
Troll: A Language for Specifying Die-Rolls

Torben Mogensen
http://www.diku.dk/∼torbenm/Troll

March 22, 2021

Abstract

Role-playing games (RPGs) use a variety of methods for rolling dice to add randomness to
the game. In the simplest form, a small number of identical dice are rolled and added, but
more advanced forms involve cumulative rerolling of tens, doubling the value of doubles,
removing the lowest or highest result, counting the number of dice that are below a treshold,
or a multitude of other variations and combinations of these.

While die-roll programs and net-based die-roll servers exist, they can usually only handle
the simplest form of die-rolls. This paper describes Troll, a simple, yet powerful, declarative
language for defining how dice are rolled. Such definitions are then used to emulate die-rolls
or make probability calculations.

1 Overview of Troll
Troll is derived from an earlier language called Roll, in some sense you could call Troll a second
version of Roll, but since Troll isn’t backwards compatible with Roll, I have decided to give the
new language a different name.

This first section describes the language Troll. If you want to run the examples while read-
ing the text, the easiest approach is to open a browser window to the Troll online interface
(http://topps.diku.dk/torbenm/troll.msp), enter the examples in the text window, select
“Roll” or “Calculate probabilities” and then press “Troll the dice!”.

Troll assumes all die-rolls result in either a single integer value or an unordered collection
of such values. A single value is equivalent to a collection of one value, which we will call a
singleton collection.

A die-roll definition is an expression that use numbers and operators to create simple die-
rolls and combine these into more complex die-rolls or modify die-rolls according to certain
conditions.

Troll can make random rolls of the defined dice-roll method or it can calculate a probability
distribution. The probability distribution is calculated as exactly as the numeric precision and the
bound on rerolls allows, so it is much more precise than statistics obtained by sampling a large
number of rolls.

1

2 Simple die-rolling
Following the usual RPG convention, a single die is specified by a “d” or “D” followed by a
number indicating the number of faces on the die. So, for example, a six-sided die is specified
as “d6” or “D6”. There is no difference between “d” and “D”, both are provided only to allow
different textual styles. An n-sided die is assumed to yield the values from 1 to n with equal
probability. The number after a “d” can be any expression with an integer value (greater than 0),
so, for example, “d d6” rolls a d6 to find which type of dice (from d1 to d6) is rolled.

“d” or “D” can be prefixed by a number so, for example, “5d6” means five six-sided dice.
Note that these are not added, to do so you will have to write “sum 5d6”. The reason is that
we often want do do something other to the dice than adding them, for example we may want
to count how many are above a threshold. The number preceding “d” need not be a constant, so
you can, for example, write “(4+1)d6” or even “(d4)d6”.

You can add, subtract, multiply, divide and find division remainders using the usual arithmetic
operators (+, -, *, / and mod). Division is integer division, so, e.g., 11/3 yields 3. Note that
3*d6 means a single die multiplied by 3 and not rolling 3 individual dice. “-” also works as a
unary (prefix) operator, so you can, for example, write “-d7”. You can find the sign of a number
by using the operator sgn, e.g., “sgn (d7-3)”. The sign is −1 when the number is negative, 0
when it is zero and 1 when it is positive. Arithmetic only works on singleton collections, so you
can’t write “3d6+4”. You must instead write “sum 3d6+4”.

A variant of the d operator is z, where zn generates a roll of a die numbered from 0 to n. A
standard ten-sided dice is normally numbered from 0 to 9, so this can be written as z9. zn is
equivalent to d(n+ 1)-1. Like d, z can be prefixed by the number of dice and it can be written
using a capital letter, e.g., 3z9 or Z4.

3 Operations on collections
The collections used in Roll don’t consider ordering of the values – so a collection of the values 1
and 2 is the same as a collection of the values 2 and 1. Furthermore, a single value is considered
as a singleton collection and vice versa.

We saw that we could roll a number of dice by prefixing “d” with a number. We can, similarly,
repeat any dice specification n times with the operator “#”. “#” can be prefixed by any expression
that evaluates to a singleton collection (with non-negative value) and followed by any die-roll
expression, so you can, for example, write “d4#d6” to specify a collection of 1 to 4 six-sided
dice or “10#(sum 5d6)” to specify a collection of ten values, each obtained by adding 5 six-
sided dice. If what follows the “#” operator is something that produces a collection, these are
combined to a single collection. In other words, you can’t have a collection of collections. These
will always be collapsed to a single collection.

Combination (union) of two collections is done by the operator “U”, for example in “3d6 U 3d8”
that combines a collection of 3 six-sided dice with a collection of 3 eight-sided dice. Since num-
bers are treated as singleton collections, they can be added to a collection in the same way, e.g.,
“d6 U 3d8” or “3d6 U d8”. For backwards compatibility, you can also use “@” as an union

2

operator.
An alternative way to build collections is by listing the elements in curly braces, for example

“{1, 2, 1}” for the collection consisting of two ones and a two. Note that the order is irrel-
evant, but the number of times an element occurs is significant. A special case is “{}”, which
describes the empty collection. The elements listed in the braces need not be constants or even
singletons, you can, for example, write “{d6, 3d8}”, which is equivalent to “d6 U 3d8”. In
fact, “{a1,...,an}” is equivalent to “a1 U...U an”, so use either according to taste.

