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ABSTRACT
Public geospatial services are now commonly available on
the Web. These services often render maps to users by di-
viding the maps into tiles. Given that geospatial services ex-
perience significant user load, it is desirable to pre-compute
tiles at a time of low load in order to increase overall perfor-
mance. Based on our analysis of the request log of a public
geospatial service provider, we observe that times of low
load occur with a periodic pattern. In addition, our analysis
shows that tile access patterns exhibit strong spatial skew.

Based on these observations, we propose an adaptive
strategy restricting the set of tiles that are pre-computed
to fit the low load time window. Ideally, the restricted tile
set should deliver performance comparable to the full tile
set. To achieve this result, tiles should be selected based on
their expected popularity. Our key observation is that the
popularity of a tile can be estimated by analyzing the tiles
that users have previously requested. Our adaptive strat-
egy constructs heatmaps of previous requests and uses this
information to decide which tiles to pre-compute. We ex-
amine two alternative heuristics, one of which exploits that
nearby tiles have a high likelihood of having similar popu-
larity. We evaluate our methods against a real production
workload, and observe that the latter heuristic achieves a
25% increase in the hit ratio compared to current methods,
without pre-computing a larger set of tiles.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
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Algorithms, Performance
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1. INTRODUCTION
Today geospatial web services are widely deployed on the

web. A significant subset of these services can be queried
using bounding box requests to retrieve geospatial data, ei-
ther in raster or vector form, within a region. The classic
example of such a service is Web Map Service (WMS). In
WMS, results are typically computed on-the-fly by pulling
data from a geospatial database. This strategy has the ad-
vantage that results are always up-to-date and it thus offers
a great degree of flexibility and accuracy to clients of the
service. At a high level, we can think of the service as ap-
plying a rendering function to a set of matched base data to
produce, e.g., a map image.

Services that apply rendering functions in response to
bounding box requests are often CPU- and I/O-intensive,
with relatively high latency as a consequence. This is a
problem because geospatial services are typically used inter-
actively, and latency in excess of a few hundreds of millisec-
onds becomes noticeable. Even if the computation is not
very expensive, the infrastructure available might not scale
to many simultaneous users if data is to be computed on de-
mand. We know from our studies of government production
services that may use as much as 30 seconds to compute a
256 x 256 pixel map image, which severely lowers the value
of the service in an interactive scenario. On the other hand,
limiting the use of GIS to working exclusively with results
that can be computed fast is not always possible. While the
issue of high latency can to a certain degree be dealt with
by scaling up or out, such solutions do not come without a
cost, e.g. increased power consumption and hardware costs.
Instead of simply adding more resources, better algorithms
can be developed to deal with high latency.

Real-world workloads contain significant amounts of re-
peated requests and often a strong skew in what is re-
quested [8, 27]. This offers an opportunity to replay the
results of previous computations by placing geospatial re-
sults in a cache. A common approach to representing a set
of geospatial results at multiple resolutions is to use a tiling
scheme that divides a geographical data set into a hierarchi-
cal and finite set of tiles [6]. Unfortunately, the drawback
of this approach is that the set of tiles is potentially very
large [9], as the number of tiles is exponential in the number
of supported resolutions. It is common to fix the number
of resolutions when dealing with tiles, and thus we assume
a fixed set of resolutions. Even then, the sheer number of
tiles makes computing and storing all of them difficult to
manage.

Two primary approaches have been suggested for dealing



with the delivery of tiles to clients: online and off-line. The
online approach attempts to mask the latency of computing
tiles on-demand for a single user, by prefetching tiles based
on predictions of future accesses given the user’s current
view state [13, 14, 16]. The off-line approach is to materialize
a large but polynomial number of tiles in advance that is
expected to cover to the majority of user request in the near
future. It is assumed that serving the materialized tiles from
a cache will be less CPU- and I/O-intensive than computing
them on demand. The main problem then becomes selecting
a good set of tiles.

A drawback of the online approach is that although pre-
fetching theoretically masks latency for a single user, it does
not by itself decrease global concurrency, as tiles are still
computed on demand. We speculate that this approach
could even increase the average latency if view states are
mispredicted. A drawback of materializing a set of tiles of-
fline is that the tiles might not be up-to-date by the time
they are requested, but this can be solved by invalidating
the stale tiles. We will focus on the latter off-line approach
in our work.

