
Declarative Cartography under Fine-Grained Access Control

Thomas Jensen
∗

June, Danske Bank

Copenhagen, Denmark

vxf838@alumni.ku.dk

Marcos Antonio Vaz Salles
†

University of Copenhagen

Copenhagen, Denmark

vmarcos@di.ku.dk

Michael Vindahl Bang
∗

June, Danske Bank

Copenhagen, Denmark

tqg432@alumni.ku.dk

ABSTRACT
Visualization of spatial data is of increasing importance in science

and society, but opens up justified concerns about data privacy and

security. A classic methodology for cartography through general-

ization is data selection; however, data selection can be challenging

under security constraints for two main reasons. First, individual

records are kept in the visualization, so a data security approach

such as access control needs to be put in place to avoid leakage of

information about protected records to unauthorized parties. Sec-

ond, it can be computationally hard to pick out records from a large

spatial dataset so as to create an aesthetically pleasing visualiza-

tion respecting user constraints and optimization goals. The latter

expense can get compounded by the need to additionally respect

access control restrictions.

This paper presents a way to integrate label-based access con-

trol into an existing technique for declarative cartography termed

global selection. Through a set of theorems and new algorithms,

we demonstrate that we can reuse derivation and resolution of

record conflicts when computing global selections across access

roles in a security hierarchy. In experiments with realistic datasets,

the runtime of the best among these new methods achieves an

improvement of up to 2x-5x compared with repeatedly computing

the global selection in medium-to-large security hierarchies.

1 INTRODUCTION
Motivation. Geospatial visualizations such as maps are of crucial

value in geographic information science [14], and becoming increas-

ingly important in organizations with the trends towards spatial

computing [38] and Internet of Things (IoT) [40]. Data security and

privacy in these domains is of great concern [10, 20]. For example,

a recent survey shows that 75% of expert respondents believe IoT

cybersecurity is of top priority or important, while only 16% believe

their organizations are ready for the security challenges of IoT [20].

Cartographic generalization techniques are commonly employed

to create geospatial visualizations [19]. Among these techniques,

an approach that particularly challenges data security is that of

∗
Work performed while studying at University of Copenhagen.

†
Work partially performed in the context of the Future Cropping partnership [13],

supported by Innovation Fund Denmark.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM ’18, July 9–11, 2018, Bozen-Bolzano, Italy
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6505-5/18/07. . . $15.00

https://doi.org/10.1145/3221269.3232012

data selection. On the one hand, data selection techniques can be

computationally expensive, since methods need to respect complex

user-defined visualization constraints and/or optimize for user-

defined goals [24, 25, 32, 35]. On the other hand, data selection

by definition picks out individual records from a large dataset,

which can compromise privacy and security constraints. Other

than data transformations applied to (groups of) records [31], a

valid data security approach in creating such visualizations is fine-

grained access control [23, 33, 34, 42], where selected records are

only shown to authorized parties. It remains, however, unclear how

to efficiently combine cartographic selection methods with access

control, a problem that we study in this paper.

Examples. Figures 1 to 3 illustrate the problem of combining a car-

tographic data selection method with fine-grained access control.

The figures show three different visualizations of a dataset contain-

ing information about airports. The colors red and black represent

the access level of an airport. For example, the airports could be mil-

itary airports where red airports are top-secret and black airports

are secret. A user with top-secret access clearance has access to

both top-secret and secret airports. It is apparent that by showing

the full dataset (Figure 1), the data points become too cluttered and

we can hardly distinguish one airport from another. By using the

global selection method of [24, 25] for declarative cartography, we

can define a constraint that no two airports may appear within

a certain pixel distance of each other, thus selecting a subset of

the whole dataset. Now, we can compute the global selection for a

top-secret user (Figure 2) and for a secret user (Figure 3).

It is intuitive that there must be a lot of commonality between

the two visualizations since the secret airports form a subset of

the data accessible to a top-secret user. However, to avoid leakage,

we need to compute the global selection for the two visualizations

independently. It seems rather inefficient to identify airports within

a certain distance of each other twice from scratch. Ideally, we

would like to reuse the computation of the global selection with

top-secret access in deriving the global selection with secret access.

There are countless other examples where users have access to

different subsets of the whole data. Consider social networks where

a user can restrict access to personal information for some of her

friends and family, or a consultant in an agricultural extension ser-

vice who can access data from several farmers.
1
In these scenarios,

we have an inherent notion of a security hierarchy. Additionally,

we expect a certain commonality between the data accessible to

different users. For example, the consultant and one of her clients

will both have access to data concerning that farm, i.e., the data

accessible to the client is a subset of that accessible to the consultant.

1
The problem addressed in this paper was inspired by discussions within the Future-

Cropping project [13], which deals exactly with an agricultural extension service

scenario.

https://doi.org/10.1145/3221269.3232012

Figure 1: Openflights Airport dataset
(7K points). Red access label dominates
black.

Figure 2: Airports with proximity con-
straint with access to both red and black
airports.

Figure 3: Airports with proximity con-
straint with access only to black air-
ports.

Despite this notion of inclusion of data in security hierarchies

and the need for cartographic data selections in geospatial visualiza-

tions, to the best of our knowledge no previous work has designed

efficient mechanisms to exploit data inclusion in computing global

selections under different access roles.

Problem. Since we cannot show any top-secret airports to a person

with only secret access, we could simply remove any top-secret

airports from Figure 2 to produce a visualization for such a person.

However, this would introduce two problems:

(a) The visualization no longer maximizes the information given

to the user. Any top-secret airport could have led to the

elimination of a nearby secret airport, and the secret airport

no longer appears in the output.

(b) By having such "gaps" in the map, a user with secret access

might deduce where top-secret airports are located.

Had we simply removed the red airports from Figure 2 to gen-

erate Figure 3, the visualization would show far fewer points. For

example, we would not see any airport in New Zealand or Cen-

tral/Eastern Europe. As such, we may be able to deduce that there

might be a top-secret airport in these areas. The goal therefore

is to always generate an output for the secret user equal to the

global selection on just the secret airports, i.e., as if the top-secret

airports did not exist. In summary, we need to preserve quality

in the output as well as not compromise the integrity of a given

security hierarchy. However, we wish to do so without having to

recompute the global selection from scratch for each access role.

Offline versus online computation. Much previous research

in data visualization focuses on interactivity [17, 21, 22]. Recent

methods, such as dynamic reduction [4], IDEAs [9], NanoCubes [27]

or imMens [28], employ sampling or aggregation operations, which

are either computationally inexpensive or parallelizable. However,

data selection is often expensive enough that it will be infeasible

to compute "live" [24, 25, 32, 35]. Luckily, offline computation of

selections can still be used to prepare data for visualization. For

example, city labels and road names, among others, can be selected

in a pre-processing step for later display in an interactive map [24].

In this paper, we focus on this pre-computation step, and how it gets

affected by the use of fine-grained access control in the database.

Contributions. This paper makes the following contributions:

(1) Motivated by the notion of commonality of data between

access roles, we formalize and prove a number of theorems

that can be used to piece together a global selection for

a lower access level from the one of a higher access level.

These results delimit the conditions in which the latter can

be done safely, covering a wide array of user-defined visual

constraints employed with global selections.

(2) Based on our theoretical results, we present new algorithms

to efficiently compute global selections under access control.

(3) In experiments with realistic datasets, we compare the perfor-

mance of our algorithms to the naïve approach of computing

the global selection for every role in a security hierarchy.

Our best method achieves runtime improvements of 2x-5x

in medium-to-large security hierarchies.

For concreteness, this paper focuses on label-based access con-

trol [34] and the global selection method of [24, 25] for declarative

cartography, which we briefly review in Section 2. Our theoretical

results and algorithms are presented in Section 3 and experiments

in Section 4. We discuss related work in Section 5.

2 BACKGROUND
2.1 Access Control Models
Fine-Grained Access Control Methods. We focus on the ap-

proach of fine-grained access control, which has been studied ex-

tensively [23, 33, 34, 42]. Since we need an access control method

where access roles can include the data of other roles, we have

chosen to use a label-based access control model similar to what

is presented by Rjaibi and Bird [34]. This method seamlessly inte-

grates a hierarchical structure between access roles by introducing

the concept of dominance, which we formalize below.

Label-Based Access Control. We define a label l ∈ L to be a

string, where L is the set of all possible labels. A security hierarchy

is a partial order ⪯ on a finite set of labels. We denote the domain

of all possible partially ordered sets of labels as A.
In the remainder, we assume an input relation I is always subject

to a security hierarchy A = ({l1, l2, ..., ln }, ⪯) ∈ A. We denote the

tuples visible to label li in an input relation I as I li = σlabel ⪯li (I).