The “dotdot” construction, produces a range of integer values. “1..6”, for example, is the
collection of all integers between 1 and 6 (inclusive). You can use any integer-producing expres-
sions instead of the constants in the above, for example write d4..d10 to get the range of values
between the result of rolling a d4 and the result of rolling a d10. If the first value is larger than
the second (e.g., “7..3”), the empty collection is produced.

You can randomly (with equal probability) choose an element from a collection with the
operator “choose”. For example, “choose {-1,0,1}” returns either -1, 0 or 1 with equal prob-
ability. “dX” is equivalent to “choose (1..X)”. If the argument to “choose” is the empty col-
lection, an error is reported. Related to “choose” is “pick”, which randomly picks a specified
number of elements from a collection without replacement. For example, “{1..10} pick 3”
picks three different numbers between 1 and 10. If there are fewer elements in the first argument
than specified in the second argument, the net result will be equal to the first argument. Note
that, while “pick” selects different elements, these need not have different values. For example,
“{1,2,2} pick 2” can return the collections {1,2} or {2,2} (but not {1,1}). “pick” can be
used to emulate drawing of cards.

We have already seen “sum”, which adds the elements of a list. The operator “count” counts
the number of dice in a collection. This, normally, isn’t useful unless combined with a fil-
ter that removes elements that don’t obey a specified condition. For example, the expression
“count 6 = 10d6” rolls 10 six-sided dice and uses the filter “6 =” to keep only the dice that
are equal to 6 and then count these. You can also filter by less-than (“<”), greater-than (“>”),
less-than-or-equal (“<=”), greater-than-or-equal (“>=”) or different-from (“=/=”), so, for exam-
ple, “count 4 < 10d6” counts the number of dice that are greater than 4. The number before
the comparison operator can be any integer-valued expression (i.e., singleton collection), so you
can write, e.g., “count d6 > 10d6” that rolls a die and counts how many of the 10 next dice
that are less than this. Note that “x > y” is not the same as “y < x”. The first will return the
elements of y that are less than the singleton x and the second will return the elements of x that
are greater than the singleton y. Even if both x and y are singletons, there will be a difference.
You can add several filters, so for example “3<= 5>= d6” returns only values between 3 and 5,
otherwise returning the empty collection.

Another way to remove elements from a collection is with the “drop” operation. “x drop y”
removes from x all elements that are also found in y. For example, “2d6 drop 3” will remove
all threes from the two d6s. Another example is “d6 drop d6”, which as a net effect will return
the empty collection if the two dice are equal and return the first die if not.

Dual to “drop” is “keep”: “x keep y” keeps from x all elements that are also found in y.
For example, “(d6+d6) keep {5,7}” adds 2 d6 and keeps the result if it is in the collection
{5,7}. So the result is either the empty collection, 5 or 7. Another example is “d6 keep d6”,

3

which as a net effect will return the empty collection if the two dice are different and return the
first die if they are equal. Note that “keep” is not multiset intersection, as “x keep 6” keeps all
sixes in x, where multiset intersection would keep only one.

Also similar to “drop” is “--”, which is multiset subtraction. Unlike “drop”, “--” removes
only as many occurrences of elements as there are in the second argument. So “{2,2,3} -- {2,4}”
returns “{2,3}”, where “{2,2,3} drop {2,4}” returns “{3}”.

You can remove duplicates from a collection with the “different” operator. For example,
“different {2, 1, 2}” returns the collection consisting of 1 and 2 once each. To count the
number of different values in a collection x, you can write “count different x”.

The smallest value in a collection can be found using the operator “min”, for example
“min 3d6” finds the smallest of three dice. Similarly, “max” finds the largest value in a col-
lection. If the argument to “min” or “max” is the empty collection, the empty collection will be
retruned.

You can also take the n least or the n largest values from a collection using the operators
“least” and “largest”. For example, “largest 1 least 2 3d6” finds the largest of the two
smallest of three dice, i.e., the middle (or median) value. Integer valued expressions that evaluate
to a non-negative value can be used as first argument to least or largest. If there are less than n
values in the collection, all elements are returned. “min” is equivalent to “least 1” and “max” to
“largest 1”. Similar operators are “minimal” and “maximal”. Where “min” returns a single
copy of the minimal value in its argument and is undefined on empty collections, “minimal”
returns all copies of the minimal value and is defined on the empty collection (where it would
return the empty collection). Similarly, “maximal” returns all maximal values in its argument.

The median (middle) of a collection is the least value m in the collection that has the property
that (at least) half the values in the collection are less than or equal to m. For example, the
median of the collection {2,6,23} is 6, as two values (which is half of three values, rounded up)
in {2,6,23} are less than or equal to 6. If there is an even number of values in the collection, the
median is the smallest value in the largest half of the collection. Note that some definitions of
median say that the median of a collection is the average of the two middle elements. But since
that is not always an integer, we have chosen the above definition. You can find the median of a
collection using the operator median, so, for example, median 3d20 finds the middle value of
three rolled d20s.