The off-line approach takes a global view of the problem,
and aims at predicting a “good” set of tiles, i.e., a set con-
taining tiles that are likely to be requested by many users in
the near future. We argue that these tiles should be mate-
rialized during a window of low load. This strategy avoids
impacting latency negatively in the high load period, but
holds the potential to reduce average latency because of pre-
computation.

Methods in the literature use rule-based algorithms to se-
lect which tiles should be materialized ahead of time [24].
The rules are based on a priori knowledge of user behav-
ior, so a drawback of these methods is that the rules do not
adapt to changes in user behavior over time. In addition,
rule-based methods are hard to adapt to shorter time win-
dows of low load. As they offer only limited insight over
which tiles are the most relevant among the tiles selected by
the rules, it is hard to choose a good subset of tiles to be
materialized under a time constraint.

In this paper, we present an adaptive tile selection
method, TileHeat, which suffers significantly less from these
drawbacks. TileHeat is based on a posteriori knowledge of
user behavior gathered from historical usage of the geospa-
tial web service. We investigate algorithms that predict the
set of tiles that will be requested in time period t + 1,
and that are trained using a log of requests for periods
t − n, t − n + 1, . . . , t. Our algorithms construct a set of n
spatial heatmaps of requests, one for each time period, and
use these to predict future requests. To avoid over-fitting the
model to the training data, we use both exponential smooth-
ing and heat dissipation on the constructed heatmaps. The
output of our algorithms is a ranking of tiles based on pre-
dicted likelihood of access for the next time period. As such,
the number of tiles to be pre-computed can be chosen ac-
cording to the available time window of low load.

Outline and Contributions. Our paper starts with a dis-
cussion of existing methodologies for tile caching (Section 2).
Then the main contributions of the paper follow:

• We analyze a sample from the production log of The
Digital Map Supply, a production geospatial web ser-
vice maintained by the National Survey and Cadastre
(KMS) in Denmark. In Section 3, we present our key
observations of the workload, e.g., that the load curve
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Figure 1: Tile pyramid with three levels z = {1, 2, 3}
shown. Level z = 1 has dimensions (1, 1). Figure is
reproduced from [24].

follows a pattern with high load in the middle of the
day, and low load in the rest of the day, and that the
spatial distribution of requests is very stable over time.

• We present the general framework of TileHeat, and
propose a set of algorithms for ranking tiles. The al-
gorithms exploit the properties we have discovered in
the analysis, namely by tracking and predicting the
spatial distribution of requests using heatmaps (Sec-
tion 4).

• We present an experimental evaluation of the effec-
tiveness of TileHeat. We observe an improvement of
25% over the existing method used in the production
system of KMS for a set of tiles that can be mate-
rialized during an observed time window of low load
(Section 5).

We end the paper by reviewing additional related work (Sec-
tion 6).

2. BACKGROUND
A tile cache is a widely used method for dealing with the

bad performance of services that render results from base
data on-the-fly, such as WMS and similar services. In the
following, we discuss the main concepts (Sections 2.1 to 2.3)
and existing methods (Section 2.4) in tile caching.

2.1 The Tile Pyramid
Tile caches are based on a model called a tile pyramid,

which subdivides a geographical region into a finite number
of subregions using a set of l grids [6]. In Figure 1, a tile
pyramid with three levels is shown. The cells of the grids
are called tiles, and tiles are indexed by a triple (i, j, z). In
this triple z identifies a grid, while i and j represent the row
and column in the grid where the tile is located. Each grid
is associated with a data set at a particular resolution in
meters per pixel. Tiles thus correspond to data at a given
resolution, and within a bounding box.

When a tile cache is initialized, all tiles point to null. A
tile is materialized by making it point to geographical data



stored on disk. The geographical data is rendered from a set
of base objects, and if the base objects are updated the tile
becomes stale. Stale tiles are removed to avoid serving stale
data to clients.