I li is read as I subject to label li . We say lj dominates li if lj ⪰ li and

thus I lj ⊇ I li . Using this terminology, we can think of I subject to
li to be the subset of tuples from I that are visible to a user who

has access to label li .

Representation of a Security Hierarchy. A security hierarchy

as defined above can be represented by different data structures. The

example of top-secret and secret labels consists of a linear hierarchy

and can be represented by a simple list. However, many security

hierarchies are more complex than that. For example, company

structures or consultant relations lead to hierarchies that are more

complex trees or even DAGs.

To capture this variety in security hierarchies while maintaining

efficiency, our implementation employs two different encodings

for security hierarchies: one for trees [7] and one for DAGs [43].

Both encodings can be implemented in a relational DBMS. The first

encoding method is an approach where the pre/post plane of the

security hierarchy defines the labels [7]. While the first encoding

method is restricted to trees, the second encoding method applies

to DAGs and is based on prime number factorization [43]. The

second method is less effective in the sense that labels become huge

very fast as the security hierarchy grows; however, the encoding is

sufficient to cover our experiments with DAGs in Section 4.

The work in this paper does not mandate either of these encod-

ings. We could encode the security hierarchy using other methods

as long as the dominance between any two labels is well-defined.

For our implementation, we assume updates to the security hi-

erarchy itself are rare, and can easily be handled by periodically

rebuilding the data structure chosen for representation.

2.2 Global Selections
Previous work introduced the concept of database-integrated global

selections for declarative cartography [24, 25]. We summarize and

revisit this work in this section, providing formal definitions that

support our work of bringing access control to global selections.

Global Selection Concepts. Global selection is a technique to

choose relevant records from a dataset by evaluating the data as

a whole. The two building blocks of a global selection are a set of

constraints and aweighting function. Constraints specify restrictions
that must be respected by sets of records in the input. If a set of

records matches the restrictions in a constraint, we say that the

records in the set form a conflict. For the dataset shown in Figure 1,

we show the output of a global selection with a proximity constraint

for a user with access to all data in Figure 2 and for a user with

access to only the black airports in Figure 3. A proximity constraint

states that no two records should be closer than a pixel distance d
to one another. Given such a constraint, a set of two sufficiently

close records forms a conflict. The weighting function determines

the importance, or weight, of different records. In the example of

Figure 1, the weight is given by the number of departures of an

airport, which acts as a proxy for its importance.

The processing of a global selection consists of two basic steps:

conflict derivation and conflict resolution. Conflict derivation calcu-

lates the sets of records forming conflicts by applying the constraint

definitions over an input relation. Conflict resolution eliminates

records from the input relation so as to resolve all conflicts and thus

satisfy all constraints, while attempting to maximize the weight of

the resulting output set of records.

Global Selection Formalization. To formalize the notion of

global selection, we need to first define how weighting functions

and constraints apply to the tuples of a relation. A weighting func-

tion w is simply a mapping from a given tuple to a non-negative

real weight. A constraint κ is a mapping from an input relation

I to a finite set of pairs {(τ ,R1), (τ ,R2), . . . , (τ ,Rk)}, where τ is a

non-negative integer threshold and each Ri ⊆ I is a conflict. Each
pair encodes the limit on the maximum number of records τ that

are allowed by the constraint to survive out of the records in the

conflict Ri . For example, in a proximity constraint we would have

τ = 1 across all pairs, and each Ri would be a set consisting of

two records from the input relation I that are sufficiently close to

each other. This constraint is schematically illustrated in Figure 4.

Following the model of declarative cartography [25], we assume

for this paper that τ is constant for all Ri within a single constraint.

Based on constraints, we can formalize conflict derivation.

Definition 2.1 (Conflict Derivation Function). A conflict derivation

function CD is a mapping from an input relation I and a set of

constraints K such that:

(1) CD (I ,K) = κ (I), if K = {κ};
(2) CD (I ,K) = CD (I , {κ1}) ∪ CD (I , {κ2}) ∪ . . . ∪ CD (I , {κn }),

if K = {κ1,κ2, . . . ,κn }.

CD derives all conflicts along with their respective thresholds

for all given constraints. Thus, the output of CD is a set of pairs

{(τ1,R1), (τ2,R2), . . . , (τm ,Rm)}. For convenience, we define the

conflict set C produced by CD as C = {R1,R2, . . . ,Rm }. Conflict
sets allow us to reason on the records included in conflicts without

being bothered by the thresholds imposed.

Note that the set of constraints K as well as the weighting function
w are defined by the user. From these input definitions, we can

construct the conflict derivation function as above. In addition, we

can define a conflict resolution function.

Definition 2.2 (Conflict Resolution Function). A conflict resolu-

tion function CRw is a mapping from an input relation I and the

set of pairs produced by a conflict derivation function application

CD (I ,K) to an output relation O ⊆ I such that:

(a) O contains at most τi surviving records for each of the con-

flicts in the pairs (τi ,Ri) ∈ CD (I ,K);
(b) the sum of the record weights given by weighting functionw

in O is maximal w.r.t. all such qualifying relation instances.

For the proximity constraint example in Figure 4, conflict reso-

lution yields the result shown in Figure 5, assuming t2 has higher
weight than t3, and t4’s weight is lower than the combined weight

of t5 and t6. Conflict resolution is equivalent to the weighted set

multi-cover problem and thus NP-hard [24, 25]. In spite of this,

previous work has shown that effective heuristics can be applied

to conflict resolution in realistic map making scenarios [25].

Now, we can formalize a global selection as follows.

Definition 2.3 (Global Selection Operator). Given an input relation
I , a weighting functionw , and a set of constraints K , we define a
global selection as ΣwK (I) = CRw (I ,CD (I ,K)).

In contrast to [24, 25], we limit our attention to single-scale

global selections, i.e., we do not consider visualizations where mul-

tiple zoom levels are calculated in a manner sensitive to access

control. A simple strategy to deal with multi-scale global selections

is to abstract these operations as a sequence of single-scale global

d

R1

R2

R0

t0
t1

t2

t3 t4 t5

t7 t6

Figure 4: Conflicts under proximity
constraint with distance d .

d

t0
t1

t2

t5

t7 t6

Figure 5: Global selection for the red
label, eliminating t3 and t4.

d

t0
t1

t3 t5

Figure 6: Global selection for the
black label, eliminating t5.

selections, and employ the methods developed in this paper at each

scale. Notwithstanding, single-scale global selections are of inde-

pendent interest. Broadly speaking, many infographics that show a

selection of data can be made with a single-scale global selection.

Some examples hereof are maps as used in articles and books, or

visualizations in newspapers and scientific research papers.

2.3 Monotonicity
We aim to take advantage of the commonality between datasets

of two different access labels to derive the global selection for one

access label using the conflicts and outputs of another. However,

achieving this goal under arbitrary conflict derivation functions

may be infeasible. For example, if conflicts were decided at random

in each global selection, we could not use the conflicts from a global

selection for one access label in the global selection of another.

Gladly, common conflict derivation functions exhibit properties

that we can exploit. In particular, it is unusual that the set of tuples

in conflict will shrink ifmore tuples are added to the input. Consider
the case of the proximity constraint. If more tuples are added to

the input set, there is a chance that now new tuples will be too

close to existing tuples or that added tuples will be too close to

one another. However, the distances between existing tuples do

not change. As another example, consider a constraint limiting the

density of records in space. As we add more records to the input,

the density can only increase.

The property in these examples is captured by requiring the

conflict derivation functionCD from Definition 2.1 to be monotonic
in the conflict sets produced. To formalize this notion, we need to

introduce conflict set containment.

Definition 2.4 (Conflict Set Containment). Given two conflict sets

Cn and Cm , Cm contains or is equal to Cn , denoted Cm ⊒ Cn , iff.
∀Ri ∈ Cn ,∃Rj ∈ Cm : Ri ⊆ Rj .

In a manner similar to query monotonicity [1], given a set of

constraints K and for any input relations In , Im ⊆ I with Im ⊇ In ,
we sayCD ismonotonic whenever if we take the conflict setsCn and

Cm induced by CD (In ,K) and CD (Im ,K), then Cm ⊒ Cn . In other

words, adding a tuple to an input relation may only grow the set of

tuples in a conflict. Intuitively, this implies that the constraints used

are such that the conflict between two tuples cannot rely on the

absence of another tuple, which is a natural restriction in practice.