4 Value definitions, conditionals, etc.
If you, for example, write “d6*d6” you get the product of two independently rolled dice. If you
want to square the value of a single die, you have to store the roll of one die in a variable and use
the variable twice. This can be done by a local definition of the form “x := d6; x*x” which
defines x to be the value of a single die and then multiplies that value by itself. Any expression
can be used in the assignment and after the semicolon. The name of the bound variable must
consist of letters only and may not be identical to an operator name. You can make multiple
assignments, such as “x := d6; y := d6; x*x*y*y”. A defined value is visible only in the
following expression, so for example “(x := d6; x) U x” leaves the second “x” undefined,

4

since the definition isn’t visible outside the parentesis. Local definitions do not owerwrite ear-
lier definitions (they only temporarily hide them), so “x := 2; (x := 1; x) U x” returns the
collection “{1, 2}”. Note that you can’t use variables that are named the same as operators,
including d and z.

You can make a conditional choice between two rolls using an if-then-else construction.
The form of this is if e1 then e2 else e3. If e1 is a non-empty collection, e2 is evaluated,
otherwise (i.e., if e1 is empty), e3 is evaluated. This is most often used in combination with a
filter, e.g., “if x = y then 2*x else max (x U y)” to take the largest of two dice but let
doubles count double.

You can make a probabilistic choice with arbitrary probability by using the ? construct. ?p,
where p is a decimal fraction less than 1 (written as 0.d1 · · ·dn, where d1 · · ·dn are decimal digits),
will return 1 with probability p and the empty collection with probability 1− p. By writing
if ?p then x else y, you can choose x with probability p and y with probability 1− p.

If you want to do something equivalent to a logical or, you can use U, as if any of the argu-
ments are non-empty, so is the result. For example, “if x = 2 U y = 3 then 42 else 24”
returns 42 if either x = 2 or y = 3 and otherwise returns 24. Intersection on collections wouldn’t
work as logical and, so a special operator “&” is added for this. e1 & e2 is equivalent to
if e1 then e2 else {}, i.e., if e1 is empty, the empty collection is returned, otherwise e2
is returned. So, only if both collections are non-empty will a non-empty collection be returned.
As an example, writing “if x = 2 & y = 3 then 42 else 24” will get you 42 back if both
x = 2 and y = 3 and 24 if not. Similarly, ! acts like negation. ! e is an abbreviation of if e
then {} else 1.

Another construction that is sometimes useful is the “foreach” construction. It applies the
same method to all values in a collection and combines the result to a new collection. For
example, you can add 1 to all members of a collection c by writing “foreach x in c do x+1”.

You can, for example, specify that you roll 7 d10s and take the highest sum of identical dice
in the result:

c := 7d10; max (foreach x in 1..10 do sum (x = c))
If, for example, the 7 d10 yield the collection “1 3 3 3 5 7 7”, the foreach construction gives
“1 0 9 0 5 0 14 0 0 0”, the largest of which is 14.

5 Repeated die-rolls
A die-roll can involve repeating rolls until a certain condition occurs. For example, a d7 can be
simulated by rolling a d8 until the result is less than 8. Ignoring for a moment that Troll supports
d7s directly, we can write this as

repeat x:=d8 until x<8
We can also repeat while a certain condition holds, so we can equivalently write the above as

repeat x:=d8 while x=8
A slightly more useful example is rerolling two d6s until they are different:

repeat x:=2d6 until (min x)=/=(max x)

5

The repeat constructs simply repeats the assignment until the condition is true (for until) or
false (for while), returning the last value. Note that x is visible only in the condition, so it can’t
be used after the loop, nor in later iterations of the same loop.

Sometimes certain conditions adds more dice to the roll. For example, World of Darkness
adds an extra dice for every 10 rolled, repeating this for 10s in the new dice. For such mecha-
nisms, we use the accumulate construct. This works like the repeat loop, except that it returns
a collection of the values from all iterations instead of only the last. For example,

accumulate x:=d10 while x=10
might return the collection “10 10 4” (though the numbers will be shown in a different order).
To be precise, a World of Darkness roll counts how many dice from a pool of N dice have a value
over 7, adding dice to the pool for every 10 rolled. This can be written as

count 7< N#(accumulate x:=d10 while x=10)
When calculating distributions, Troll puts a limit to the number of iterations in accumulate
(but not on repeat, which it calculates exactly). The default is 12, but this can be changed by
a command-line parameter, see section 10. If you are unsure if the limit is high enough, try
changing it by 1 or 2 and see how much the result changes. If you find the change too high for
comfort, increase the limit.

