-A, we remarked that SGA is optimal
for disjoint conflict sets. This is confirmed by the entries for
visibility + SGA in the table. For the point datasets we used
for testing, the LPGA algorithm is also optimal or within 3%
of the optimum when combined with the visibility constraint,
likely caused by the conflict sets being disjoint. Recall that
the approximation guarantee of LPGA is f (see Section V-B).
In terms of quality, the difference between SGA and LPGA
is not stark for either constraint. The difference depends more
on the constraint than on the solver, with visibility generally
yielding the best solutions. However, the running time of SGA
can be substantially shorter than that of LPGA. We analyze
this effect in the following.

TABLE I
RESULTS FOR CVL ON POINT DATASETS GROUPED BY CONSTRAINT

Dataset Constraint | Solver Time Avg. opt. ratio
Airports (7K) Visibility SGA Ts 1.0
Airports (7K) Visibility LPGA 7s 1.03

Tourism (500K) Visibility SGA 6m 9s 1.0
Tourism (500K) Visibility LPGA | 13m 35s 1.0
Airports (7K) Proximity SGA 3s 1.18
Airports (7K) Proximity LPGA Ts's 1.22
Tourism (500K) Proximity SGA Tm 17s 1.21
Tourism (500K) Proximity LPGA 2h 18m 1.24

Performance breakdown. Figure 10 shows the performance
breakdown per zoom level of executing CVL with the Open-
flight airports dataset. Note the different y-scales in the graphs.
We have overlayed the number of conflicts per zoom-levels as
a black line. In Parts (a)-(c), we observe that the time needed
to find conflicts is roughly stable until eight zoom levels, then
slightly increases, and finally drops sharply for lower zoom
levels. The constraints used generate few conflicts at higher
zoom levels, given the relatively low density of the airport
distribution in space. Nevertheless, even though almost no

conflicts are generated, the dataset is still processed, resulting
in roughly equal time for finding conflicts and negligible time
for solving conflicts per zoom level.

As zoom levels decrease, more conflicts naturally arise,
leading initially to increased conflict finding time, as well
as conflict solving time. However, as conflicts are solved,
records are deleted from the dataset taken as input for the
next zoom level. This procedure causes conflict finding time
(and eventually total time) to drop significantly for low zoom
levels. For SGA under the proximity constraint (Part (a)), total
time at zoom level zero is over two times shorter than the
initial runtime at zoom level 17; for LPGA under the visibility
constraint (Part (b)), the difference in total time reaches over
an order of magnitude.

Conflict solving time does not increase equally for different
solvers. SGA exhibits conflict solving time that is consistently
smaller than LPGA. Peak total time for SGA under the
proximity constraint (Part (a)) is roughly four times shorter
than for LPGA (Part (c)). In addition, LPGA is extremely
sensitive to the number of conflicts reported by user-defined
constraints. From Parts (b) and (c), we can see that LPGA
exhibits peak conflict solving time over three times larger for
the proximity constraint than for the visibility constraint, since
the latter generates far fewer conflicts than the former.

Figure 11 exhibits results with the larger tourism attraction
dataset. Since the dataset is denser in space than the airport
dataset, conflicts are found and solved at higher zoom levels,
resulting in an earlier drop in total time per zoom level. For
Parts (a)-(c), total time is uninteresting for zoom levels lower
than five. The same cannot be said, however, about peak total
time in general, and about conflict solving time in particular.

Parts (a) and (b) compare performance of SGA and LPGA
under the visibility constraint. Even though visibility generates
a smaller number of conflicts than proximity, peak total time
for LPGA is still roughly a factor of four larger than for SGA
(see zoom level 11). Note that the difference is completely due
to the efficiency of the solver, since the time to find conflicts
is essentially the same for both methods. Total time for LPGA
rises prohibitively when we employ the proximity constraint,
reaching a baffling peak of near half an hour at zoom level
10 (Part (c)). While not shown, total times per zoom level for
SGA under the proximity constraint are roughly comparable
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to the times reported in Part (a) for the visibility constraint
using this dataset. SGA’s peak total time is slightly above 40
seconds, roughly a factor of 40 smaller than LPGA’s.

In summary, and as discussed in Section V-A, SGA per-
forms significantly better than LPGA, but it does not do so at
the cost of quality, at least for point datasets.

Scalability. We tested the scalability of CVL by varying the
size of the synthetic dataset of 30 million points, starting
with one thousand records, and tested by iteratively doubling
up until we reached roughly four million records. We scaled
the dataset with the sweep-line approach introduced in Sec-
tion VII-A. We plot the running time of each solver/constraint
combination for different dataset sizes in Figure 12.

In general, SGA scales far better than LPGA with the
number of objects, confirming the observations from the
performance breakdown above. After reaching four million
points the running time became prohibitively large (more than
3 hours) even for SGA. Up to this point, the algorithm scales
roughly linearly. The running time of the solvers depends on
the number of conflicts, as well as on the structure of the con-
flicts. It is easy to see that after the first zoom-level, the number
of conflicts is bounded by a constant that is proportional either
to the number of records (for the proximity constraint) or the
number of cells (for the visibility constraint). For the proximity
constraint, the number of conflicts is bounded due to circle
packing. For the visibility constraint, each cell can contain
at most 64 records for K = 16, after the first zoom-level
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is processed. This is because each cell contains only records
from four cells on the previous (higher) zoom-level, each of
which contains only 16 records.

C. Complex Shape Data

Overall performance and quality. In Table III we summarize
running times and average optimality ratios for complex shape
data. We immediately observe that LPGA is now consistently
better than SGA with regard to solution quality. This is in
contrast to what we saw for points. We believe the cause to
be that the conflict sets are no longer disjoint, and SGA suffers
from this.

