Troll, A Language for Specifying Dice-Rolls

Torben Mogensen, DIKU

ACM SAC 2009

Why have a DSL for dice-rolls?

- Concise and unambiguous descriptions for communicating between people.
- Internet dice servers.
- Probability calculations for
- Figuring your chances (player).
- Deciding difficulty level (GM).
- Design-space exploration (game designer).

Notation for dice-rolls - from D\&D to Troll

- The role-playing game "Dungeons \& Dragons" from 1974 introduced use of non-cubical dice

Notation for dice-rolls - from D\&D to Troll

- The role-playing game "Dungeons \& Dragons" from 1974 introduced use of non-cubical dice

- ... and notation such as $3 \mathrm{~d} 10+2$. This notation has been used in many later games.

Notation for dice-rolls - from D\&D to Troll

- The role-playing game "Dungeons \& Dragons" from 1974 introduced use of non-cubical dice

- ... and notation such as $3 \mathrm{~d} 10+2$. This notation has been used in many later games.
- Many games use dice-rolls that can't be described by the notation from D\&D.

Notation for dice-rolls - from D\&D to Troll

- The role-playing game "Dungeons \& Dragons" from 1974 introduced use of non-cubical dice

- ... and notation such as $3 d 10+2$. This notation has been used in many later games.
- Many games use dice-rolls that can't be described by the notation from D\&D.
- In 2002 I designed Roll as an attempt at a universal notation for dice-rolls and made programs for rolling and analysing rolls described in Roll.
- Roll was used in the design of the latest version of the game "World of Darkness" from 2004.

Notation for dice-rolls - from D\&D to Troll

- The role-playing game "Dungeons \& Dragons" from 1974 introduced use of non-cubical dice

- ... and notation such as $3 \mathrm{~d} 10+2$. This notation has been used in many later games.
- Many games use dice-rolls that can't be described by the notation from D\&D.
- In 2002 I designed Roll as an attempt at a universal notation for dice-rolls and made programs for rolling and analysing rolls described in Roll.
- Roll was used in the design of the latest version of the game "World of Darkness" from 2004.

- Some dice-rolls were not easy to describe in Roll, so in 2006 I made the successor Troll.

Elements of Troll

- A roll is a collection (multiset) of numbers:
- Order is irrelevant
- Number of occurences is significant.
- A collection with one element can be used as a number. Some operations require this.
- Collections can be combined, filtered, counted, summed and in other ways manipulated to find a final result.
- Two different semantics:
- Random rolling
- Calculation of probability distribution

Basic Troll operations

- d N rolls a single N-sided die.
- $M \mathrm{~d} N$ rolls $M N$-sided dice and makes a collection of the results.
- sum C adds the elements in the collection C.
- counts C counts the elements in the collection C.
- +, -, *, / do arithmetic on numbers.
- © finds the union of two collections.
- $M<C$ returns the elements of C that are greater than M. Also for =, >, <=, >=, =/=.
- min and max find the smallest or largest element in a collection, respectively.
- least N and largest N find the least or largest N elements of a collection.

Simple Troll definitions

- sum 2d10 + 3

Adds two ten-sided dice and adds 3 to the result.

- sum largest 3 4d6 adds the largest 3 of 4 six-sided dice.
- count 7 < 6d10 counts how many out of six d10s are greater than 7 .
- max 3d20
finds the largest of three d20.

Advanced features

- M \# e makes M independent samples of expression e and combines the results using $@$.
- if C then e_{1} else e_{2} If C is non-empty, do e_{2}, otherwise do e_{3}.
- $x:=e_{1} ; e_{2}$ defines x to be the value of e_{1} inside $e_{2} . x$ is sampled once and this value used for every occurrence of x inside e_{2}.
- repeat $x:=e_{1}$ until e_{2} repeats rolling e_{1} until the expression e_{2} evaluates to non-empty, then returns last value of e_{1}.
- accumulate $x:=e_{1}$ until e_{2} repeats rolling e_{1} until the expression e_{2} evaluates to non-empty, then returns the union of all values of e_{1}.
- foreach x in e_{1} do e_{2} calculates e_{1}, and for each number n in the result evaluates e_{2} with x bound to n, then unions the results of e_{2}.

Advanced examples

- b := 2d6; if (min b) = (max b) then b@b else b Backgammon dice.
- count $7<$ N\# (accumulate $x:=d 10$ while $x=10$) Die roll for World of Darkness.
- repeat $\mathrm{x}:=2 \mathrm{~d} 6$ until $(\min x)<(\max x)$ Roll two d6 until you don't have a double.
- x := 7 d 10 ; max foreach i in $1 . .10$ do sum $\mathrm{i}=\mathrm{x}$ Largest sum of identical dice.