Consider again the proximity constraint as illustrated in Figure

4. Suppose t4 were inexistent and then added to the input. If t4
would have no other existing points within d distance of it, no

new conflicts would be generated. However, t4 is within d distance

of existing points. So we generate one new conflict for each such

qualifying points, namely t5 and t6. Conflict derivation using the

proximity constraint is monotonic.

We also consider a stronger notion ofmonotonicity where adding

a tuple may only grow a conflict by that particular tuple, namely

strong monotonicity. Suppose we have an input relation I = {a,b, c}
and conflict derivation such that a and b are in a conflict R. We then

add tuples d and e to I . According to strong monotonicity, R may

at most grow by either d , e , or both. Additionally, a new conflict

between d and e could be introduced. By contrast, were we to use

a conflict function with the weaker notion of monotonicity, c could
end up in R when including d in I . Also, d , e , or both could end up

in a new conflict along with any of a, b, or c .
In the proximity constraint, observe that if we generate a new

conflict, it may contain not only the added but also an existing tuple.

Therefore, the proximity constraint is not strongly monotonic, even

though it is monotonic. As we discuss in Section 3.4, the density

constraint alluded to above is strongly monotonic.

3 ACCESS CONTROL FOR GLOBAL
SELECTIONS

In this section, we study global selections subject to access control.

We start with a brief overview of the problem (Section 3.1), followed

by the naïve approach to its solution (Section 3.2). We then present a

set of results that allows us to compute global selections with access

control for monotonic conflict derivation functions (Section 3.3),

followed by results for a special case common in practice, namely

functions yielding disjoint conflicts (Section 3.4).

3.1 Problem Overview
In essence, given a security hierarchy for an input relation, we

would like to compute the global selection for every label in the

security hierarchy. To see why this is so, suppose each user is

assigned an access label. Intuitively, we want the result to be equal

to the scenario where every user runs the global selection on the

subset of tuples from the input relation she has access to.

To consider global selections in the context of access control, we

need to introduce a few notations. Rl is the conflict where each
tuple is subject to security label l . Cl is thus the set of conflicts for
a given set of constraints, where each conflict is subject to l . Finally,

we denote by Ol
the output from applying the global selection

operator ΣwK on an input relation I l . In general, a set subject to

a label is, unless otherwise specified, the selection of all records

dominated by that label (recursively applied if the set is a set of sets).

We denote a tuple t l if the label of the tuple is l (i.e., t .label = l).

Tuple Label Weight
t0 black 2
t1 black 8
t2 red 5
t3 black 3
t4 black 7
t5 black 4
t6 red 4
t7 red 1

Cred

R0

R1

R2

Oblack

Ored

t0 black
t1 black
t2 red
t5 black
t6 red
t7 red

t0 black
t1 black
t3 black
t4 black

I
t2 red 5
t3 black 3

t4 black 7
t6 red 4

t4 black 7
t5 black 4Cblack

CD CRw

Figure 7: Conceptual evaluation of the global selection from
Figure 4 for two access labels, red and black , where red domi-
nates black .

d

R1

R2

Y

X

R0

t0
t1

t2

t3 t4 t5

t7
t6

Figure 8: Constrained (X)
and unconstrained (Y) tuples
in Figure 4.

BA

C

t0
t1

t2

t3 t4 t5

t7

t6

D

Figure 9: Tiles represent con-
flicts generated by a density
constraint.

In addition, we adopt a flat relational representation for a set

of conflicts C , in line with [24, 25]. Suppose the input relation I
has attributes ⟨i1, i2, ..., ip ⟩ where the access label is assumed to

be among the attributes. The set of conflicts C then has attributes

⟨i1, i2, ..., ip , cid,w,τ ⟩, where cid is the ID from the conflict the

tuple appears in,w is the weight of the tuple, and τ is the maximum

number of tuples that may survive the conflict with conflict ID

given by cid . Note that a tuple can be present in multiple conflicts

and thus appear several times in C , but with different cid . In other

words, the addition of cid is how we flatten the structure ofC (a set

of sets) to a single relation without loss of information. The output

relation O has an identical schema to I .
Consider again the example of Figures 4 to 6, which illustrates

a global selection for a security hierarchy of two labels. Figure 7

shows how the global selection is computed using the notations

introduced above. We observe that since t0, t1, and t7 are in no

conflicts, they are automatically included in Or ed
. The black label

cannot see the red tuples. Therefore, t3 is not in any conflicts seen

through the eyes of the black label and is included with t0 and t1 in

Oblack
. Note that no red tuples can end up inOblack

because they

simply do not exist for black. The only conflict subject to the black

label is R1. CR
w

will try to maximize the aggregated weight of the

output and thus picks t4 over t5. Subject to the red label, we have

three conflicts. Notice that t4 is in both R1 and R2. Were CRw to

pick t4 (the tuple with the highest weight), it must eliminate both

t5 and t6. However, the combined weight of t5 and t6 is greater than
the weight of t4. Therefore, CR

w
eliminates t4 and picks t5 and t6.

This example shows how t5, a tuple visible to black, can end up in

the output of red (the dominating label) without ending up in the

output of black.

3.2 Naïve Approach

Algorithm 1 : Naive
Naïve Approach to Global Selection with Access Control

Require: Global selection ΣwK
Require: Input relation I
1: for Label l in L do
2: Ol ← ΣwK (I l)

3: MATERIALIZE(Ol
)

4: end for

The simplest way of computing the global selection for every

label in a security hierarchy L is to iteratively take the input relation

subject to each label l ∈ L and compute the whole global selection

from scratch. We call this method the naïve approach. This simple

method, which is trivially correct and shown in Algorithm 1, is the

baseline for all the algorithms to come; the approach we wish to

beat in terms of running time.

As discussed in more detail in Section 4.2.1, our implementation

reuses SQL for encoding the algorithms presented in the paper. The

construct MATERIALIZE in Algorithm 1, in particular, corresponds

to view materialization of its logical input relation.

3.3 Monotonic CD
In this section, we present results and algorithms that show that

portions of the computation of a global selection for a given label

can be reused for the computation of the same global selection for

dominated access labels. In particular, reuse of derived conflicts of a

global selection can be very effective in reducing computation time,

since it is often the case that the computation ofCD is expensive in

practice. For example, with a proximity constraint, the computation

of CD requires a spatial join, and this operation can dominate the

running time of a global selection [25].

To reason about reuse, we first establish a lemma relating the

conflict sets of a global selection with different labels in a security

hierarchy, exploiting the notion of commonality and inclusion of

accessible data between two labels.

Lemma 3.1 (Conflict Containment of Input). Consider an
input relation I and a security hierarchy A = ({l1, l2, ..., ln }, ⪯) ∈ A

where lj ⪰ li . Clj ⊒ Cli if CD is monotonic.

Proof. Recall from Section 2.1 that I li ⊆ I lj . Let DIFF lj ,li =
I lj − I li . Assume CD is monotonic and we have computed Cli .

Now, we add the tuples from DIFF lj ,li one at a time to the input.

By our definition of monotonicity, adding any tuple to the input

can only create new conflicts or increase the size of the existing

conflicts. Therefore, after having added DIFF lj ,li to I li , we end up

with I lj and for all conflicts in Cli there now exists a conflict that

is a superset of or equal to it (i.e., ∀Rli ∈ Cli ,∃Rlj ∈ Clj : Rli ⊆ Rlj).

By Definition 2.4, Clj contains or is equal to Cli . □

For example, in Figure 7 where red dominates black, we see that

Cblack is contained within Cr ed . Furthermore, we now know that

the set of conflicts for a label is contained within the set of conflicts

for any dominating label. Motivated by this fact, we formalize when

we can reuse the conflicts in such a case.

Theorem 3.2 (Cached Conflicts). Let A = ({l1, l2, ..., ln }, ⪯
) ∈ A where lj ⪰ li and CD be strongly monotonic. ∀Rlj ∈ Clj let
Dli ,lj = {x ∈ Rlj : x .label ≻ li }, then Rli = Rlj − Dli ,lj .

Proof. Let Rli be any conflict from Cli . Since CD is monotonic,

we know by Lemma 3.1 that Clj ⊒ Cli and thus by Definition 2.4

that Rli ⊆ Rlj . Because CD is also strongly monotonic, any tuple

in Rlj not in Rli must be exactly Dli ,lj = {x ∈ Rlj : x .label ≻ li }.