6 Functions
You can define functions that you can call later. Function definitions are placed either before or
after the expression that calculates the actual roll. For example, you can write

function mul(v) =
if v then (min v)*call mul(largest ((count v)-1) v)
else 1

call mul(5d10)

Here, mul is defined as multiplying the elements of a collection. mul is then called with 5d10 as
argument. Hence, we get the product of five d10. Note that the function can call itself, i.e., it is
recursive. You can have several mutually recursive functions such as:

function even(n) =
if n=0 then 1 else call odd(n-1)

call even(d9)

function odd(n) =
if n=0 then 0 else call even(n-1)

In the above, even returns 1 if its argument is even and 0 if it is odd, so calling it with a d9
as argument would return 1 slightly more often than 0 (on average 5 out of 9 times). Note that
function declarations appear both before and after the main expression.

6

Functions can use all of the features of Troll, including dice rolls:

function down(n) =
x := d n;
if x=1 then 1 else x + call down(x)

call down(10)

which rolls a d10 followed by a die with as many sides as that roll and so on until a 1 is rolled
and adds the results.

Note that while functions give great flexibility and make a lot of the other features of Troll
(such as loops) redundant, it is often much faster to calculate probabilities when dice are de-
fined by the standard operators and loops than by using functions. Hence, you should only use
functions if all else fails.

When calculating distributions, there is a limit to call depth. The call-depth limit is the same
as the limit on iterations of accumulate. If a call is made when the limit is exceeded, the non-
recursive branch of the body is used (regardless of its probability). If there is no conditional or
no non-recursive branch, 0 is returned. This is a rather arbitrary value, so you should design
your functions so the probability of exceeding the limit is small (or increase the limit until this
is the case). The mul function above will have a call depth equal to the number of elements in
the collection that is used as argument to mul, so the limit should be at least this high. The down
function can have unbounded call depth, but the chance that it is deeper than the default limit (12)
is small. Hence, the calculated probability distribution will be close to the “real” distribution. As
with accumulate, you can try changing the limit to get an idea of how much it affects the result.

Note: Due to the way scopes of variables are handled in Troll, variables defined on the
command-line are not available inside function definitions.

6.1 Compositional functions
Functions like the above can be very slow to calculate probabilities for, as the calculator has
no information about properties that might be used to speed up calculation. In order to allow
faster calculation of user-defined functions, it is possible to define compositional functions.1. A
compositional function is defined by three cases:

1. The function’s result when applied to the empty collection. This is specified as a value.

2. The function’s result when applied to a singleton collection. This is specified as a the name
of a function to apply to singletons.

3. The function’s result when applied to a union of two collections. This is specified as the
name of a function of two arguments, which will be applied to the results of applying the
composite function to the two sub-collections.

1homomorphims, really

7

As an example, we can define a compositional function product that multiplies all the ele-
ments of a collection (so it is equivalent to mul as defined above).

compositional product(1,id,times)

function id(x) = x

function times(x,y) = x*y

The product of the empty collection is 1, the product of a singleton is the value itself and the
product of a union is obtained by multiplying the products of the components of the union. The
composite product is much faster than mul and it doesn’t suffer from the limit on call depth.

The declarations of product, id and times can be in any order. Compositional functions
are called like other functions (with call).

The last two elements of the triple that defines a compositional function can be user-defined
functions or predefined operators (with some restrictions described below), so you can define
product as

compositional product(1,sum,*)

as an alternative to the above.
If a compositional function defined by the triple (v0, f ,g), v0 and g must obey the following

laws for all values x,y,z in the range of f :

g(v0,x) = x
g(x,y) = g(y,x)
g(x,g(y,z)) = g(g(x,y),z)

In other words, v0 is a neutral element of g and g is commutative and associative. If this is not
the case, the defined function is not compositional and the calculation may get wrong results.
The laws are not checked by Troll, so it is up to the user to ensure that they are true. If you use
predefined operators for g, Trollrestricts these to commutative and associative operators, i.e, +,
*, @ and U. Predefined operators allowed for f are -, d, D, z, Z, sum, count, min, max, minimal,
maximal, choose and different.

As can be seen, compositional functions must be used with care, but they can greatly speed
up probability calculation, and some functions (such as product) are most easily defined com-
positionally.

7 Text
You can do simple text formatting in Troll. Text in Troll are rectangular boxes of text that you
can combine horisontally and vertically to form larger boxes.

If you combine two boxes of different width or height, blank lines or columns are added to
the smaller box to make them equally wide or high before combining, so the combined box will
be rectangular. How this is done depends on which operator is used to combine the boxes:

8

b1 || b2: The boxes b1 and b2 are combined so b1 is to the left of b2. Blank lines are added to
the bottom of the shorter box to make them of equal height before they are combined.

b1 |> b2: The boxes b1 and b2 are combined so b1 is on the top of b2. Blank spaces are added to
the right of the narrower box to make them of equal width before they are combined.

b1 <| b2: The boxes b1 and b2 are combined so b1 is on the top of b2. Blank spaces are added to
the left of the narrower box to make them of equal width before they are combined.

b1 <> b2: The boxes b1 and b2 are combined so b1 is on the top of b2. Blank spaces are added
on both sides of the narrower box to make them of equal width before they are combined.

