
Troll, A Language for Specifying Dice-Rolls

Torben Mogensen, DIKU

ACM SAC 2009

Why have a DSL for dice-rolls?

Concise and unambiguous descriptions for communicating
between people.
Internet dice servers.
Probability calculations for

Figuring your chances (player).
Deciding difficulty level (GM).
Design-space exploration (game designer).

Notation for dice-rolls – from D&D to Troll

The role-playing game “Dungeons &
Dragons” from 1974 introduced use of
non-cubical dice

. . . and notation such as 3d10+2. This notation has been used
in many later games.
Many games use dice-rolls that can’t be described by the
notation from D&D.
In 2002 I designed Roll as an attempt at a universal notation
for dice-rolls and made programs for rolling and analysing rolls
described in Roll.
Roll was used in the design of the latest
version of the game “World of Darkness”
from 2004.

Some dice-rolls were not easy to describe in Roll, so in 2006 I
made the successor Troll.

Notation for dice-rolls – from D&D to Troll

The role-playing game “Dungeons &
Dragons” from 1974 introduced use of
non-cubical dice
. . . and notation such as 3d10+2. This notation has been used
in many later games.

Many games use dice-rolls that can’t be described by the
notation from D&D.
In 2002 I designed Roll as an attempt at a universal notation
for dice-rolls and made programs for rolling and analysing rolls
described in Roll.
Roll was used in the design of the latest
version of the game “World of Darkness”
from 2004.

Some dice-rolls were not easy to describe in Roll, so in 2006 I
made the successor Troll.

Notation for dice-rolls – from D&D to Troll

The role-playing game “Dungeons &
Dragons” from 1974 introduced use of
non-cubical dice
. . . and notation such as 3d10+2. This notation has been used
in many later games.
Many games use dice-rolls that can’t be described by the
notation from D&D.

In 2002 I designed Roll as an attempt at a universal notation
for dice-rolls and made programs for rolling and analysing rolls
described in Roll.
Roll was used in the design of the latest
version of the game “World of Darkness”
from 2004.

Some dice-rolls were not easy to describe in Roll, so in 2006 I
made the successor Troll.

Notation for dice-rolls – from D&D to Troll

The role-playing game “Dungeons &
Dragons” from 1974 introduced use of
non-cubical dice
. . . and notation such as 3d10+2. This notation has been used
in many later games.
Many games use dice-rolls that can’t be described by the
notation from D&D.
In 2002 I designed Roll as an attempt at a universal notation
for dice-rolls and made programs for rolling and analysing rolls
described in Roll.
Roll was used in the design of the latest
version of the game “World of Darkness”
from 2004.

Some dice-rolls were not easy to describe in Roll, so in 2006 I
made the successor Troll.

Notation for dice-rolls – from D&D to Troll

The role-playing game “Dungeons &
Dragons” from 1974 introduced use of
non-cubical dice
. . . and notation such as 3d10+2. This notation has been used
in many later games.
Many games use dice-rolls that can’t be described by the
notation from D&D.
In 2002 I designed Roll as an attempt at a universal notation
for dice-rolls and made programs for rolling and analysing rolls
described in Roll.
Roll was used in the design of the latest
version of the game “World of Darkness”
from 2004.

Some dice-rolls were not easy to describe in Roll, so in 2006 I
made the successor Troll.

Elements of Troll

A roll is a collection (multiset) of numbers:

Order is irrelevant
Number of occurences is significant.

A collection with one element can be used as a number.
Some operations require this.
Collections can be combined, filtered, counted, summed and in
other ways manipulated to find a final result.
Two different semantics:

Random rolling
Calculation of probability distribution

Basic Troll operations

dN rolls a single N-sided die.
MdN rolls M N-sided dice and makes a collection of the
results.
sum C adds the elements in the collection C .
counts C counts the elements in the collection C .
+, -, *, / do arithmetic on numbers.
@ finds the union of two collections.
M < C returns the elements of C that are greater than M.
Also for =, >, <=, >=, =/=.
min and max find the smallest or largest element in a
collection, respectively.
least N and largest N find the least or largest N
elements of a collection.

Simple Troll definitions

sum 2d10 + 3
Adds two ten-sided dice and adds 3 to the result.
sum largest 3 4d6
adds the largest 3 of 4 six-sided dice.
count 7 < 6d10
counts how many out of six d10s are greater than 7.
max 3d20
finds the largest of three d20.