Therefore, we can remove all tuples in Dli ,lj
from Rlj without

removing any tuples also in Rli and thereby get Rli . □

Observation 1 (Dominated Conflict). Let A = ({l1, l2,
..., ln }, ⪯) ∈ Awhere lj ⪰ li andCD be strongly monotonic.∀R ∈ Clj ,
if ∀t ∈ R, t .label ⪯ li , then R ∈ Cli . This is the special case of Theo-
rem 3.2 where Dli ,lj = ∅.

Theorem 3.2 shows that whenCD is strongly monotonic, we can

reuse the conflict sets of dominating labels in the computation of

the global selection for dominated labels. Observation 1 targets the

situation where all tuples in a conflict are accessible to the domi-

nated label. Let us again use the simple top-secret/secret security

hierarchy as an example. Observation 1 says that if every tuple in a

given conflict is secret in the top-secret global selection, then we

can reuse the conflict in the secret global selection.

We are now able to extend the Naive algorithm using Theo-

rem 3.2 such that we only compute the conflicts once and then

reuse them for every label in the security hierarchy.

Algorithm 2 : CC
Cached Conflicts using Theorem 3.2

Require: Set of constraints K
Require: Strongly-monotonic conflict derivation function CD
Require: Conflict resolution function CRw

Require: Input relation I
1: C ← CD (I ,K)
2: MATERIALIZE(C)
3: for Label l in L do
4: Ol ← CRw (I l ,Cl)
5: MATERIALIZE(Ol

)

6: end for

Correctness Argument 1 (Algorithm 2). Let CD be strongly
monotonic. Then, Cl = σlabel ⪯l (C) by Theorem 3.2 and we defined
in Section 2.2 that CD (I l ,K) is equal to Cl . Thus, we do not need to
compute the conflicts using CD for any labels and still get the correct
set of conflicts at each iteration by subjecting C to the current label.
Recall from Section 2.2 that ΣwK (I l) = CRw (I l ,CD (I l ,K)). The result
of CRw (I l ,Cl) at each iteration is therefore equivalent to that of line
2 in Algorithm 1. □

Observation 2 (Conflicts in pairs). Let A = ({l1, l2, ..., ln }, ⪯
) ∈ A where lj ⪰ li and CD be monotonic generating conflicts
exclusively of size two where ∀R ∈ Clj , if ∀t ∈ R, t .label ⪯ li ,
R ∈ Cli , then Theorem 3.2 holds.

A consequence of Observation 2 is that we can also use the CC

algorithm on some monotonic, but not strongly monotonic, CD
functions. These functions should generate exclusively conflicts

in pairs and when both tuples in a pair exhibit a dominated label,

then the pair must appear as a conflict for the dominated label as

well. We expect this case to be very useful in practice, since it is

natural for constraints to calculate conflicts by join operations. For

example, the proximity constraints falls into this category. Given

that it is computed by a spatial join, conflicts at a given label do

not disappear as more tuples become visible at a dominating label.

Theorem 3.2 allows us to reuse conflicts are contained within

the conflict set of dominating labels; however, reuse is also possible

for tuples that are not included in any conflict at all. If we look

at Figure 4, we observe that t0 and t1 are examples of such tuples

taking part in no conflicts under the red access label. Suppose now

we only have access to the black tuples. By monotonicity, t0 and
t1 must still be in no conflicts. For brevity, we call tuples in at

least one conflict constrained tuples, and tuples in no conflicts at all

unconstrained tuples. We now formalize reuse for the latter.

Theorem 3.3 (Unconstrained Tuples). Let A = ({l1, l2,
..., ln }, ⪯) ∈ A where lj ⪰ li . Then ∀t ∈ Olj where t < {x | ∃R ∈
Clj : x ∈ R} and t .label ⪯ li , t ∈ Oli .

Proof. Let t be a tuple not inOli
that is inOlj

where t .label ⪯ li
and t < {x | ∃R ∈ Clj : x ∈ R}. t must have been in some conflict

R′ ∈ Cli to get eliminated from Oli
. We now have, ∄R ∈ Clj s.t.

R ⊇ R′. That is a contradiction by Lemma 3.1. □

Note that Theorem 3.3 does not require a strongly monotonic

conflict derivation function CD. We can thus use the theorem on

a wider range of conflict derivation functions than Theorem 3.2.

We can exploit Theorem 3.3 by identifying unconstrained tuples

for a dominating label, and then directly adding these tuples to the

output for all dominated labels. Thereby, we decrease the input size

to both CD and CRw . Algorithm 3 captures this idea.

Algorithm 3 : CU
Unconstrained Tuples using Theorem 3.3

Require: User-defined set of constraints K
Require: Monotonic conflict derivation function CD
Require: Conflict resolution function CRw

Require: Input relation I
1: C ← CD (I ,K)
2: X ← I ⋉C /* Tuples in a conflict */

3: Y ← I − X /* Tuples not in any conflict */

4: MATERIALIZE(X)

5: MATERIALIZE(Y)
6: for Label l in L do
7: Cl ← CD (X l ,K)
8: Ol ← CRw (X l ,Cl) ∪ Y l

9: MATERIALIZE(Ol
)

10: end for

Correctness Argument 2 (Algorithm 3). X contains all the
tuples that are present in any conflict from computing the conflicts
on the whole input relation I . From Lemma 3.1, we know that C ⊒ Cl

and thus no tuples from Y l can end up inCl . Therefore, we can safely
use X l as input to CD at each iteration and get the correct set of
conflicts. By Theorem 3.3, we can add Y l directly to the output in line
8. It now follows from the correctness argument of Algorithm 2 that
this produces a correct output. □

The CU algorithm isolates unconstrained tuples by copying them

directly to the output. These tuples then do not take part in conflict

derivation, reducing the input size to operations over X l ⊆ I l . As
an additional observation, we note that the algorithm could be

optimized for reuse if we could assert that the conflict set C does

not change across any pair of labels. This may be particularly useful

if one of the labels provides visibility over all tuples, allowing for

reuse of the computation in line 1. For generality of presentation,

we leave these data-dependent optimizations to future work, and

focus on reasoning on the structure of conflict derivation functions

and its relationship to data inclusions in security hierarchies.

Figure 8 shows us an illustration of how the evaluation of the

first 3 lines of Algorithm 3 would look like on the example from

Figure 4. As we can see, since t0, t1, and t7 take part in no conflicts,

they can be simply copied to the output respecting label visibility.

It is interesting to note that the CC and CU algorithms can

be composed. While we omit details for brevity, we evaluate this

method, named CU+, in our experiments (Section 4).

3.4 Strongly Monotonic CD, Disjoint Conflicts
In this section, we look at the special case where all conflicts gen-

erated by CD are disjoint. This special case appears in density

constraints, which are important to reduce clutter in visualizations

of spatial data [35]. Figure 9 depicts such a constraint on a small

dataset of eight records with two labels: red and black, where red

dominates black. We divide the visible area into a set of tiles, and all

points occupying the same tile are in conflict with each other. For

example, in tile A, t1 and t2 are in conflict. Now, suppose τ is one,

such that in the output there is only one point per tile. Assume the

surviving tuples are t0, t1, t3, and t5 for the red label. Notice that

they are all black. Surely, if we could not access the red tuples, we

would still pick the same four black tuples since they must have the

highest weight in their respective tiles/conflicts. As such, there is

an opportunity to reuse not only conflict derivation across security

labels, but also conflict resolution.

To reason about reuse of conflict resolution, it is assumed that

the maximumweight solution to a global selection is unique – when

the conflicts are disjoint, there must be a unique selection of tuples

in each conflict that yields the highest aggregated weight. In order

to guarantee a unique solution, we assume that ties
2
are resolved

by a unique identifier assigned to each tuple. For the remainder of

this section, we assume CRw to behave in this way.

Looking at Figure 9 again, the conflict from tile D only contains

black points. Surely, the surviving point from tile D must be the

same for the red and black labels, i.e., the winner between t4 and t5
is determined independently of tiles A, B, and C. Given a label l , we
term a conflict pure for l if the labels of all tuples in the conflict are

dominated by l . Otherwise, we call the conflict impure. Motivated

the notion of pure and impure conflicts, we formalize a theorem

operating on conflict solutions.

Theorem 3.4 (Reusing Conflict Solutions). Let A =

({l1, l2, ..., ln }, ⪯) ∈ A where lj ⪰ li and CD be strongly monotonic
producing disjoint conflicts. Given R ∈ Clj , if ∀t ∈ R, t .label ⪯ li ,
then the output of resolving R subject to lj can be reused for li .