One shortcoming of tile caches is that the number of tiles
is exponential in l, with grid i + 1 containing four times as
many tiles as grid i. This means that a tile cache consumes
O(4l) in storage, and O(4l) time is required to materialize all
tiles. A pyramid of l = 20 levels requires several petabytes
of storage [9]. The throughput of computing tiles has been
reported by KMS to be around 58 tiles per second on their
infrastructure [18]. At this rate of computing tiles, it would
take approximately 200 years to compute the 3.7×1011 tiles
needed [9].

2.2 Processing user requests
We abstract user requests to a geospatial web service by

two functions: GET and PUT. GET retrieves a tile from a web
service, while PUT updates the base data from which tiles are
computed. Pseudocode for processing GET and PUT requests
are given in Figure 2.

function GET(i,j,z)
if tile[i, j, z] �= nil then

return tile[i, j, z]
else

tile[i, j, z]← render(i, j, z)
return tile[i, j, z]

end if
end function

function PUT(basedata)
tiles← affected-by(basedata)
for all tile ∈ tiles do

invalidate(tile)
end for
store(basedata)

end function
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Figure 2: Processing a GET request: If the tile is
materialized, it is returned. Otherwise it is ren-
dered, stored and returned. Processing a PUT re-
quest: When base data is updated, the set of tiles
that is affected by the change needs to be invali-
dated.

An invariant maintained by the above functions is that
stale tiles are never returned to the user. However, one im-
plementation difficulty typically encountered in practice is
that the method for determining the set of tiles that are af-
fected by an update to the base data is not entirely accurate,
i.e., a conservative estimate is used in function AFFECTED-BY.
This means that sometimes tiles are unnecessarily discarded.

A bounding box request, such as a WMS request, can
easily be modeled as a set of GET requests by computing the
set of tiles that are intersected inside the nearest grid of the
tile pyramid. By nearest, we mean the grid that contains
tiles with a resolution that best matches the resolution of
the bounding box request. Note that these multiple GET

requests must be processed against a consistent snapshot.

2.3 The Heatmap model
Given a set of GET requests, we can generate a heatmap

of the requests [8]. A heatmap quantifies the number of
requests ht

i,j,z that a tile with index (i, j, z) has received in
time period t. We consider multi-scale heatmaps, which are
associated with a tile pyramid. In this work, we only use
heatmaps to measure the number of GET requests per tile,
but other request types could also be tracked with heatmaps.
For example, we could generate heatmaps of INVALIDATE

requests, but this is outside the scope of our work.

2.4 Existing Methods
This section covers existing methods for computing and

storing a set of tiles for a tile cache.

Parallel processing. Clearly, we need techniques to speed
the computation of a tile cache up, given that the number
of tiles in a tile pyramid is huge. Using a parallel program-
ming model such as MapReduce [7] could reduce compu-
tation time of a tile cache by a large factor, but it would
require a significant number of machines. In other words,
parallelism improves time-to-solution, but does not reduce
the amount of resources necessary for the computation. For
organizations such as KMS, this high resource cost renders
the use of brute-force parallelism unfeasible. A solution is
called for to reduce the number of tiles that needs to be com-
puted — which could then be orthogonally combined with
parallelism if available.

Detecting duplicates. A method that reduces storage re-
quirements is to exploit that many tiles are identical, e.g.,
blue ocean tiles [20]. Unfortunately, this solution does not
necessarily reduce computation time, given that tiles often
must be computed in order to check that they are duplicates.
Heuristics have been suggested to predict these duplicated
tiles without full computation, but it is unfortunately not
easy to decide with absolute certainty [20]. We do not know
of any published methods that accurately and efficiently pre-
dict whether two tiles are the same in the general case with-
out actually computing them, because arbitrary rendering
functions are employed.

Tile Caching based on Geometries. A number of au-
thors have suggested methods for predicting the popular-
ity of tiles. Quinn and Gahegan [24] suggest using certain
classes of base objects, like roads and coastlines, as predic-
tors of where people will look at a map. Tiles that are at
most 3 miles away from the selected predictors are cached.
Conceptually, this approach is based on a model of rational
user behavior with fixed rules, and historical workloads are
used only to validate the model.