Implementation

- The two semantics:

Random rolls is implemented fairly straightforwardly using a PRNG.
Probability distribution implemented by enumerating all possible rolls and counting results.

Enumerating all possible rolls can be done in several ways:
In time: Backtrack over all possible rolls, counting at top-level. Advantage: Low space use (only top-level distribution is stored).
In space: Find distributions for subexpressions and combine these to find distribution for complete expression. Advantage: Can combine identical subresults and exploit certain properties of functions.

It turns out that the latter far outweighs the former (details in paper).

Representation of probability distributions

Simple representation: Set of (value, probability) pairs:

$$
\{(2,0.25),(3,0.5),(4,0.25)\}
$$

Unnormalised representation to exploit algebraic properties of functions:

$$
D \equiv M!+D \cup D+\left.D\right|_{p} D+2 \times D
$$

- M ! means " M with probability 1 " where M is a multiset of numbers.
- $d_{1} \cup d_{2}$ combines all outcomes of d_{1} and d_{2} by union.
- $\left.d_{1}\right|_{p} d_{2}$ chooses between the outcomes of d_{1} and d_{2} with probability p of choosing from d_{1}.
- $2 \times d$ is an abbreviation of $d \cup d$.

Main idea: Avoid combinatorial explosion of unioning two distributions.

Linear functions

$$
f\left(M_{1} \cup M_{2}\right)=f\left(M_{1}\right) \cup f\left(M_{2}\right)
$$

Examples: 7<, 6=, foreach
Can be lifted to unnormalised distributions:

$$
\begin{array}{ll}
f(M!) & =f(M)! \\
f\left(d_{1} \cup d_{2}\right) & =f\left(d_{1}\right) \cup f\left(d_{2}\right) \\
f\left(\left.d_{1}\right|_{p} d_{2}\right) & =\left.f\left(d_{1}\right)\right|_{p} f\left(d_{2}\right) \\
f(2 \times d) & =2 \times f(d)
\end{array}
$$

Homomorphic functions

$$
\exists \oplus: f\left(M_{1} \cup M_{2}\right)=f\left(M_{1}\right) \oplus f\left(M_{2}\right)
$$

Examples: sum, count, min, least N, if, different Can be lifted to unnormalised distributions:

$$
\begin{array}{ll}
f(M!) & =f(M)! \\
f\left(d_{1} \cup d_{2}\right) & =f\left(d_{1}\right) \hat{\oplus} f\left(d_{2}\right) \\
f\left(\left.d_{1}\right|_{p} d_{2}\right) & =\left.f\left(d_{1}\right)\right|_{p} f\left(d_{2}\right) \\
f(2 \times d) & =\oplus^{2} f(d) \\
M!\hat{\oplus} N! & =(M \oplus N)! \\
\left(\left.d_{1}\right|_{p} d_{2}\right) \hat{\oplus} d_{3} & =\left.\left(d_{1} \hat{\oplus} d_{3}\right)\right|_{p}\left(d_{2} \hat{\oplus} d_{3}\right) \\
d_{1} \hat{\oplus}\left(\left.d_{2}\right|_{p} d_{3}\right) & =\left.\left(d_{1} \hat{\oplus} d_{2}\right)\right|_{p}\left(d_{1} \hat{\oplus} d_{3}\right) \\
\oplus^{2} M! & =(M \oplus M)! \\
\oplus^{2}\left(\left.d_{1}\right|_{p} d_{2}\right) & =\left.\left(\oplus^{2} d_{1}\right)\right|_{p^{2}}\left(\left.\left(\oplus^{2} d_{2}\right)\right|_{\frac{(1-p)^{2}}{\left(1-p^{2}\right)}}\left(d_{1} \hat{\oplus} d_{2}\right)\right)
\end{array}
$$

Loop optimizations

Exploit that repeat and accumulate have unchanged conditions in all iterations:

- Distribution of body calculated once, then rewritten into the form

$$
\left.d_{1}\right|_{p} d_{2}
$$

where the values in d_{1} fulfil the condition and values in d_{2} don't.

- For repeat-until, the resulting distribution is d_{1}.
- For accumulate-until, the resulting distribution d^{\prime} is given by the equation

$$
d^{\prime}=\left.d_{1}\right|_{p}\left(d_{2} \cup d^{\prime}\right)
$$

Solution is infinite, but cut off after specified limit.

Experiences with Troll

- Non-programmers can write simple definitions.
- While optimisations help a lot, sometimes Troll needs to enumerate all combinations, which may be slow.
- New features added occasionally by request from users (latest: text and recursive function definitions).
- Download from www.diku.dk/~torbenm/Troll (Requires Moscow ML).