2
A tie occurs when two or more tuples in the same conflict have the same weight.

Proof. Let R be any conflict from Clj . If ∀t ∈ R, t .label ⪯ li ,

then R is also in Cli by Observation 1. Furthermore, given the

assumption of disjoint conflicts, we know that no t ∈ R can occur

in another conflict. Therefore, R can be resolved independently

from all other conflicts and the result of resolving R subject to lj is
equal to that of resolving R subject to li . □

Theorem 3.4 states that if a conflict is pure for a label, we can

reuse the solution to said conflict for the label. For example, suppose

we have computed the global selection for the red label (the output

being t0, t1, t3, and t5). Now, in tile D, we can directly add t5 to the

output for the black label since the conflict of tile D is pure subject

to the black label.

Algorithm 4 exploits the observation in Theorem 3.4 by reusing

the result of CRw for any pure conflicts for a given label.

Algorithm 4 : RS
Reusing Conflict Solutions using Theorem 3.4

Require: User-defined set of constraints K
Require: Strongly monotonic conflict derivation function CD
Require: Conflict resolution function CRw

Require: Input relation I
1: C ← CD (I ,K)
2: OC ← CRw (I ,C) ▷◁ Πcid,i1,i2, ...,ip (C)

3: MATERIALIZE(C)
4: MATERIALIZE(OC)
5: for Label l in L do
6: δ l ← Πcid (σlabel ≻l (OC)) // CIDs from impure conflicts

// Antijoin. Gives us the outputs we can reuse

7: OCl ← OC ▷ δ l

// Unconstrained and tuples from impure conflicts

8: IX l ← I l − I l ⋉ (C ▷ δ l)
9: Ol ← CRw (IX l ,Cl) ∪ Πi1,i2, ...,ip (OC

l)

10: MATERIALIZE(Ol
)

11: end for

Correctness Argument 3 (Algorithm 4). In line 1, the conflicts
are computed as in Algorithm 2, which is reused in line 9 of every
iteration in accordance with Lemma 3.1. OCl in line 7 gives us the
tuples from O we can reuse by Theorem 3.4. That is, tuples in O that
come from conflicts where the label of every tuple is dominated by
l . That information is gained from δ l where we store the ID of every
conflict that has one or more tuples with a label dominating l . In
line 8, we store the tuples that are not in any conflict or come from a
conflict with an ID from δ l . Thus, we use IX l as input toCRw in line
9 to resolve the impure conflicts. Now, Πi1,i2, ...,ip (OC

l) contains the
output of every pure conflict and CRw (IX l ,Cl) computes the output
of every impure conflict, and thus the union is equal to Ol . □

The RS algorithm decreases the input size to CRw by identify-

ing tuples that we can directly add to the output. However, we

clearly observe that Algorithm 4 needs many operations to identify

reusable tuples. Similarly to the CU+ algorithm, we can compose

the reuse of conflict solutions with separation of constrained and

unconstrained tuples. We omit details of this additional algorithm

due to space constraints.

4 EXPERIMENTS
In this section, we evaluate experimentally the performance of the

algorithms presented in this paper. The goals of the experiments

are presented in Section 4.1 and their setup described in Section

4.2. Afterwards, we discuss the results obtained in Section 4.3.

4.1 Goals
The ultimate goal of the experiments is to to test the performance

of the algorithms introduced in Section 3 compared to the naïve

approach. An explicit non-goal is to evaluate the performance of

the underlying global selection system for declarative cartography

introduced by previous work [24, 25]. Since the global selection

system needs to evaluate a set of user-defined constraints to derive

visual conflicts and calculate a solution to an NP-hard conflict reso-

lution problem, its purpose is to be run offline as a pre-computation

step in advance of data visualization. This usage is in line with

similar approaches [32, 35]. As calculating a global selection can

be time-consuming, reducing the time necessary to run multiple

global selections in connection with supporting visualizations with

fine-grained access control is a worthy endeavor.

We show experiments that illustrate the performance of the

algorithms proposed in this paper over a range of real datasets

with different sizes as well as varied sizes and structures of secu-

rity hierarchies. Specifically, the goals of our experiments are to

demonstrate:

(a) How the algorithms scale on the number of labels in a linear

security hierarchy (Section 4.3.1)

(b) How the complexity of the given constraints as well as the

ratio between unconstrained and constrained tuples affect

the performance of our algorithms (Section 4.3.2)

(c) How consistently the algorithms perform on DAG-shaped

security hierarchies (Section 4.3.3)

We split the experimental results (Section 4.3) into subsections

corresponding to the goals above.

4.2 Setup
4.2.1 Implementation. We build on a specialized version of the

global selection implementation described in [24]. This implementa-

tion uses essentially the same algorithms for conflict derivation and

resolution described in [25], but avoids as much as possible the use

of temporary tables in the database for better performance. Conflict

derivation is achieved by execution of the SQL of user-defined con-

straints, while conflict resolution employs a sorting-based greedy

heuristic. As discussed in [25], this heuristic achieves a good trade-

off in runtime and solution quality, and overall takes up a small

percentage of the running time of a global selection compared to

conflict derivation.

We argue that for the evaluation in this paper, the choice of

this heuristic for CRw is sufficient as follows. First, note that the

proposed algorithms that potentially reduce the input to CRw are

CU, CU+, and RS. CU and CU+ only filter out unconstrained tuples.

It is fair to assume that the runtime of any reasonable optimization

procedure used in CRw should be more strongly correlated with

the size of the conflict set than with the number of unconstrained

tuples (which should just be picked to be in the output if given

to CRw). So gains in performance from CU or CU+ should come

overwhelmingly from savings in the computation ofCD as opposed

toCRw . For RS, on the other hand, reductions inCRw computation

may be nontrivial. However, RS is only applicable when conflicts

are disjoint. In this case, the sorting heuristic chosen is optimal,

obviating the need to evaluate other optimization methods forCRw .

We represent labels as attributes of input tuples. As mentioned

earlier, these attributes are encoded in the pre-/post-plane when

security hierarchies are trees [7], or alternatively with a prime num-

ber encoding when security hierarchies are general DAGs [43]. The

overall skeleton of the algorithms in Section 3 includes a loop over

all labels in the security hierarchy and a set of relational algebra

expressions either before the loop or in the loop body. We leverage

that structure in our implementation by taking a code generation

approach. For each label in the security hierarchy and for any

pre-loop code fragments, we generate pure SQL code in a global

selection language preprocessor before executing the SQL code

in PostgreSQL, the target database server. The algorithms intro-

duced in this paper at selected points materialize information with

the MATERIALIZE construct, which is implemented by creating

temporary tables using the UNLOGGED keyword for performance.

4.2.2 Datasets. We use three different datasets that were part

of the evaluation of [24]. Two of the datasets contain spatial data:

Openflights Airports (7K points)
3
and OpenStreetMap points of

interest (673K points).
4
The third dataset, Genius (13K rows),

5
con-

tains information about lyrics from several rap artists. We create

a spatial visualization from this dataset by 1-dimensional tiling of

artists by the vocabulary sizes of their lyrics.

Henceforth, we call the datasets airports,OpenStreetMap, and rap-
pers, respectively.We have chosen the datasets for two reasons. First,

all datasets include real-world data, and are thus representative of

skew to be found in practice. Second, the datasets offer a convenient

frame of reference with respect to previous work [24, 25].

Since the original datasets do not include any access control

information, we need to model a distribution of labels in the input

relation in connection to a security hierarchy. For simplicity of in-

terpretation, we focus on linear security hierarchies throughout the

experiments, with exception of Section 4.3.3 where security hierar-

chies are generated through a random DAG generator. To assign

labels to tuples in the input, we use two different distributions, uni-
form and self-similar [15]. With a uniform distribution, we assign

each label with equal probability to a tuple. The self-similar method

assigns the most dominated label randomly to 80% of the data. Then,

the second most dominated label is assigned randomly to 80% of

the remaining 20% of the data, and so on. Again for simplicity, we

only use self-similar distributions on linear security hierarchies.

They could, however, conceptually be applied to a tree or DAG, e.g.,

by uniformly assigning all labels from the lowest level to 80% of

the data, and so on for each level in the hierarchy. Intuitively, the

self-similar distribution models hierarchical structures in the real

world, e.g., a company with only one CEO and many employees.

In Algorithms 2 to 4, we materialize information before we loop

through the labels. Intuitively, the structure of the security hierar-

chy should therefore not matter as much as the number of labels.