The three different vertical combination operators allow columns to be left-aligned, right-aligned
or centered. For example, "1" |> "two" |> "three" produces the box

1
two
three

while "1" <| "two" <| "three" produces

1
two

three

and "1" <> "two" <> "three" produces

1
two
three

The combining operators group to the right, so "1" || "two" <> "three" corresponds to
"1" || ("two" <> "three") and produces

1 two
three

by putting the box containing 1 before the box with the centered text of two and three.
You can put the combining operators inside strings, so "1" <> "two" <> "three" can

be abbreviated to "1<>two<>three". Note that parentheses inside strings are just characters
and don’t group the operators, so "(1<>two)||three" is the same as
"(1" <> "two)" || "three".

9

7.1 Making rolls into strings
Adding a single quote (’) in front of an expression that produces a collection of numbers (e.g.,
3d6) converts the collection into a string. Adding a number n in front of the quote produces n
of the following expression and puts each sample on a separate line in a right-aligned box. For
example, 6 ’ sum largest 3 4d6 might produce

8
13
3
10
11
6

You can combine this with a text column:
"Str |>Dex|>Con|>Int|>Wis|>Chr" || 6’sum largest 3 4d6

to produce, e.g.,

Str 18
Dex 8
Con 6
Int 15
Wis 16
Chr 11

8 Pairs
You can make pairs of collections of numbers, pairs of texts, mixed pairs and pairs of pairs, but
you can not make collections of pairs.

A pair of x and y is constructed using the notation [x, y]. If p is an expression that has a pair
value, the expression %1 p gives the first component of p and %2 p gives the second component
of p.

For example, if you roll 6d6 and wnat to find both the largest die and the number of different
dice in the roll, you can write this as

x := 6d6;
[max x, count different x]

Note that it would be wrong to write

x := 6d6;
{max x, count different x}

as you would lose the information about which number is the maximum and which is the
difference-count.

Pairs are also useful for returning multiple values from a function.

10

9 Default values
Using an undefined variable will normally give a run-time error message, but it is possible to test
if a variable is defined and return a default value if it is not. x ∼ e returns the value of x if x is
defined and the value of e if not.

10 An implementation
Troll has been implemented in Standard ML, using the Moscow ML implementaion of that
language.

You can run Troll either as a stand-alone program on your PC or through the Troll web
interface located at http://topps.diku.dk/torbenm/troll.msp.

The web version of Troll is fairly easy to use, but has some restrictions compared to the full
version (but presents the results in a nicer way by using HTML). In particular, when computing
probability distributions, long-running calculations will be aborted. However, the web interface
should suffice for most uses.

The stand-alone program, called “troll” is run from a command-line as described below2.
To run the program, you need to install Moscow ML, see section 10.3 below.

You run the program by writing “troll” followed by a number of arguments. Each argument
can be one of

• A filename. The file should contain a definition of a die roll. If several filenames are
specified, the last on the line is used. If no file name is specified, the definition is read from
the terminal. Input is terminated by the end-of-file character (control-D in Unix/Linux and
control-Z in DOS/Windows).

• A number. If positive, this specifies the number of times dice are rolled. Each roll is shown
on a separate line. If the number is 0 or negative, a probability distribution is calculated
and printed out. If all rolls generate singleton or empty collections, the average, spread
and mean deviation is also printed out. When calculating these, the empty collection is
treated as having the value 0. If the specified number is 0, the default number of iterations
for the accumulate construct is used.3 If the number is −n, at most n iterations are made.
If several numbers are specified, the last on the line is used. If none are specified, 1 is
used as the default value. Note that strings doesn’t make sense in probability calculations,
so you get an error message if you try to use strings or string operators when calculating
probabilities.

• A definition of the form name=number. This defines the name to have the specified number
as value when used in the definition. This is useful if you want to do calculations of a die-

2So you need to open a command-line window before using it. I recommend using a text editor that supports
command-line windows (such as XEmacs).

3The default number is currently set to 12

11

roll method that uses a variable number of dice or a variable threshold, etc.. Any number
of such definitions can be entered.

• One of the strings ge, gt, le or lt. These specify whether the accumulated probabilities
(the second column, see below) indicate the probability of the result being, respectively,
greater than or equal to, greater than, less than or equal to, or less than the indicated value.
The default is ge.

Examples

The simplest instance of use is to write just “troll” on the command line, then write a short
definition (e.g. “d6”) on the next line and terminate this by the end-of-file character. This will
produce a single roll of a d6.