GEOM. KMS currently uses a simplified version of the ap-
proach above, which we term GEOM. A set of polygons that
roughly cover the land areas of Denmark are used to iden-
tify the areas that should be fully materialized at all levels
of the tile pyramid (levels 1 to 12). Areas outside of these
polygons are only materialized at the top-most levels of the
tile pyramid (levels 1 to 6) [18]. The resulting partial cache
is manageable in size, as roughly 10% of the tile pyramid
is materialized. However, the computation time is reported
to be between 1.5 and 2 days. Tiles are generated by go-
ing row-by-row down the levels of the tile pyramid. This
is significantly better than random selection, as the highly
popular tiles near the top of the pyramid are generated early.



Figure 3: Average load per hour for each day of the
week.

3. ANALYSIS
In this section, we analyze the request log of a production

geospatial web service within KMS, and observe a number
of interesting patterns. The service we examine is the most
popular web service of the The Digital Map Supply, a WMS
that receives around 800,000 requests per day, and delivers a
general purpose background map of Denmark. We report on
both temporal (Section 3.1) and spatial (Section 3.2) char-
acteristics of the workload.

3.1 Temporal characteristics of workload
Using a random sample of 90,000 WMS requests from the

log, we analyze the workload over time. We have found the
following when examining requests processed per second:

• The load is consistently higher during the middle part
of the day, than during other parts of the day.

• The 24-hour load curves for any two weekdays are very
similar.

• The 24-hour load curves for Saturdays and Sundays
are very similar.

• In general, the load is much higher during weekdays,
compared to weekends.

These patterns are shown in Figure 3, where we display
the average 24-hour load curve for each day of the week.
The curve is generated as an average of all weeks in the log.

We have also looked at the effect of load on latency. In
Figure 4, we plot, side-by-side, the average load and latency
curves for a 24-hour period. We observe the following:

• Load and latency are highly correlated, especially dur-
ing the periods of high load.

• The latency effectively doubles when the load is high.

• Given that weekdays have higher load than weekends,
the degradation of latency is most severe in the middle
of the day, on weekdays.

Figure 4: The correlation between average load
(blue) and average latency (green) for 24-hour pe-
riod.

Figure 5: Generally stable load, with an anomaly in
week 49. The load almost doubles on the first day
of week 49. The red line is the average load.

Our hypothesis is that the increase in latency is caused
by increased concurrency and queueing in the system. We
have also tested the stability of the load pattern over time
by plotting the load for each day over a longer period within
the last quarter of 2011. The load patterns can be seen in
Figure 5. We observe that in general the load curve is very
consistent from one weekday to the next, and one week to
the next, but anomalies do occur. During week 49 of the
last quarter of 2011, the number of requests suddenly dou-
bles. While it is not easy to know what caused such a load
spike, it is interesting to ask whether the spike affects the
spatial distribution of requests. We examine this question
in Section 3.2.

3.2 Spatial characteristics of workload
Using heatmaps we have investigated the spatial distribu-

tion of requests. We have selected a large number of week-
days, and extracted a full log for these days. The number of
log records is significant, with more than 800,000 requests



Figure 6: Heatmap of spatial distribution of re-
quests for four consecutive days (resolution 3.2 me-
ter/pixel). The spatial distribution is similar but
not equal. The day in the lower right corner is the
day with very high load identified in Figure 5.

received per day. In Figure 6, we show heatmaps for four
of these days. We observe that the spatial distribution of
requests is quite similar across days. We observe a similar
pattern on other days from the log that we have examined.

Given the anomaly in requests per second that we noted in
Figure 5, we wanted to investigate if the spatial distribution
of requests was different for days of increased load compared
to normal days. The lower right part of Figure 6 shows a
heatmap for the day with unusually high load. The spatial
distribution is slightly different compared to the other three
heatmaps, but still very similar. The data indicates that
the spatial distribution of requests is similar for weekdays,
and largely independent of fluctuations in load. Using the
notation we defined for heatmaps this means that

ht
i,j,z ≈ ht+1

i,j,z

We observe that the frequency of tile access is highly
skewed; other studies have concluded the same, namely that
the spatial distribution of GET requests follows a power law
[8, 27]. We also observe that the skew increases with resolu-
tion, i.e., with levels of the tile pyramid that contain more
tiles.