3
http://openflights.org/data.html

4
http://planet.openstreetmap.org/

5
http://rap.genius.com/

Moreover, we expect the distribution of labels to matter more than

the hierarchy itself. For example, suppose a label is distributed such

that the label has access to 1% of the input. Now, suppose we have

another distribution were the label has access to 90% of the input.

Intuitively, we expect the running time of the global selection for

the latter case to be significantly higher than that of the former. In

Section 4.3.3, we discuss whether or not this claim is supported by

the experimental results.

4.2.3 Queries. The queries and constraints used for the global

selections in our experiments are slightly modified versions of

the ones presented in [24]. In summary, for both the airports and

OpenStreetMap datasets, we use a density constraint that dictates

that only 10 recordsmay occupy the same tile on amap. The number

of tiles on the map is controlled by the desired zoom level in a tile

pyramid scheme [12]. If not otherwise stated, we use a zoom level

of 4 corresponding to 256 tiles for all 2-D spatial data. As stated

previously, we only use single-scale global selections in this work.

For the airports dataset, we also test the proximity constraint, which

we have used as a running example, with a distance of 10 pixels. For

the rappers dataset, we use a constraint that maps the vocabulary

(distinct words in lyrics) of a rapper to buckets of word-count

intervals. We use an interval of 80 words. For brevity, we denote this

constraint as thewordcount constraint. Note that the wordcount and
density constraints are strongly monotonic, whereas the proximity

constraint is only monotonic. However, the proximity constraint

only generates conflicts of size two. Recall from Observation 2

that we therefore can use CC and CU+, despite the fact that these

methods require strongly monotonic CDs.
We only expect CU and CU+ to improve performance when

some tuples are unconstrained. Therefore, we refrain from showing

results from these methods with the density and wordcount con-

straints, since in these cases all tuples are constrained by definition.

4.2.4 System Configuration. The machine used for all exper-

iments is a Lenovo T460s laptop with a dual-core 2.4 GHz Intel

Core i5-6300U processor, 12GB of RAM, and a 256 GB NVMe Sam-

sung MZ-VPV256 SSD. The system runs Microsoft Windows 10

Enterprise, and we employ a PostgreSQL 9.5 server with best-effort

tuning of the default settings. An important setting for the Post-

greSQL server is to disable autovacuum. In PostgreSQL, vacuum is

an operation to garbage-collect a database.
6
To avoid interference

from the autovacuum service on the runtime, wemanually vacuum

the entire database between runs. The other settings tuned allow

the database server to use more main memory for different tasks

to speed up the experiment process. In particular, we set shared

buffers to 2GB, work memory for sorting and hashing to 0.5 GB,

maintenance work memory for vacuuming to roughly 1.5GB, and

turn fsync off.

4.2.5 Experimental Methods. Every experiment follows a gen-

eral pattern with given specifications. The general pattern can be

summarized in 8 steps: (1) Vacuum database. (2) Generate security

hierarchy. (3) Generate label encodings using specified encoding

method. (4) Assign labels to tuples in input table according to a

given distribution. (5) Begin measuring time. (6) Compute the global

selection using the specified algorithm. (7) End measuring time.

6
https://www.postgresql.org/docs/9.5/static/sql-vacuum.html

(8) Delete all generated tables. The specifications determine among

others: the algorithm to use, the input table to the global selection

operator, the security hierarchy, and the distribution of labels. For

every configuration, we run the general pattern 10 times and calcu-

late the average runtime of step 6 as well as the standard deviation.

We observed very consistent running times for all algorithms.

4.3 Experimental Results
4.3.1 Scalability on Number of Labels. In this section, we report

on the scalability of our algorithms on the number of labels in a

linear security hierarchy. Figures 10 to 15 report the performance

of each algorithm on all datasets with self-similar and uniform

distributions, respectively. The number of labels ranges from 1

to 64. With only one label in the security hierarchy, we do not

expect any performance gain from any of the algorithms. On the

contrary, we can observe the overhead introduced by each approach

when compared with Naive. CC introduces a minute overhead

in all the experiments – evidencing the comparatively low cost

of materializing conflicts once they are derived. CU, by contrast,

has higher overhead. For example, in Figure 13, CU takes roughly

2x the running time of Naive. Recall from Section 3.3 that the

implementation of CU computes the conflicts twice for a single

label. Therefore, this large overhead is not surprising, given that

the algorithm has no opportunity to reuse results for unconstrained

tuples over other labels. Since CU+ does not compute the conflicts

twice, CU+ has a slightly smaller overhead than CU. The overhead

of RS is generally bigger than CC, but smaller than CU.

Throughout Figures 10 to 15, we observe that CC dominates

Naive whenever the number of labels is bigger than one. In addition,

the relative performance gap between CC and Naive increases as

the number of labels increases, reaching a factor of roughly 2x-5x.

CU and CU+ are only evaluated with the proximity constraint, since

only this constraint allows for unconstrained tuples. In Figures 12

and 13, 30% of the tuples are unconstrained; still, CU’s overhead in

identifying those tuples makes it perform worse than Naive in most

configurations. Even though CU+ performs substantially better

than Naive, it performs slightly worse than only CC.

In Figures 10 and 11, we observe that RS outperforms Naive

as the number of labels increases. We also see that RS does so

earlier when the distribution is uniform than when the distribution

is self-similar. This effect is surprising in that using self-similar

distributions, we would expect the probability of a conflict being

pure to be higher since the least dominating labels are represented

more in the data. So the effect suggests that Algorithm 4 incurs too

high costs in identifying conflicts as pure. A similar reasoning can

be applied to Figures 14 and 15, except that the costs of RS with the

OpenStreetMap dataset are higher and the method performs more

similarly to Naive. We conjecture that this latter behavior comes

from the fact that the OpenStreetMap dataset is substantially larger

than the rappers dataset — since we map many more points to a

single tile, we would also expect the probability of pure conflicts to

be smaller. In summary, RS ends up being dominated by CC, which

emerges as the best method. We also ran the density constraint on

the airports dataset which showed similar results.

In Figures 12 and 13, we observe that CC performs much better

relative to Naive compared to the experiments using density con-

straints. Moreover, CC scales significantly better on the number of

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16 32 64

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Labels (log scale)

Naive
CC
RS

Figure 10: Rappers with wordcount con-
straint and self-similar distribution.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 8 16 32 64

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Labels (log scale)

Naive
CC
RS

Figure 11: Rappers with wordcount con-
straint and uniform distribution.

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Labels (log scale)

Naive
CC
CU

CU+

Figure 12: Airports with proximity con-
straint and self-similar distribution.

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Labels (log scale)

Naive
CC
CU

CU+

Figure 13: Airports with proximity con-
straint and uniform distribution.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

1 2 4 8 16 32 64

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Labels (log scale)

Naive
CC
RS

Figure 14: OpenStreetMap with density
constraint and self-similar distribution.

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8 16 32 64

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Labels (log scale)

Naive
CC
RS

Figure 15: OpenStreetMap with density
constraint and uniform distribution.

labels with the proximity constraint. Computing the conflicts for

the proximity constraint is much more expensive than for the den-

sity constraint since the proximity constraint requires a spatial join.

Our results confirm that the benefit of reusing conflicts increases

the more expensive conflict derivation becomes.

Finally, we observe that Naive, CC, CU, and CU+ overall have a

longer running time using the self-similar distribution of labels. If

we accumulate the sizes of the input relations subject to each label

for both distributions, the self-similar distribution results in a much

higher total number of tuples to be processed by global selections.

For example, in a four-label linear hierarchy, the cumulative size

of the self-similar distribution is 375.2% compared to 250% of the

input relation for the uniform distribution.

4.3.2 Conflict Complexity. We have hinted before at the notion

of division of labor between CRw and CD. In this section, we aim

to explore how the ratio between constrained and unconstrained

tuples as well as the complexity of the constraints affect the perfor-

mance of the algorithms. The problem with the density constraint

as well as the wordcount constraint is that every tuple is always

in exactly one conflict. The proximity constraint is the only one

used where not all tuples are necessarily in a conflict. With this

constraint, we can actually influence the ratio between constrained

and unconstrained tuples through the zoom level at which we com-

pute the global selection. A zoom level of 1 is where we can see the

whole world (e.g., Figure 1), and as the zoom level increases, we

move closer to the surface. As such, we would expect more tuples

to become unconstrained as the zoom level increases.

