
Solutions for Selected Exercises
from Introduction to Compiler Design

Torben Æ. Mogensen

Last update: May 30, 2011

1 Introduction
This document provides solutions for selected exercises from “Introduction to
Compiler Design”.

Note that in some cases there can be several equally valid solutions, of which
only one is provided here. If your own solutions differ from those given here, you
should use your own judgement to check if your solution is correct.

2 Exercises for chapter 1

Exercise 1.1
a) 0∗42

b) The number must either be a one-digit number, a two-digit number different
from 42 or have at least three significant digits:

0∗([0−9] | [1−3][0−9] | 4[0−1] | 4[3−9] | [5−9][0−9] | [1−9][0−9][0−9]+)

c) The number must either be a two-digit number greater than 42 or have at
least three significant digits:

0∗(4[3−9] | [5−9][0−9] | [1−9][0−9][0−9]+)

1

Exercise 1.2
a)

-��
��

1 -ε

�
ε

��
��

2

	

a

��
��

3

-
ε

-ε

��
��

4
�b

��
��

5
N

a

��
��

6 -a ��
��

7 -a ��
��
��
��

8

b)

A = ε-closure({1}) = {1,2,3,4,5}
B = move(A,a) = ε-closure({1,6}) = {1,6,2,3,4,5}

C = move(A,b) = ε-closure({6}) = {6}

D = move(B,a) = ε-closure({1,6,7}) = {1,6,7,2,3,4,5}
move(B,b) = ε-closure({6}) = C

E = move(C,a) = ε-closure({7}) = {7}
move(C,b) = ε-closure({}) = {}

F = move(D,a) = ε-closure({1,6,7,8}) = {1,6,7,8,2,3,4,5}
move(D,b) = ε-closure({6}) = C

G = move(E,a) = ε-closure({8}) = {8}
move(E,b) = ε-closure({}) = {}

move(F,a) = ε-closure({1,6,7,8}) = F
move(F,b) = ε-closure({6}) = C

move(G,a) = ε-closure({}) = {}
move(G,b) = ε-closure({}) = {}

States F and G are accepting since they contain the accepting NFA state 8.
In diagram form, we get:

2

-��
��

A -a

@
@
@@R

b ��
��

B -a

?

b
��
��

D -a

�
�

��	

b ��
��
��
��

F a
Y

��
���

�����

b

��
��

C -a ��
��

E -a ��
��
��
��

G

Exercise 1.5
We start by noting that there are no dead states, then we divide into groups of
accepting and non-accepting states:

0 = {0}
A = {1,2,3,4}

We now check if group A is consistent:

A a b

1 A −
2 A −
3 A 0
4 A 0

We see that we must split A into two groups:

B = {1,2}
C = {3,4}

And we now check these, starting with B:

B a b

1 B −
2 C −

So we need to split B into it individual states. The only non-singleton group left
is C, which we now check:

C a b

3 C 0
4 C 0

This is consistent, so we can see that we could only combine states 3 and 4 into a
group C. The resulting diagram is:

3

?�������
0
Q
Q
Q
QQs

aC
C
C
C
C
CW

b ����
1

�
��	

a

����
2�a����

C
�
�
�
�
�
��

b

-

a

Exercise 1.7
a)

-��
��

0 -b
U

a

��
��

1 -b
U

a

��
��

2 -b
U

a

��
��
��
��

3
U

a

b)

-��
��
��
��

0 -b
U

a

��
��

1 -b
U

a

��
��

2
U

a

Y
b

c)

-��
��
��
��

0

3

a

j

b

��
��

1

N

a

	

b

��
��

2i

a

M

b

4

Exercise 1.8

-��
��
��
��

0
R

I

(

)
��
��

1
R

I

(

)
��
��

2
R

I

(

)
��
��

3

Exercise 1.9
a) The number must be 0 or end in two zeroes:

?