In general, this means that the set of tiles needed for a
tile cache with a high hit ratio is smaller than one might
expect. The main goal of our work and the algorithms we
have developed is to explore how small such a cache can be,
while still delivering high hit ratios on user requests.

4. TILEHEAT FRAMEWORK
In this section, we present the TileHeat framework for

selecting and caching tiles. We begin with an overview of
the framework and the context it is used in (Sections 4.1
and 4.2), followed by two different algorithms for tile ranking
(Sections 4.3 and 4.4).

Low-load
window

Normal processing + TileHeat

High-load
window

Normal processing

1

Figure 7: Time periods and time windows: Process-
ing during high- and low-load windows.

4.1 Overview
Based on our observations of the workload in Section 3, we

have designed the TileHeat framework for a repeated cycle of
time periods containing a high- and low-load window. This
basic cycle is outlined in Figure 7.

The life cycle of a system that uses TileHeat to manage
tiles is as follows: We organize processing in TileHeat into
a sequence of time periods. Each time period is composed
of two time windows: the high-load window and the low-
load window. Throughout both windows, the geospatial web
service is available for clients and therefore must carry out
normal processing of user requests, i.e., GET and PUT. During
the low load window, however, we can additionally select and
pre-compute tiles that we expect to be accessed during the
next time window, based on access patterns observed for
previous time periods. In the following, we describe how we
carry out the selection and pre-computation of tiles.

4.2 Tasks performed by TileHeat
TileHeat is a framework for embedding tile selection al-

gorithms into a log analysis procedure. The log analysis
procedure computes a set of n heatmaps, and passes these
to tile selection. Tile selection in turn employs a predic-
tion algorithm, which predicts the heatmap for time t + 1.
TileHeat uses the predicted heatmap to select which tiles to
materialize for the next high-load window.

The following steps are performed in time period t+ 1 by
the TileHeat framework:

1. A prediction algorithm uses heatmaps for time periods
t−n to t to predict the heatmap for time period t+ 1.

2. The tiles in the predicted heatmap are sorted in non-
increasing order by heat.

3. The k first tiles that are not already materialized are
selected.

4. The materialization of the k tiles is scheduled.

The number k is chosen as the number of tiles that can be
materialized during the current low-load window. Various
algorithms can be used to predict the heatmap for t+ 1. In
this work, we present two algorithms for the TileHeat frame-
work: HEAT-HW (Section 4.3) and HEAT-D (Section 4.4).

The running time of TileHeat can be estimated as follows.
Let m be the number of requests in the request log for time
periods t − n to t. We assume that the number of GET

requests for each log request is bounded by a constant. The
number of tile requests is therefore O(m). By using a hash
table, we can build the heatmaps in (expected) O(m) time.
As the sorting step takes at most O(m) tiles as input, the
(expected) running time of TileHeat is O(m logm) — plus
the running time of the prediction algorithm.



4.3 HEAT-HW algorithm
We have developed the HEAT-HW algorithm, which uses

exponential smoothing applied to the heatmaps for time pe-
riods t − n to t. Specifically, we use Holt-Winter double
exponential smoothing [2], which takes the trend of the ob-
served variable into account. We motivate our choice of
smoothing function in two ways:

1. We apply a smoothing function in general to avoid
overfitting to the training data. Although the data we
have analyzed is very stable, we introduce smoothing
to prepare the algorithm for less stable workloads.

2. We use Holt-Winter smoothing in particular because
it captures the trend in popularity for each tile. In
future work, we would like to make use of the trend
to adapt proactively to sudden rises in popularity for
a geographical subregion by increasing the number of
nodes serving those tiles. This of course implies a
multi-node cache.

Exponential smoothing is applied by treating each heat
tile index (i, j, z) as a separate variable. The equations for
double exponential smoothing for heatmaps are given below
(assuming that the first time period is 0).

s0i,j,z = h0
i,j,z

b0i,j,z = h1
i,j,z − h0

i,j,z

st+1
i,j,z = αh0

i,j,z + (1− α)(sti,j,z + bti,j,z)

bt+1
i,j,z = β(st+1

i,j,z − s
t
i,j,z) + (1− β)bti,j,z

As defined in Section 2.3, ht
i,j,z is the observed heat of tile

(i, j, z) in time period t; sti,j,z is the smoothed value for time
t and bti,j,z is the trend for time t. Parameters α and β are
determined experimentally.