Figure 16 shows how the various methods behave with the prox-

imity constraint on the airport dataset using a self-similar distribu-

tion of labels. We also ran the experiment using uniform distribu-

tion which yielded similar results. Unlike the previous experiments

where we varied the number of labels, we here vary the zoom level.

We use a linear security hierarchy with eight labels. At zoom level 1,

99% of all tuples are in at least one conflict. At zoom level 4, which

we have used for all the previous experiments on the airports and

OpenStreetMap datasets, 70% of all tuples are constrained. At zoom

level 7, only 12% are in a conflict. We observe that CU performs

very poorly compared to Naive when most tuples are constrained.

CU performs better relative to Naive as the zoom level (and thus

the percentage of unconstrained tuples) increases, although always

slightly worse. This behavior is similar to what was observed in

Section 4.3.1. Likewise, CU+ is no better than CC.

4.3.3 DAG-Shaped Security Hierarchies. In this section, we ex-

plore how the algorithms perform on security hierarchies with

more complex structure than linear. For this experiment, we fix the

number of labels at 10 and randomize the structure of the security

hierarchy using a random DAG generator.
7
The generated DAG

always has a single root node, and the depth of the DAG varies

between three and five. Recall from Section 4.2 that we employ a

uniform distribution with DAG security hierarchies when assigning

labels to input tuples. As for the previous experiments, we ran this

experiment ten times on each configuration and randomized the

DAG for each run.

Figures 17 and 18 report the results for the airports and Open-

StreetMap datasets. We observe that the standard deviation is very

small across the board, which supports our claim from Section 4.2

that the number of labels and distribution hereof play a bigger role

on the running time than the structure of the security hierarchy.

The relative running times between the algorithms show the same

trends we have seen in the previous experiments. We also ran this

experiment on the rappers dataset with the wordcount constraint

and on airports with the density constraint, obtaining similar rela-

tive performance between Naive, CC, and RS as in Figure 18.

7
http://www.graphdrawing.org/data.html

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8 9 10

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Zoom level

Naive
CC
CU

CU+

Figure 16: Airports with proximity con-
straint and self-similar distribution.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Naive CC CU CU+

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Figure 17: Airports with proximity con-
straint on random DAG hierarchies.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Naive CC RS

R
un

ni
ng

 t
im

e
(s

ec
on

ds
)

Figure 18: OpenStreetMap with density
constraint on random DAG hierarchies.

5 RELATEDWORK
Several proposals introduce access control models based on geo-

graphical context, e.g., a certain user is only authorized to see data

within a region of a city [3, 5, 11, 30, 36, 41]. Furthermore, in some

of these proposals, e.g., GEO-RBAC [6], SRBAC [18], LoT-RBAC [8],

or the method of Shebaro et al. [37], role activation may depend

on the location of the user and roles can thus change dynamically

as users move. Moreover, role hierarchies can in some cases be

defined [3, 5, 6, 8, 18]. In contrast to our approach, however, little

is said about how to efficiently reuse computation of access control

permissions across hierarchical levels over such geospatial data or

how to integrate these models with map generalization. In addition,

our model is based on label-based access control, which fits more

naturally use cases such as agricultural extension services than

role-based access control (see Section 6).

Maps are the visualization category of choice for geospatial data.

Many data management systems for visualizations have been pro-

posed over time [2, 26, 29], some of which include maps [4, 17].

However, none of these visualization systems have considered the

issue of optimizing data reduction operations in the presence of

access control. Furthermore, in data management systems for visu-

alizations, the two primary data reduction approaches employed

are data selection (e.g., by filtering or random sampling) and data

aggregation. Our work focuses on data selection, since the problem

of data aggregation under access control can often be substantially

simpler to solve. Consider, for example, the data aggregation ap-

proach of Nanocubes [27], in which a multidimensional aggregate

representation inspired by the Dwarf index [39] is linked to the

nodes of a quadtree. To adapt the approach to access control, we can

conceptually replace each aggregate in the data structure by a list of

aggregates per access label. If a simple linear representation of such

a list proves to be too space-consuming, we could further compress

the representation of the aggregates per label by exploiting the

security hierarchy structure in a delta encoding scheme.

In contrast to data aggregation, deriving data selections subject

to access control can be far more challenging and computationally

expensive. In particular, data selection methods have been recently

proposed that respect user-centered visualization constraints and/or

optimization goals [16, 24, 25, 32, 35]. These methods are advanta-

geous in that they create visualizations that are more representative

to end users when compared with random sampling, especially over

multiple scales in cartographic use cases [16, 32, 35]. However, these

methods often involve computing solutions to hard optimization

problems. Given their degree of algorithmic sophistication, it is

non-trivial to reuse computations in these methods when deriving

multiple data selections for a security hierarchy. This paper shows

that a naïve combination of access control with an optimization-

based method of data selection for visualizations yields runtimes

that grow quickly with the size of security hierarchies. To address

this issue, the paper presents a set of new theoretical results and

algorithms. A novel aspect of the algorithms proposed in this pa-

per is the observation that the data inclusion structure originating

from a label-based access control scheme can be leveraged towards

reusing derivations of visual conflicts across different access roles

in a data selection method for declarative cartography.

6 CASE DISCUSSION
This paper is motivated by problems encountered while working

on the Future Cropping project in Denmark.
8
Future Cropping is

a collaboration between, among others, the farming information

provider SEGES,
9
companies, and universities aiming to improve

farming using modern technology. Agriculture takes up 62% of the

area of Denmark
10

and is responsible for 25% of the value of goods

exported by the country.
11

Unsurprisingly, there is substantial in-

terest in improving farming practices.

Agricultural extension is a key element to achieving such im-

provements. Extension services allow farm consultants to provide

customized advice to farmers. In Denmark, SEGES is the main infor-

mation provider for extension services, offering a platform used by

both farm consultants and farmers. The SEGES platform includes

several web services with data on fields, satellite imagery, crops,

among many others.
12

In Future Cropping, SEGES’s data platform

is being extended further with new analytical services combining

multiple data sets, e.g., to improve fertilizer application by exploit-

ing satellite imagery or to support decision making by exploiting

data collected from farm machinery.
13

In applications such as the SEGES platform, farmers own their

data, but can give access to consultants. Consultants can access the

data from multiple farmers, compare data, and guide each farmer

on how to proceed to maximize her yield. With increasing data

density coming from farm equipment and other sensors, the need

for data reduction methods in creating maps under access control

is expected to grow.

8
https://futurecropping.dk/

9
https://www.seges.dk

10
https://www.dst.dk/Site/Dst/Udgivelser/nyt/GetPdf.aspx?cid=24323

11
https://www.lf.dk/om-os/vores-bidrag/25-pct-af-danmarks-eksport

12
https://www.seges.dk/software/plante/mark-online

13
https://futurecropping.dk/guldet-ligger-gemt-i-de-rigtige-data/

In this agricultural extension scenario, a natural security hierar-

chy contains labels for farmers, consultants, and system adminis-

trators. Moreover, data items are labeled according to the farmer

they belong to. For example, in a relation with field polygons and

associated attributes, tuples are labeled according to which farmer

owns each field. In other words, since schemas are shared among

farmers, we employ fine-grained access control to ensure farmer

data is only accessed by authorized users. These authorizations are

managed by the information provider, e.g., SEGES, who can alter

the security hierarchy. For example, a given consultant label should

dominate the farmer labels corresponding to the data the consultant

is allowed to see. A system administrator label can dominate all

farmer labels in the hierarchy such that the correspoding farmers

have authorized SEGES to use their data for running data mining

algorithms according to the terms of service.

7 CONCLUSION
In this paper, we study the problem of efficiently computing global

selections for declarative cartography under fine-grained access

control. The key idea of our approach is to increase reuse in the

computation of global selections across access labels. Our theoret-

ical results lay the groundwork for algorithms exploring various

reuse approaches. All algorithms generate the same output as the

naïve approach of computing the global selection from scratch for

each label in a security hierarchy, thus guaranteeing that access

control is not violated. Our experimental results show that reusing

conflicts between global selections across multiple access roles im-

proves runtime significantly compared to the naïve approach. This

method dominates the naïve approach for any security hierarchy of

at least two access labels and the benefit increases with the number

of labels as well as with the complexity of the constraints.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.