If you have a file test.t containing a definition like the following:

count T <= N d10

You can call Troll like this:

troll test.t 0 N=7 T=5

and get the following output:

Value % = % >=
0 : 0.16384 100.0
1 : 1.72032 99.83616
2 : 7.74144 98.11584
3 : 19.3536 90.3744
4 : 29.0304 71.0208
5 : 26.12736 41.9904
6 : 13.06368 15.86304
7 : 2.79936 2.79936

Average = 4.2 Spread = 1.29614813968 Mean deviation = 1.0450944

If you want the second column to show the probabilities of being less than or equal to the value
instead of greater than or equal to, add the option le:

troll test.t 0 le N=7 T=5

to get the following output:

12

Value % = % <=
0 : 0.16384 0.16384
1 : 1.72032 1.88416
2 : 7.74144 9.6256
3 : 19.3536 28.9792
4 : 29.0304 58.0096
5 : 26.12736 84.13696
6 : 13.06368 97.20064
7 : 2.79936 100.0

Average = 4.2 Spread = 1.29614813968 Mean deviation = 1.0450944

See above for changint to less than or greater than.
The -p option switches to printing probabilities as numbers between 0 and 1, so the command

troll -p test.t 0 N=7 T=5 produces

Value Probability for = Probability for >=
0 : 0.0016384 1.0
1 : 0.0172032 0.9983616
2 : 0.0774144 0.9811584
3 : 0.193536 0.903744
4 : 0.290304 0.710208
5 : 0.2612736 0.419904
6 : 0.1306368 0.1586304
7 : 0.0279936 0.0279936

Average = 4.2 Spread = 1.29614813968 Mean deviation = 1.0450944

The -gx option makes the program print a graph of the probability distribution (using ASCII
graphics). For example, troll -g1.3 test.t 0 N=7 T=5 produces

Value 1.3 bars per %
0 :
1 : ||
2 : ||||||||||
3 : |||||||||||||||||||||||||
4 : ||||||||||||||||||||||||||||||||||||||
5 : ||||||||||||||||||||||||||||||||||
6 : |||||||||||||||||
7 : ||||

Average = 4.2 Spread = 1.29614813968 Mean deviation = 1.0450944

Note that there is no space between the “g” and the following number, which specifies the number
of bars printed per percent of probability.

13

Notes

• The program writes the negative-sign for numbers as “~” so, for example, minus three is
written as “~3”. This behaviour is inherited from Standard ML, which is used to implement
Troll. Definitions in Troll use the traditional “-” for the negative sign, and “~” for defining
default values. You can use both “~” and “-” to specify negative numbers on the command
line, but in Unix/Linux you should avoid using “~”, as it has a special meaning when used
in the command line.

• The program thinks that any command-line argument that starts with a digit is a number,
so you can’t use file names like “7thSea.t” (which will be read as the number 7).

• You shouldn’t use dice with more than around nine hundred thousand sides, since this may
cause the random number generator to loop. I can’t see why you would want to use such
large dice anyway.

• Definitions of spread and mean deviation can be found in the article RPGdice.pdf, that
is distributed as part of the Troll package. The article is a general discussion about dice
mechanisms for role-playing games.

• In both Linux/Unix and Windows, you can redirect the output to a file using the > character.
For example,

troll test.t 0 N=7 T=5 > output.txt

puts the output of the command into the file output.txt.

10.1 Hints on reducing running times
If a large number of dice are used, the program can take very long to compute the probability
distribution. This is because it, essentially, enumerates all possible rolls and then counts how
many there are of each outcome. The program enumerate in an intelligent fashion (by working
on unnormalized probability distributions) so, for example, the distribution for sum N d10 takes
quadratic time (in N) to compute instead of exponential, which would be the case for straight-
forward enumeration. But it can not always do so.

In a few cases, normalization can make things run faster. This is the case when the possible
collections are fairly small and there are many ways to obtain the same collection.

Binding a value to a variable will force normalization of the distribution for that value. Often,
that will make the program take longer, e.g., in x := 10d8;(min x)+(sum x) compared to
(min 10d8)+(sum 10d8), where the former takes much longer. Note that the two rolls do not
give the same distribution. If a bound variable is used only once, it is automatically substituted
by its bound expression, so no extra cost is incurred.

Note that you will have to use a definition (and, hence, force normalisation) if the same value
is used twice, it is a good idea to throw away unneeded information before normalization. For
example, if you have

14

x := 10d8; count 1=x + count 8=x
you don’t really need values between 2 and 7, so these can be filtered out before binding to x:

x := 10d8 drop (2..7); count 1=x + count 8=x
which reduces running time dramatically. Alternatively, we can process each die individually
and add the results:

sum 10#(x := d8; count 1=x + count 8=x)
which is even faster.

If your definition uses accumulate, you can reduce the number of iterations to less than the
default. This will reduce precision, but may be necessary to obtain anything at all.

An example is the dice system from L5R and 7th Sea. Here, you roll N open-ended d10s and
add the M largest of these. M and N can vary. You can express this as

sum (largest M N#(sum accumulate x:=d10 while x=10))

and run it by, for example,

troll 0 L5R.t M=2 N=3

This takes about 50 seconds on my (fairly old) computer, and if M and N are increased, it will take
much longer. So, to get results for higher values, you can limit rerolls to, e.g., four:

troll -4 L5R.t M=3 N=4

While the smaller limit reduces precision, the chance of having more than 4 rerolls on a die is
sufficiently small that it matters little in the grand picture.