4.4 HEAT-D algorithm
The exponential smoothing as used in HEAT-HW only

ranks tiles that are actually requested in the training data.
Often, the training data is sparse, or tiles that are not ac-
cessed in the time periods t − n to t get accessed in time
t+ 1, due to local changes in the spatial distribution of tile
requests.

HEAT-D is inspired by Tobler’s first law of geography:
“Everything is related to everything else, but near things
are more related than distant things”. HEAT-D works by
applying a dissipation step to all heatmaps prior to applying
Holt-Winter double exponential smoothing. The dissipation
step is similar to the Jacobi method used for numerically
solving the heat equation [1].

The following steps are performed by HEAT-D:

1. For each heatmap of time periods t − n to t, apply p
iterations of the dissipation step. An iteration consists
of moving a fraction of the heat of each cell (i, j, z)
to its eight neighbors. This fraction is controlled by a
dissipation constant µ. The corresponding differences
in heat applied to each cell are shown in Figure 8.

2. Apply HEAT-HW over the heatmaps obtained in the
step above.

The result of running dissipation on a sparse sample set
can be seen in Figure 9.

+µ 1
8 hi,j,z +µ 1

8 hi,j,z +µ 1
8 hi,j,z

+µ 1
8 hi,j,z −(1 − µ)hi,j,z +µ 1

8 hi,j,z

+µ 1
8 hi,j,z +µ 1

8 hi,j,z +µ 1
8 hi,j,z

Figure 8: Each dissipation step transfers heat from a
center cell to each of it’s eight neighbors. The center
cell (i, j, z) loses (1 − µ)hi,j,z heat, and the neighbors
gain µ 1

8
h(i, j, z) heat. This is repeated for all center

cells that are not on the border of the heatmap, us-
ing double buffering to avoid prematurely updating
the heat of a cell.

5. EXPERIMENTS
The goal of our experiments is to show the improvements

that can be gained by TileHeat in real production workloads.
We first describe our experimental setup (Section 5.1) and
then present results (Section 5.2).

5.1 Experimental setup
Here we describe how we have executed the experimental

evaluation of our algorithms using a production request log
extracted from KMS. Due to constraints in both time and
access to the production system, we have not actually ma-
terialized the tiles selected by our methods, so we could not
measure the effect this would have on latency in a production
environment. Assuming, however, that serving tiles from
cache is much more CPU- and I/O-efficient than computing
on demand, we believe that the effect would be significant,
given the high hit ratios we are able to achieve (Section 5.2).

5.1.1 Datasets
To validate the algorithms we have developed, we have

extracted six datasets from the KMS request log for the
last quarter of 2011. The method we used was to randomly
select six weekdays, and for each of these days, select the
n previous weekdays to be used as training data. We use
n = 3.

The size of the log of requests for each weekday is sub-
stantial, with over 800,000 WMS requests per day, which we
translate into GET requests.

5.1.2 Methodology
This section describes our experimental methodology.

The algorithms we have tested are:

• OPT: the optimal algorithm, which builds a heatmap



Figure 9: Result of running the dissipation algorithm on a sparse heatmap (left) which contains 1.25% of the
samples used to create the heatmaps of Figure 6. The result (right) covers the hot regions of the heatmaps
in Figure 6 much better.

of the workload used for the validation, and uses this
heatmap to select the tiles.

• GEOM: the method currently employed by KMS, de-
scribed in Section 2.4.

• HEAT-HW: our heatmap method with Holt-Winter
double exponential smoothing, described in Sec-
tion 4.3. For HEAT-HW, the best set of parameters
we could devise was α = 0.2 and β = 0.1.

• HEAT-D: our heatmap method extended with dissi-
pation, described in Section 4.4. For HEAT-D, we
set µ = 0.05. The number of iterations p is cali-
brated according to the resolution of the heatmap be-
ing dissipated. Given a scale factor s, we set p =
s × (#rows + #columns)/2. The intuition is that
heatmaps with higher resolution need more iterations
of the dissipation step in order to cover enough geo-
graphical area. We set s = 0.002.