��
��

0 -
0

U

1

��
��

1 -
0

	

1

��
��
��
��

2
U

0

Y

1

b) We use that reading a 0 is the same as multiplying by 2 and reading a 1 is the
same as multiplying by two and adding 1. So of we have remainder m, read-
ing a 0 gives us remainder (2m)mod 5 and reading a 1 gives us remainder
(2m+1)mod 5. We can make the following transition table:

m 0 1
0 0 1
1 2 3
2 4 0
3 1 2
4 3 4

The state corresponding to m = 0 is accepting. We must also start with
remainder 0, but since the empty string isn’t a valid number, we can’t use
the accepting state as start state. So we add an extra start state 0′ that has
the same transitions as 0, but isn’t accepting:

-��
��

0′ -0

*
1

��
��
��
��

0 -
1

U

0

��
��

1 -0

*
1

��
��

2
�

1
j

0

��
��

3�
1

k

0

��
��

4�
0

U

1

5

c) If n = a ∗ 2b, the binary number for n is the number for a followed by b
zeroes. We can make a DFA for an odd number a in the same way we did
for 5 above by using the rules that reading a 0 in state m gives us a transition
to state (2m)mod a and reading a 1 in state m gives us a transition to state
(2m +1)mod a. If we (for now) ignore the extra start state, this DFA has a
states. This is minimal because a and 2 (the base number of binary numbers)
are relative prime (a complete proof requires some number theory).

If b = 0, the DFA for n is the same as the DFA constructed above for a, but
with one extra start state as we did for the DFA for 5, so the total number of
states is a+1.

If b > 0, we take the DFA for a and make b extra states: 01, 02, . . . , 0b. All
of these have transitions to state 1 on 1. State 0 is changed so it goes to state
01 on 0 (instead of to itself). For i = 1, . . . , b−1, state 0i has transition on 1
to 0(i+1) while 0b has transition to itself on 0. 0b is the only accepting state.
The start state is state 0 from the DFA for a. This DFA will first recognize a
number that is an odd multiple of a (which ends in a 1) and then check that
there are at least b zeroes after this. The total number of states is a+b.

So, if n is odd, the number of states for a DFA that recognises numbers
divisible by n is n, but if n = a ∗ 2b, where a is odd and b > 0, then the
number of states is a+b.

Exercise 1.10
a)

φ|s = s because L(φ)∪L(s) = /0∪L(s) = L(s)
φs = φ because there are no strings in φ to put in front of strings in s
sφ = φ because there are no strings in φ to put after strings in s
φ∗ = ε because φ∗ = ε|φφ∗ = ε|φ = ε

b)
-��

��
��
��

ε

c) As there can now be dead states, the minimization algorithm will have to
take these into consideration as described in section 2.8.2.

Exercise 1.11
In the following, we will assume that for the regular language L, we have an NFA
N with no dead states.

6

Closure under prefix. When N reads a string w ∈ L, it will at each prefix of w
be at some state s in N. By making s accepting, we can make N accept this prefix.
By making all states accepting, we can accept all prefixes of strings in L.

So an automaton Np that accepts the prefixes of strings in L is made of the same
states and transitions as N, with the modification that all states in Np accepting.

Closure under suffix. When N reads a string w ∈ L, where w = uv, it will after
reading u be in some state s. If we made s the start state of N, N would hence
accept the suffix v of w. If we made all states of N into start states, we would
hence be able to accept all suffixes of strings in L. Since we are only allowed one
start state, we instead add a new start state and ε-transitions from this to all the old
states (including the original start state, which is no longer the start state).

So an automaton Ns that accepts all suffixes of strings in L is made of the same
states and transitions as N plus a new start state s′0 that has ε-transitions to all
states in N.

Closure under subsequences. A subsequence of a string w can be obtained by
deleting (or jumping over) any number of the letters in w. We can modify N to
jump over letters by for each transition sct on a letter c add an ε-transition sεt
between the same pair of states.

So an automaton Nb that accepts all subsequences of strings in L is made of the
same states and transitions as N, with the modification that we add an ε-transitions
sεt whenever N has a transition sct.

Closure under reversal. We assume N has only one accepting state. We can
safely make this assumption, since we can make it so by adding an extra accepting
state f and make ε-transitions from all the original accepting states to f and then
make f the only accepting state.

We can now make N accept the reverses of the strings from L by reversing all
transitions and swap start state and accepting state.

So an automaton Nr that accepts all reverses of strings in L is made the follow-
ing way:

1. Copy all states (but no transitions) from N to Nr.

2. The copy of the start state s0 from N is the only accepting state in Nr.

3. Add a new start state s′0 to Nr and make ε-transitions from s′0 to all states in
Nr that are copies of accepting states from N.

4. When N has a transition sct, add a transition t ′cs′ to Nr, where s′ and t ′ are
the copies in Nr of the states s and t from N.