10.2 Sampling rolls
Some probability distributions may take so much time to calculate exactly that you might want
to sample and analyse a large number of rolls instead of waiting for the exact result. You can
use Troll to do the sampling and analysis: You make one Troll definition that generates the sam-
ples and combines them to a simple Troll definition that chooses one of the samples randomly.
Running the generated definition through Troll (using the probability distribution option) will
calculate the distribution of the samples.

As an example, consider the Troll definition below:

"choose {" || (S’
(sum (largest M N#(sum accumulate x := d10 while x=10))))

|| (((S-1)’",") <| "}")

The middle line is the Troll definition of the roll (the L5R roll defined above) and the other lines
turn S samples of this roll into a string that forms a Troll definition of the form choose {N1, . . .NS},
where each Ni is a sample. Assuming this definition is in a file sample.t, you could run it by a
command

15

troll sample.t S=10000 M=5 N=8 > samples.t

to generate 10000 samples in the file samples.t. You would then run

troll 0 samples.t

to analyse the samples to get a probability distribution. More samples will make the sampled
distribution closer to the exact distribution, but the probability of rare results in particular will
be inexact even at high sample numbers. Running several times and comparing the different
estimates for the same probability should give you some idea of the precision.

For example, in three different runs with M=2 and N=4 and S=100000 samples, I got esti-
mates for a result 50 of 0.015%, 0.018% and 0.011%, so there is considerable doubt about the
last digit. The exact (up to rounding errors) probability is 0.0178846929%.

In conclusion, you should only use the sampling method to get rough estimates when you
can’t wait for the exact result (or run out of memory when calculating it).

10.3 Installation
To install or use the program, you must have Moscow ML installed on your computer. You can
get Moscow ML, including manuals and installation instructions for Linux/Unix and Windows
from https://mosml.org/.

Get the Troll package from http://www.diku.dk/~torbenm/Troll and unpack Troll.zip
in an empty folder. Use WinZip, Info-Zip or some other unzipper that supports long filenames.

To get a Windows/DOS executable called troll.exe, run compile.bat. This can be done
by clicking on its icon in the directory where you unpacked the Zip file. Note that troll.exe
must be called from a DOS command line.

For Linux/Unix platforms, run compile.csh as a shell command in the same directory as
you extracted the sources, e.g., by

unzip Troll.zip
bash compile.csh

This will compile the sources and produce an executable called troll. A few warnings are
shown during compilation, but these are harmless.

For other platforms, see the Moscow ML Owners Manual (from the above link) for how to
compile the sources.

Changes from previous releases
In reverse chronological order:

(April 2018) Fixed bug with .. operator (returned empty if the range had only one value).

(June 2016) Added ! and ∼ operators.

16

https://mosml.org/
http://www.diku.dk/~torbenm/Troll

(January 2016) Added sgn operator.

(July 2015) Fixed bug with .. operator.

(June 2015) Fixed bug with minimal operator.

(June 2015) Added pairs and optimisations for local bindings.

(November 2013) Added mod (division remainder) operator and fixed a bug in the parsing of
function definitions.

(June 2013) Added options ge, gt, le and lt to offline version.

(February 2013) Added the median operator. This has been optimised for common cases such
as median xdy, but works (albeit sometimes slowly) in all cases.

(October 31 2012) Fixed an error in the parser that made it give a parse error on d5 d6 and
similar combinations.

(June 2012) Added -- operator and allow predefined operators in addition to functions in compositional
declarations.

(November 2011) Added the keep operator.

(June 2011) Added minimal and maximal operators and allows text values in probability cal-
culations.

(November 2010) Fixed bug in foreach construct.

(October 2010) Added ? construct.

(September 2010) Allow function declarations both before and after main expression.

(September 2010) Add memoisation to user-defined functions. This dramatically speed up
some calculations.

(May 2010) Inline affine local bindings when calculating probabilities.

(February 2010) Added U as synonym for @.

(October 2009) Added web interface (http://topps.diku.dk/torbenm/troll.msp).

(October 2009) Fixed bug in implementation of choose.

(May 2009) Added compositional function definitions.

(March 2009) Added z operator.

(July 2008) Added pick operator.

17

(June 2008) Added & operator.

(June 2007) Various minor optimizations and clean-up of code.

(May 2007) Optimized choose for very long lists.

(May 2007) Added functions.

(April 2007) Optimized probability calculation for accumulate.

(March 2007) Added text boxes (section 7).

(January 2007) Added different operator.

(October 2006) Added mean deviation to printout.

(October 2006) Added drop operator, reduced rounding errors in accumulated probability.

(September 2006) Updated from Roll to Troll.

Differences between Roll and Troll
• d and D can now be prefixed with a number, which saves a lot of uses of # and brings the

notation closer to traditional RPG notation.

• Collection-building using curly braces has been added. In particular, this allows easy spec-
ification of the empty collection ({}).

• The let x=e1 in e2 construct has been replaced by x:=e1; e2. The difference is syntac-
tic only.

• Filters are now infix instead of prefix, so you write 3< x instead of >3 x.

• A number of new operators have been added: min, max, choose, drop, different
etc..