The methodology we have developed to test the algo-
rithms consists of playing back the production request log,
both to train the algorithms, and to validate their perfor-
mance. The outline of the method is as follows:

1. Pick a random day t.

2. Compute n heatmaps for the n consecutive days lead-
ing up to and including t.

3. Compute the actual heatmap for day t + 1 from the
data.

4. Normalize the cells of the actual heatmap for day t+1
by the sum of heat for all cells. Now, each cell in the
actual heatmap contains the fraction of the hit ratio
contributed by the corresponding tile for day t+ 1.

5. Calculate the tile ranking for the OPT algorithm by
sorting tiles according to normalized heat contained in
the actual heatmap.

6. For each of the other algorithms, obtain the corre-
sponding tile ranking for day t+1, and measure the hit
ratio by cumulating normalized heat from the actual
heatmap.

Our results show averages of the hit ratios obtained by
running the algorithms against each of the six datasets, re-
calling that a dataset consists of three days used to train the
algorithms, and one day used to validate the performance of
the algorithm.

5.2 Results
In Figure 10, we show the average hit ratios obtained by

the algorithms we have developed for TileHeat, using the
datasets described in Section 5.1.1. The figure shows the
hit ratio of the first three million tiles that are selected by
the algorithms. A full materialization contains more than
ten million tiles. OPT, however, has a 100% hit ratio after
selecting 500,000 tiles.

As mentioned previously, the throughput of materializing
tiles has been measured by KMS to be 58 tiles per second on
their infrastructure. A time window of 7.2 hours fits inside
the low load time period from 10 PM to 6 AM. During this
window, we can compute 1.5 million tiles. Within this tile
budget, our best algorithm, HEAT-D, achieves a hit ratio of
95%. GEOM achieves a hit ratio of 76% within the same
tile budget. The hit ratio of HEAT-D is thus 25% better
than GEOM for this tile budget.

In general, we see that our algorithms rise significantly
faster towards high hit ratios for small sets of tiles, e.g., in
the 500,000 tile range. It is also clear that HEAT-D outper-
forms HEAT-HW after 500,000 tiles, and overall dominates
HEAT-HW. This is because HEAT-D ranks more tiles than
HEAT-HW, i.e., by ranking tiles that are not requested in
the training workloads. We conclude that the additional
tiles boost the hit ratio significantly, which confirms our hy-
pothesis that tiles that are near to each other have similar
access frequencies.



Figure 10: The performance of tile selection algorithms for the first 3 million tiles selected, using three days
of training data. The result is averaged over several runs using different data sets.

At around 2.6 million tiles, GEOM overtakes HEAT-D,
and becomes optimal. A peculiar effect of GEOM is a stair-
case effect that can be seen in Figure 10. We believe that
this is an artifact of the way GEOM selects tiles — selecting
row-by-row the tiles that intersect the geometries provided.
At certain latitudes, the rows cross over highly popular ar-
eas like the capital of Denmark, Copenhagen. The city of
Copenhagen is clearly visible as a high-heat, dark area in the
right side of each of the heatmaps shown in Figure 6. There
are several steps in the staircase, as this effect is repeated
at higher resolutions.

6. RELATED WORK
Caching of dynamic web content has been extensively

studied in a number of contexts [5, 10, 11, 15, 19, 22].
A major issue investigated by these proposals is the pol-
icy used to keep the cache up-to-date. For example, Guo et
al. [11] propose a set of declarative constraints that specify
presence, consistency, completeness, and currency of cached
content. Garrod et al. [10] explore how to take advantage
of multiple cache servers while maintaining consistency. In
contrast, our workload analysis shows that the main chal-
lenge for a geographical web service is the computational
expense of the refresh procedure of the tile cache, rather
than the freshness of relatively slowly updated map data.
In this sense, our approach can be seen as similar to peri-
odically refreshing a materialized view. This “view” delivers
the tile pyramid based on the underlying geographical data;
however, it is both spatial and includes external user-defined
functions to compute tile content. While similar in spirit to
the materialized-view approach of MTCache [15], the addi-
tional complexities of our domain render the problem harder
in several ways: First, not all of the view definition is avail-
able to the system, making it more difficult to predict which
tiles are affected by which data and recompute selectively.
Second, only portions of the view are of interest to end users,
due to skew in access patterns, and it is not obvious how to
define which portions are interesting ahead of time. Third,
computation of tiles is a very resource-intensive user-defined

function, making even a partial refresh of the spatial cache
costly.

