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Why have a DSL for dice-rolls?

e Concise and unambiguous descriptions for communicating
between people.

@ Internet dice servers.
@ Probability calculations for

e Figuring your chances (player).
o Deciding difficulty level (GM).
o Design-space exploration (game designer).
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The role-playing game “Dungeons &
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...and notation such as 3d10+2. This notation has been used
in many later games.

Many games use dice-rolls that can't be described by the
notation from D&D.

In 2002 | designed Roll as an attempt at a universal notation
for dice-rolls and made programs for rolling and analysing rolls
described in Roll. ;

Roll was used in the design of the latest
version of the game “"World of Darkness”
from 2004.

Some dice-rolls were not easy to describe in Roll, so in 2006 | ¢
made the successor Troll. °®




Elements of Troll

o Arollis a collection (multiset) of numbers:

o Order is irrelevant
o Number of occurences is significant.

@ A collection with one element can be used as a number.
Some operations require this.

@ Collections can be combined, filtered, counted, summed and in
other ways manipulated to find a final result.

o Two different semantics:

e Random rolling
o Calculation of probability distribution




Basic Troll operations

dN rolls a single N-sided die.

MAN rolls M N-sided dice and makes a collection of the
results.

sum C adds the elements in the collection C.
counts C counts the elements in the collection C.
+, -, *, / do arithmetic on numbers.

@ finds the union of two collections.

M < C returns the elements of C that are greater than M.
Also for =, >, <=, >=, =/=.

min and max find the smallest or largest element in a
collection, respectively.

least N and largest N find the least or largest N
elements of a collection.




Simple Troll definitions

@ sum 2d10 + 3
Adds two ten-sided dice and adds 3 to the result.

@ sum largest 3 4d6
adds the largest 3 of 4 six-sided dice.

@ count 7 < 6d10
counts how many out of six d10s are greater than 7.

@ max 3d20
finds the largest of three d20.




Advanced features

o M # e makes M independent samples of expression e and
combines the results using @.

@ if C then e else e If Cis non-empty, do e, otherwise
do €3.

@ x := e1; e defines x to be the value of e; inside e. x is
sampled once and this value used for every occurrence of x
inside es.

@ repeat x := e; until e repeats rolling e until the
expression e, evaluates to non-empty, then returns last value
of e;.

@ accumulate x := e; until e repeats rolling e; until the
expression e evaluates to non-empty, then returns the union
of all values of ;.

o foreach x in e; do e, calculates eq, and for each number n
in the result evaluates e> with x bound to n, then unions the
results of e.




Advanced examples

@b := 2d6; if (min b) = (max b) then bOb else b
Backgammon dice.

@ count 7< N#(accumulate x:=d10 while x=10)
Die roll for World of Darkness.

@ repeat x := 2d6 until (min x) < (max x)
Roll two d6 until you don't have a double.

@ X := 7d10; max foreach i in 1..10 do sum i= x
Largest sum of identical dice.




Implementation

@ The two semantics:

Random rolls is implemented fairly straightforwardly using a
PRNG.

Probability distribution implemented by enumerating all
possible rolls and counting results.




Enumerating all possible rolls can be done in several ways:

In time: Backtrack over all possible rolls, counting at top-level.
Advantage: Low space use (only top-level distribution
is stored).

In space: Find distributions for subexpressions and combine
these to find distribution for complete expression.
Advantage: Can combine identical subresults and
exploit certain properties of functions.

It turns out that the latter far outweighs the former (details in
paper).




Representation of probability distributions

Simple representation: Set of (value, probability) pairs:

{(2,0.25), (3,0.5), (4,0.25)}

Unnormalised representation to exploit algebraic properties of
functions:

D=M! + DUD + D|,D + 2xD

@ M! means “M with probability 1" where M is a multiset of
numbers.
@ d; U d> combines all outcomes of d; and d> by union.

@ dy |p do chooses between the outcomes of d; and do with
probability p of choosing from dj.

@ 2xd is an abbreviation of d U d.

Main idea: Avoid combinatorial explosion of unioning two
distributions.




Linear functions

f(MyUM,) = (M) U f(Ms)

Examples: 7<, 6=, foreach
Can be lifted to unnormalised distributions:

F(MY) = f(M)!
fdhUdy) = f(di)UF(db)
fldilpd2) = f(d)lpf(d2)
f(2xd) = 2xf(d)




Homomorphic functions

3®: F(MyU M) = f(My) @ f(Ms)

Examples: sum, count, min, least N, if, different
Can be lifted to unnormalised distributions:
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Loop optimizations

Exploit that repeat and accumulate have unchanged conditions
in all iterations:

@ Distribution of body calculated once, then rewritten into the

form

di |p d>
where the values in d; fulfil the condition and values in d>
don't.

@ For repeat-until, the resulting distribution is dj.

@ For accumulate-until, the resulting distribution d’ is given
by the equation

d = dl |p (d2 U d/)

Solution is infinite, but cut off after specified limit.




Experiences with Troll

@ Non-programmers can write simple definitions.

@ While optimisations help a lot, sometimes Troll needs to
enumerate all combinations, which may be slow.

o New features added occasionally by request from users (latest:
text and recursive function definitions).

o Download from www.diku.dk/~torbenm/Troll
(Requires Moscow ML).