TABLE III
RESULTS FOR CVL ON COMPLEX DATASETS GROUPED BY CONSTRAINT
Dataset Constraint | Solver Time Avg. opt. ratio
Rivers (4K) Visibility SGA 1h 32m 1.36
Rivers (4K) Visibility LPGA 1h 33m 1.0
Zones (30K) Visibility SGA 13m 38s 1.20
Zones (30K) Visibility LPGA 32m 15s 1.14
Rivers (4K) Proximity SGA lh 11m s 1.46
Rivers (4K) Proximity LPGA 1h 31m 1.11
Zones (30K) Proximity SGA 4h 28m 1.72
Zones (30K) Proximity LPGA — —

Performance breakdown. In Figure 13, we show three
performance breakdowns for the Rivers dataset. We make
two observations. First, the running time is now completely
dominated by finding conflicts. This is because the complexity
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of finding conflicts depends on the fidelity of the geometries
that are compared. Parts (a)-(c) illustrate the effect in more
detail, with Part (a) in particular showing the breakdown of
a solution with an average optimality ratio of 1.0. We see
that for complex shape datasets, the running time is mostly
dominated by the time spent finding conflicts. Since finding
conflicts operates over the geometric properties of the data,
it requires time proportional at least to the number of points
that make up each complex shape. When solving conflicts,
the running time is independent of geometric complexity.
Interestingly, the time necessary to find conflicts is so high
that it shadows the negative effect that a larger number of
conflicts has on the conflict resolution time of LPGA (compare
with Section VII-B).

Scalability. In Figure 12(b), we show scalability results for
complex shape data. Here scalability depends more on the
choice of constraint than on the choice of solver. The proximity
constraint scales much worse than the visibility constraint with
the number of objects. This is because the running time of the
distance test used in the proximity constraint is proportional
to the product of point counts in the two geometric shapes
used in each comparison. In contrast, evaluating the visibility
constraint depends on the number of tiles that each shape
intersects, which depends more on the length or area of each
shape.

While constraints matter more to scalability for complex
shapes than for point data, the SGA solver scales better than
LPGA with number of objects, which was also the case for
the point datasets examined in Section VII-B.

VIII. RELATED WORK

Cartographic generalization is a classic topic of inves-
tigation in the GIS community, and several models have
been developed for generalization operations [15]. While the
problem has been considered by some as Al complete [25],
recent work has focused on automatic map generalization
based on optimization models or queries for filtering [1], [2].
This reduction in scope reflects the need of providing a wide
variety of web-accessible maps summarizing ever increasing
amounts of geospatial datasets. Our work provides support for
the same trend.

The optimization approach of Das Sarma et al. [1] is
the most related to our work. In contrast to our approach,
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however, Das Sarma et al. do not provide a flexible declarative
interface for user-defined constraints, nor does their approach
leverage SQL. In addition, it is hard to integrate their approach
with existing geospatial data serving infrastructures, which are
mostly based on standard spatial database technology.

User-defined constraints and declarative specifications have
been shown to yield elegant solutions to a variety of problems
in data management, including record deduplication [26],
database testing [27], [28], as well as cloud and networking
resource optimization [29]. Our work brings these ideas to
the context of map generalization and geospatial data, and
as mentioned previously, is among the first frameworks to
implement the vision of reverse data management [18].

In-database processing has also been explored successfully
in diverse contexts in the literature. Translation of high-level
languages, such as XQuery or LINQ, to SQL lead to highly
scalable and efficient implementations [23], [24]. A number of
recent approaches have targeted expressing complex statistical
analytics in SQL [30], [31]. In contrast, we show how in-
database processing can be used in the implementation of a
declarative language for map generalization which includes
solvers and constraints, leveraging the trend to incorporate
whole programming language interpreters and support for
spatial data structures in database engines [32].

Our approach dovetails with a number of techniques from
the literature, which hold potential to further extend or comple-
ment it. First, we observe that the running time of the LP-based
greedy algorithm (LPGA) is generally high. We implemented
this algorithm because it provides a theoretical bound on
the solution quality. We plan to explore other algorithms
for set multicover, such as the greedy algorithm described
by Rajagopalan and Vazirani [12], to improve running time
compared to the LP-based greedy algorithm, while achieving
good quality. An interesting challenge is how to express such
algorithms entirely in SQL.

Second, this work considers only selection of objects. An
important extension is to allow other data reduction operations,
such as geometric transformation and aggregation of objects.
While we believe that CVL could be adapted to these ad-
ditional requirements, this would imply modeling alternative
semantics and procedures for satisfying constraints in our
framework.



Third, we would like to experiment with geospatially-aware
parallel processing infrastructures, such as Hadoop-GIS [33],
for even further scalability in computing map generalizations.
Finally, once a map generalization is complete, the resulting
map must be served to end-users. This problem is orthogonal
to our work, and classic linearization techniques can be
applied [11]. All of these are interesting avenues for future
work.

IX. CONCLUSION

In this paper, we present a novel declarative approach to the
data reduction problem in map generalization. The proposed
approach integrates seamlessly with existing database tech-
nology, and allows users to specify, using the proposed CVL
language, and across all scales, what goals and constraints the
generated map should fulfill — leaving the detailed selection
decisions to the system. The system leverages an algorithmic
mapping which enables at the same time user-defined con-
straints and reuse of methods from the optimization literature.
Our experiments show that the approach performs well for
off-line processing and produces maps of high quality.
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