Our work can also be seen as a self-tuning approach to
managing a tile web cache [3]. Similarly to online self-
tuning approaches, such as COLT [26] and the seminal
COMFORT [28] project, TileHeat operates on a feedback
loop, collecting workload characteristics, performing reason-
ing for choosing a new system configuration, and introducing
configuration changes as necessary. However, our work dif-
fers in both the characterization of the problem as well as
in the design choices we make for each step of our feedback
loop. In particular, our choices are motivated by a careful
analysis of the production log of a country-wide geographical
web service.

Adaptive algorithms have been studied for the clas-
sic buffer cache replacement problem, including 2Q [12],
ARC [21], and LRU-K [23]. Our work, however, is focused
on the different scenario of spatial web caching, in which tiles
are materialized in advance of processing the workload. As
in semantic caching [4], we exploit application characteristics
to decide what data to cache and update. In contrast to se-
mantic caching, we exploit spatial properties for higher web
cache hit ratios, such as with our heat dissipation method.

The basic idea of using heat to measure popularity of data
items arises naturally in applications with skewed access pat-
terns. For example, Scheuermann et al. [25] propose schemes
for data placement and adaptive load balancing that ”cool”
disks by redistributing file fragments. In spatial services
more specifically, many researchers have observed that there
is a strong skew in the access frequencies of tiles, and that
this skew follows a power law [8, 17, 27]. Li et al. [17] exploit
skew to create a pre-fetching model of spatial tiles, with fo-
cus on predicting short-term user navigation. Their work
is based on a substantial body of related short-term predic-
tion approaches [13, 14, 16]. These methods are optimized
for pre-fetching tiles seconds before they are requested by a
user. The amount of pre-fetching done during a time period
is thus proportional to the load. As we have observed, load
and latency are proportional, which means that pre-fetching
in real time does little to alleviate load peaks. To reduce the



high latency caused by load peaks, we instead pre-compute
tiles during periods of low load. To achieve this, we develop
methods that do not rely on the input of individual users
browsing a map in real time.

As discussed in Section 2.4, Quinn and Gahegan [24] sug-
gest using certain classes of base objects, such as roads
and coastlines, as predictors of where users will look at a
map. However, as observed in Fisher’s study of Microsoft
Hotmap [8], real-world workloads can contradict models of
rational user behavior, exclusively focused on a fixed set
of rules. An example given by Fisher [8] was a banner ad
that caused frequent requests for“empty”parts of the Pacific
Ocean. Based on such observations of real-life events, Fisher
develops a multi-scale descriptive model that quantifies web
map usage based on a heatmap. Their study supports our
observation that anomalous patterns may be transient in
time, but partially detectable from a training data set. In
contrast to Fisher, however, we exploit this insight to pro-
pose multiple strategies to keep hit ratios on a spatial web
cache high, while at the same time drastically reducing re-
source consumption during recomputation of tiles.

7. CONCLUSION
In this work, we propose and evaluate the use of heatmaps

to analyze the request log for a geospatial service as well
as to improve the creation time of a tile cache for this ser-
vice. As we have observed, heatmaps can be made predictive
and aid in selecting a set of high traffic tiles. We applied
our techniques to the request log of a production system
and showed that substantial improvements over an existing
method were attained. In particular, using our HEAT-D al-
gorithm to compute a tile cache yields a 25% improvement
in the hit ratio for a reasonable time window of material-
ization. HEAT-D accurately predicts the popularity of tiles
that are not requested in the training data by employing a
heat diffusion process.

While our results improve on existing methods, for future
work we plan to do a more thorough exploration of the pa-
rameter space of the algorithms HEAT-HW and HEAT-D
to investigate if further improvements could be achieved. In
addition, we plan to work on efficient methods for material-
izing the tiles selected by our algorithms as well as use the
trend information from HEAT-HW to build a distributed
cache that adapts to sudden spikes in load. Finally, deploy-
ing TileHeat in a production environment and measuring
the effect on latency remains as an important direction of
future work.
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