Advanced features

M # e makes M independent samples of expression e and
combines the results using @.
if C then e1 else e2 If C is non-empty, do e2, otherwise
do e3.
x := e1; e2 defines x to be the value of e1 inside e2. x is
sampled once and this value used for every occurrence of x
inside e2.
repeat x := e1 until e2 repeats rolling e1 until the
expression e2 evaluates to non-empty, then returns last value
of e1.
accumulate x := e1 until e2 repeats rolling e1 until the
expression e2 evaluates to non-empty, then returns the union
of all values of e1.
foreach x in e1 do e2 calculates e1, and for each number n
in the result evaluates e2 with x bound to n, then unions the
results of e2.

Advanced examples

b := 2d6; if (min b) = (max b) then b@b else b
Backgammon dice.
count 7< N#(accumulate x:=d10 while x=10)
Die roll for World of Darkness.
repeat x := 2d6 until (min x) < (max x)
Roll two d6 until you don’t have a double.
x := 7d10; max foreach i in 1..10 do sum i= x
Largest sum of identical dice.

Implementation

The two semantics:

Random rolls is implemented fairly straightforwardly using a
PRNG.

Probability distribution implemented by enumerating all
possible rolls and counting results.

Time or Space

Enumerating all possible rolls can be done in several ways:

In time: Backtrack over all possible rolls, counting at top-level.
Advantage: Low space use (only top-level distribution
is stored).

In space: Find distributions for subexpressions and combine
these to find distribution for complete expression.
Advantage: Can combine identical subresults and
exploit certain properties of functions.

It turns out that the latter far outweighs the former (details in
paper).

Representation of probability distributions

Simple representation: Set of (value, probability) pairs:

{(2, 0.25), (3, 0.5), (4, 0.25)}

Unnormalised representation to exploit algebraic properties of
functions:

D ≡ M! + D ∪ D + D |p D + 2×D

M! means “M with probability 1” where M is a multiset of
numbers.
d1 ∪ d2 combines all outcomes of d1 and d2 by union.
d1 |p d2 chooses between the outcomes of d1 and d2 with
probability p of choosing from d1.
2×d is an abbreviation of d ∪ d .

Main idea: Avoid combinatorial explosion of unioning two
distributions.

Linear functions

f (M1 ∪M2) = f (M1) ∪ f (M2)

Examples: 7<, 6=, foreach
Can be lifted to unnormalised distributions:

f (M!) = f (M)!
f (d1 ∪ d2) = f (d1) ∪ f (d2)
f (d1 |p d2) = f (d1) |p f (d2)
f (2×d) = 2×f (d)

Homomorphic functions

∃⊕ : f (M1 ∪M2) = f (M1)⊕ f (M2)

Examples: sum, count, min, least N, if, different
Can be lifted to unnormalised distributions:

f (M!) = f (M)!
f (d1 ∪ d2) = f (d1)⊕̂f (d2)
f (d1 |p d2) = f (d1) |p f (d2)
f (2×d) = ⊕2 f (d)

M!⊕̂N! = (M ⊕ N)!
(d1 |p d2)⊕̂d3 = (d1⊕̂d3) |p (d2⊕̂d3)
d1⊕̂(d2 |p d3) = (d1⊕̂d2) |p (d1⊕̂d3)

⊕2 M! = (M ⊕M)!
⊕2 (d1 |p d2) = (⊕2 d1) |p2 ((⊕2 d2) | (1−p)2

(1−p2)

(d1⊕̂d2))

Loop optimizations

Exploit that repeat and accumulate have unchanged conditions
in all iterations:

Distribution of body calculated once, then rewritten into the
form

d1 |p d2

where the values in d1 fulfil the condition and values in d2
don’t.
For repeat-until, the resulting distribution is d1.
For accumulate-until, the resulting distribution d ′ is given
by the equation

d ′ = d1 |p (d2 ∪ d ′)

Solution is infinite, but cut off after specified limit.

Experiences with Troll

Non-programmers can write simple definitions.
While optimisations help a lot, sometimes Troll needs to
enumerate all combinations, which may be slow.
New features added occasionally by request from users (latest:
text and recursive function definitions).
Download from www.diku.dk/~torbenm/Troll
(Requires Moscow ML).