[2] A. Aiken, J. Chen, Michael Stonebraker, and A. Woodruff. 1996. Tioga-2: a direct

manipulation database visualization environment. In Proc. ICDE. 208–217.
[3] Vijayalakshmi Atluri and Soon Ae Chun. 2004. An Authorization Model for

Geospatial Data. IEEE Trans. Dependable Secur. Comput. 1, 4 (2004), 238–254.
[4] Leilani Battle, Michael Stonebraker, and Remco Chang. 2013. Dynamic reduction

of query result sets for interactive visualizaton. In Proc. IEEE Big Data. 1–8.
[5] A. Belussi, E. Bertino, B. Catania, M. L. Damiani, and A. Nucita. 2004. An

Authorization Model for Geographical Maps. In Proc. GIS. 82–91.
[6] Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. 2005.

GEO-RBAC: A Spatially Aware RBAC. In Proc. SACMAT. 29–37.
[7] Peter A. Boncz, Stefan Manegold, and Jan Rittinger. 2005. Updating the Pre/Post

Plane in MonetDB/XQuery. In Proc. <XIME-P/> Workshop.
[8] Suroop Mohan Chandran and James B. D. Joshi. 2005. LoT-RBAC: A Location and

Time-Based RBAC Model. In Proc. WISE. 361–375.
[9] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim

Kraska. 2016. The Case for Interactive Data Exploration Accelerators (IDEAs). In

Proc. HILDA Workshop. 11:1–11:6.
[10] Andrew Curtis, Jacqueline W. Mills, and Michael Leitner. 2006. Keeping an eye

on privacy issues with geospatial data. Nature 441 (05 2006), 150 EP –.

[11] Maria Luisa Damiani and Elisa Bertino. 2007. Access Control Systems for Geospa-

tial Data and Applications. In Belussi A., Catania B., Clementini E., Ferrari E. (eds)
Spatial Data on the Web. 189–214.

[12] L. De Cola and N. Montagne. 1993. The pyramid system for multiscale raster

analysis. Computers and Geosciences 19 (1993), 1393–1404.
[13] Future Cropping [n. d.]. Future Cropping partnership website. ([n. d.]). Available

at https://futurecropping.dk/en/, last accessed September 8, 2017.

[14] Michael F. Goodchild. 2010. Twenty years of progress: GIScience in 2010. J.
Spatial Information Science 1, 1 (2010), 3–20.

[15] Jim Gray, Prakash Sundaresan, Sussanne Englert, Ken Baclawski, and Peter

J. Weinberger. 1994. Quickly generating billion-record synthetic databases. In

Proc. ACM SIGMOD. 243–252.

[16] Tao Guo, Kaiyu Feng, Gao Cong, and Zhifeng Bao. 2018. Efficient Selection of

Geospatial Data on Maps for Interactive and Visualized Exploration. In Proc. ACM
SIGMOD.

[17] Pat Hanrahan. 2012. Analytic Database Technologies for a New Kind of User:

The Data Enthusiast. In Proc. ACM SIGMOD. 577–578.
[18] Frode Hansen and Vladimir Oleshchuk. 2003. SRBAC: a spatial role-based access

control model for mobile systems. In Proceedings of the 7th Nordic Workshop on
Secure IT Systems, Norway.

[19] Lars Harrie and Robert Weibel. 2007. Modelling the overall process of gener-

alisation. Generalisation of geographic information: cartographic modelling and
applications (2007), 67–88.

[20] Ponemon Institute. 2017. 2017 Cost of Data Breach Study, Global Overview. (2017).

Sponsored by IBM Security; available at http://www-03.ibm.com/security/data-

breach/, last accessed September 8, 2017.

[21] Dean F. Jerding and John T. Stasko. 1998. The Information Mural: A Technique

for Displaying and Navigating Large Information Spaces. IEEE Transactions on
Visualization and Computer Graphics 4, 3 (1998), 257–271.

[22] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. 2014. M4:

A Visualization-Oriented Time Series Data Aggregation. PVLDB 7, 10 (2014),

797–808.

[23] Govind Kabra, Ravishankar Ramamurthy, and S. Sudarshan. 2007. Fine Grained

Authorization Through Predicated Grants. In Proc. ICDE. 1174–1183.
[24] P.K. Kefaloukos. 2015. Database-Integrated Multi-Scale Selection for Map and Data

Visualizations. Ph.D. Dissertation. Department of Computer Science, University

of Copenhagen (DIKU).

[25] P.K. Kefaloukos, Marcos Vaz Salles, and Martin Zachariasen. 2014. Declarative

Cartography: In-Database Map Generalization of Geospatial Datasets. In Proc.
ICDE. 1024–1035.

[26] R. Krishnamurthy and M. Zloof. 1995. RBE: Rendering by example. In Proc. ICDE.
288–297.

[27] Lauro Didier Lins, James T. Klosowski, and Carlos Eduardo Scheidegger. 2013.

Nanocubes for Real-Time Exploration of Spatiotemporal Datasets. IEEE Trans.
Vis. Comput. Graph. 19, 12 (2013), 2456–2465.

[28] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. 2013. imMens: Real-time Visual

Querying of Big Data. Comput. Graph. Forum (Proc. EuroVis) 32, 3 (2013), 421–
430.

[29] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic, S. Lawande,

J. Myllymaki, and K. Wenger. 1997. DEVise: Integrated Querying and Visual

Exploration of Large Datasets. In Proc. ACM SIGMOD. 301–312.
[30] Andreas Matheus. 2005. Declaration and Enforcement of Fine-grained Access

Restrictions for a Service-based Geospatial Data Infrastructure. In Proc. SACMAT.
21–28.

[31] Anna Monreale, Gennady Andrienko, Natalia Andrienko, Fosca Giannotti, Dino

Pedreschi, Salvatore Rinzivillo, and Stefan Wrobel. 2010. Movement Data

Anonymity Through Generalization. Trans. Data Privacy 3, 2 (2010), 91–121.

[32] Yongjoo Park, Michael J. Cafarella, and Barzan Mozafari. 2016. Visualization-

aware sampling for very large databases. In Proc. ICDE. 755–766.
[33] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. 2004. Extending

Query Rewriting Techniques for Fine-Grained Access Control. In Proc. ACM
SIGMOD. 551–562.

[34] Walid Rjaibi and Paul Bird. 2004. A Multi-Purpose Implementation of Mandatory

Access Control in Relational Database Management Systems. In Proc. VLDB.
1010–1020.

[35] Anish Das Sarma, Hongrae Lee, Hector Gonzalez, Jayant Madhavan, and Alon

Halevy. 2013. Consistent Thinning of Large Geographical Data for Map Visual-

ization. ACM Trans. Database Syst. 38, 4 (2013), 22:1–22:35.
[36] Liliana Kasumi Sasaoka and Claudia Bauzer Medeiros. 2006. Access Control in

Geographic Databases. In Advances in Conceptual Modeling - Theory and Practice,
ER 2006 Workshops (CoMoGIS). 110–119.

[37] Bilal Shebaro, Oyindamola Oluwatimi, and Elisa Bertino. 2015. Context-Based

Access Control Systems for Mobile Devices. IEEE Trans. Dependable Sec. Comput.
12, 2 (2015), 150–163.

[38] Shashi Shekhar, Steven K. Feiner, and Walid G. Aref. 2015. Spatial Computing.

Commun. ACM 59, 1 (2015), 72–81.

[39] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis Kotidis.

2002. Dwarf: shrinking the PetaCube. In Proc. ACM SIGMOD. 464–475.
[40] CACM Staff. 2017. The Internet of Things. Commun. ACM 60, 5 (2017), 18–19.

[41] Ebrahim Tarameshloo and Philip W.L. Fong. 2014. Access Control Models for

Geo-social Computing Systems. In Proc. SACMAT. 115–126.
[42] Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa Bertino, Keith Irwin, and

Ji-Won Byun. 2007. On the Correctness Criteria of Fine-Grained Access Control

in Relational Databases. In Proc. VLDB. 555–566.
[43] Gang Wu, Kuo Zhang, Can Liu, and Juan-Zi Li. 2006. Adapting Prime Number

Labeling Scheme for Directed Acyclic Graphs. In Proc. DASFAA. 787–796.

	Abstract
	1 Introduction
	2 Background
	2.1 Access Control Models
	2.2 Global Selections
	2.3 Monotonicity

	3 Access Control for Global Selections
	3.1 Problem Overview
	3.2 Naïve Approach
	3.3 Monotonic CD
	3.4 Strongly Monotonic CD, Disjoint Conflicts

	4 Experiments
	4.1 Goals
	4.2 Setup
	4.3 Experimental Results

	5 Related work
	6 Case Discussion
	7 Conclusion
	References