• The let-in-repeat construct from Roll has been replaced with two simpler constructs,
repeat and accumulate. The old construct is closer to accumulate than it is to the new
repeat, so most uses of the old construct should be translated to use accumulate. The
old construct was more powerful than the new constructs, but considerably harder to use,
and I never found any real-world example where the extra power was useful.

• Where Roll in addition to the probability for being equal to a value printed probabilities
for a result being less than the value, Troll prints the more useful (for games) probability
of a result being greater than or equal to the value.

18

11 Summary
Troll is a language for defining die-rolls. Simple methods are very easy to describe and even
moderately complex methods can be described in one line of text. Even unbounded rerolls and
complex comparisons and calculations can be described.

Unlike most other tools, Troll makes probability calculations whose accuracy is limited only
by the available precision of floating-point calculations, with the exception of accumulate,
where the maximal number of iterations can limit precision further. Even then, the accuracy
is much higher than what can be obtained even with a ridiculous number of random samples.

Calculation of probability distributions can in some cases be slow, since the program may
have to fall back on enumerating all possible outcomes.

19

Appendix: Language summary
dn or Dn roll one dn (a die labelled 1−n)
mdn or mDn roll m dn
zn or Zn roll one zn (a die labelled 0−n)
mzn or mZn roll m zn
+, -, *, /, mod arithmetic on single values
sgn sign of number (as −1, 0 or 1)
sum add up values in collection
count count values in collection
U or @ union of collections
{e1, . . . ,en} union of e1, . . . ,en
min, max minimum or maximum value in collection
minimal, maximal all minimum or maximum values in collection
least n, largest n n least or n largest values in collection
median median of a collection
m#e m samples of e
m..n range of numbers from m to n (both inclusive)
choose choose value from collection
e pick n pick (without replacement) n values from col-

lection e
<, <=, >, >= , =, =/= filters: Keep values from 2nd argument that

compare to 1st argument
drop elements found in 1st argument and not in 2nd
keep elements found in 1st argument that are also in

2nd
-- multiset difference
different remove duplicates
if-then-else conditional. Any non-empty is considered true
?p Returns 1 with probability p and {} otherwise
& substitute for logical and
! substitute for logical not
x := e1; e2 bind x to value of e1 in e2.
foreach x in e1 do e2 evaluate e2 for each value in e1 and union the

results.
repeat x := e1 while/until e2 repeatedly evaluate e1 while or until e2 becomes

true (non-empty). Return last value
accumulate x := e1 while/until e2 repeatedly evaluate e1 while or until e2 becomes

true (non-empty). Return union of all values
function define function
compositional define compositional function
call call function

’ make text box of single sample
n ’ make text box of n samples (right-aligned)
|| Combine text boxes horisontally
|> Combine text boxes vertically, left-aligned
<| Combine text boxes vertically, right-aligned
<> Combine text boxes vertically, centre-aligned
[e1, e2] Pair of e1 and e2.
%1 First component of pair.
%2 Second component of pair.
∼ Provide default value.

Variables, spaces and comments
Variable names are sequences of letters (both upper and lower case), so they can not contain
digits. Nor can variable names be identical to operators (e.g., d, z or sum). Names are case-
sensitive. Note that, unlike most programming languages, Troll doesn’t allow digits in variable
names.

Spaces are optional in most places, but space is required between two adjacent numbers and
between two adjacent alphabetical operators or variables. For example, “dX” is a variable called
“dX”, while “d X” is a die with X sides. Similarly, “Nd6” is a variable called “Nd” followed by
the number 6, while “N d6” is a collection of N d6s.

Comments can be added to die-roll definitions. Comments begin with a backslash (“\”) and
extend until the end of the line.

21

Operator precedences
Operator precedences from highest to lowest are:

Grouping Operators
prefix prefix D prefix d prefix Z prefix z
right infix D infix d infix Z infix z # ∼
right = < > <= >= =/=
prefix choose count sum min max least largest sgn

different minimal maximal median ’ %1 %2 !
prefix prefix -
left * / mod
left + infix -
right U @ &
left drop keep pick --
none ..
right |> <| <> ||
n/a else while until do
right ;

Note that the list of operators with same precedence as choose is split over two lines.
When two operators from the same group can be combined, they are grouped left or right

according to the left column of the table above, so for example 3 < 6 > x is equivalent to
3 < (6 > x) while d6 + d8 - 3 is equivalent to (d6 + d8) - 3. Parentheses can be used to
overide the precedences.

There are two cases of minus: A prefix minus binds more tightly than *, but infix minus binds
like +. Similarly, prefix d binds tighter than infix d.

Note that you can not group several occurences of .., i.e., 2..3..4 is not valid syntax.

22

	Overview of Troll
	Simple die-rolling
	Operations on collections
	Value definitions, conditionals, etc.
	Repeated die-rolls
	Functions
	Compositional functions

	Text
	Making rolls into strings

	Pairs
	Default values
	An implementation
	Hints on reducing running times
	Sampling rolls
	Installation

	Summary