7

3 Exercises for chapter 2

Exercise 2.3
If we at first ignore ambiguity, the obvious grammar is

P →
P → (P)
P → PP

i.e., the empty string, a parentesis around a balanced sequence and a concatenation
of two balanced sequences. But as the last production is both left recursive and
right recursive, the grammar is ambiguous. An unambiguous grammar is:

P →
P → (P)P

which combines the two last productions from the first grammar into one.

Exercise 2.4
a)

S →
S → aSbS
S → bSaS

Explanation: The empty string has the same number of as and bs. If a string
starts with an a, we find a b to match it and vice versa.

b)

A → AA
A → SaS

S →
S → aSbS
S → bSaS

Explanation: Each excess a has (possibly) empty sequences of equal num-
bers of as and bs.

8

c)

D → A
D → B

A → AA
A → SaS

B → BB
B → SbS

S →
S → aSbS
S → bSaS

Explanation: If there are more as than bs, we use A from above and other-
wise we use a similarly constructed B.

d)

S →
S → aSaSbS
S → aSbSaS
S → bSaSaS

Explanation: If the string starts with an a, we find later macthing as and bs,
if it starts with a b, we find two matching as.

Exercise 2.5
a)

B → ε

B → O1C1
B → O2C2

O1 → (B
O1 → [B)B

O2 → [B
O2 → O1 O1

C1 →)B
C1 → (B]B

C2 →]B
C2 → C1C1

9

B is “balanced”, O1/C1 are “open one” and “close one”, and O2/C2 are “open
two” and “close two”.

b)

B

O1 C1

[B) B (B] B

ε ε ε ε

�� QQ

���� AA@@ ���� AA@@

B

C2

O2 C1 C1

[B (B] B) B

ε ε ε ε

QQ

�� @@

�� AA ���� AA@@ �� AA

Exercise 2.6
The string −id− id has these two syntax trees:

− id − id

A

A

A

�
�
�
� QQ

!!
!

L
L
L
L
L
LL

− id − id

A

A

A

�
�
�
�
�
�
�

��

aa
a

J
J
J
J

We can make these unambiguous grammars:

a) : A → A− id
A → B
B → −B
B → id

b) : A → −A
A → B
B → B− id
B → id

The trees for the string −id− id with these two grammars are:

10

a)

− id − id

B

A

A

B

PP
PPP

��

J
J
J
J

b)

− id − id

B

B

A

A

�
�
�
� QQ

!!
!

C
C
C
C
C
C
C
C
CC

Exercise 2.9
We first find the equations for Nullable:

Nullable(A) = Nullable(BAa)∨Nullable(ε)
Nullable(B) = Nullable(bBc)∨Nullable(AA)

This trivially solves to

Nullable(A) = true
Nullable(B) = true

Next, we set up the equations for FIRST:

FIRST(A) = FIRST(BAa)∪FIRST(ε)
FIRST(B) = FIRST(bBc)∪FIRST(AA)

Given that both A and B are Nullable, we can reduce this to

FIRST(A) = FIRST(B)∪FIRST(A)∪{a}
FIRST(B) = {b}∪FIRST(A)

which solve to

FIRST(A) = {a, b}
FIRST(B) = {a, b}

Finally, we add the production A′→ $ and set up the constraints for FOLLOW:

11

{$} ⊆ FOLLOW(A)
FIRST(Aa) ⊆ FOLLOW(B)
{a} ⊆ FOLLOW(A)
{c} ⊆ FOLLOW(B)
FIRST(A) ⊆ FOLLOW(A)
FOLLOW(B) ⊆ FOLLOW(A)

which we solve to

FOLLOW(A) = {a, b, c, $}
FOLLOW(B) = {a, b, c}

Exercise 2.10

Exp → numExp1
Exp → (Exp) Exp1

Exp1 → + Exp Exp1
Exp1 → − Exp Exp1
Exp1 → ∗ Exp Exp1
Exp1 → / Exp Exp1
Exp1 →

Exercise 2.11
Nullable for each right-hand side is trivially found to be:

Nullable(Exp2 Exp′) = f alse

Nullable(+ Exp2 Exp′) = f alse
Nullable(− Exp2 Exp′) = f alse
Nullable() = true

Nullable(Exp3 Exp2′) = f alse

Nullable(∗ Exp3 Exp2′) = f alse
Nullable(/ Exp3 Exp2′) = f alse
Nullable() = true

Nullable(num) = f alse
Nullable((Exp)) = f alse

The FIRST sets are also easily found:

12

FIRST (Exp2 Exp′) = {num, (}
FIRST (+ Exp2 Exp′) = {+}
FIRST (− Exp2 Exp′) = {−}
FIRST () = {}
FIRST (Exp3 Exp2′) = {num, (}
FIRST (∗ Exp3 Exp2′) = {∗}
FIRST (/ Exp3 Exp2′) = {/}
FIRST () = {}
FIRST (num) = {num}
FIRST ((Exp)) = {(}

Exercise 2.12
We get the following constraints for each production (abbreviating FIRST and
FOLLOW to FI and FO and ignoring trivial constraints like FO(Exp)⊆FO(Exp1)):

Exp′ → Exp$: $ ∈ FO(Exp)

Exp → numExp1 : FO(Exp)⊆ FO(Exp1)
Exp → (Exp) Exp1 :) ∈ FO(Exp), FO(Exp)⊆ FO(Exp1)

Exp1 → + Exp Exp1 : FI(Exp1)⊆ FO(Exp), FO(Exp1)⊆ FO(Exp)
Exp1 → − Exp Exp1 : FI(Exp1)⊆ FO(Exp), FO(Exp1)⊆ FO(Exp)
Exp1 → ∗ Exp Exp1 : FI(Exp1)⊆ FO(Exp), FO(Exp1)⊆ FO(Exp)
Exp1 → / Exp Exp1 : FI(Exp1)⊆ FO(Exp), FO(Exp1)⊆ FO(Exp)
Exp1 → :

As FI(Exp1) = {+,−, ∗, /}, we get

FO(Exp) = FO(Exp1) = {+,−, ∗, /,), $}

Exercise 2.13
The table is too wide for the page, so we split it into two, but for layout only (they
are used as a single table).

num + − ∗
Exp′ Exp′→ Exp$
Exp Exp→ numExp1

Exp1
Exp1→+ExpExp1

Exp1→
Exp1→−ExpExp1

Exp1→
Exp1→∗ExpExp1

Exp1→

13

/ () $
Exp′ Exp′→ Exp$
Exp Exp→ (Exp)Exp1

Exp1
Exp1→ /ExpExp1

Exp1→
Exp1→ Exp1→

Note that there are several conflicts for Exp1, which isn’t surprising, as the gram-
mar is ambiguous.

Exercise 2.14
a)

E → numE ′

E ′ → E +E ′

E ′ → E ∗E ′

E ′ →

b)

E → numE ′

E ′ → E Aux
E ′ →
Aux → +E ′

Aux → ∗E ′

c)

Nullable FIRST
E→ numE ′ f alse {num}
E ′→ E Aux f alse {num}
E ′→ true {}
Aux→+E ′ f alse {+}
Aux→∗E ′ f alse {∗}

FOLLOW
E {+, ∗, $}
E ′ {+, ∗, $}
Aux {+, ∗, $}

d)

num + ∗ $
E E→ numE ′

E ′ E ′→ E Aux E ′→ E ′→ E ′→
Aux Aux→+E ′ Aux→∗E ′

14

Exercise 2.19
a) We add the production T ′→ T .

b) We add the production T ′′ → T ′ $ for calculating FOLLOW . We get the
constraints (omitting trivially true constraints):

T ′′ → T ′ $: $ ∈ FOLLOW (T ′)
T ′ → T : FOLLOW (T ′)⊆ FOLLOW (T)
T → T −>T : −> ∈ FOLLOW (T)
T → T ∗T : ∗ ∈ FOLLOW (T)
T → int :

which solves to

FOLLOW (T ′) = {$}
FOLLOW (T) = {$,−>, ∗}

c) We number the productions:

0: T ′ → T
1: T → T −>T
2: T → T ∗T
3: T → int

and make NFAs for each:

��
��

A -T ��
��
��
��

B
0

��
��

C -T ��
��

D --> ��
��

E -T ��
��
��
��

F
1

��
��

G -T ��
��

H -* ��
��

I -T ��
��
��
��

J
2

��
��

K -int ��
��
��
��

L
3

15

We then add epsilon-transitions:

ε

A C, G, K
C C, G, K
E C, G, K
G C, G, K
I C, G, K

and convert to a DFA (in tabular form):

state NFA states int -> * T
0 A, C, G, K s1 g2
1 L
2 B, D, H s3 s4
3 E, C, G, K s1 g5
4 I, C, G, K s1 g6
5 F, D, H s3 s4
6 J, D, H s3 s4

and add accept/reduce actions according to the FOLLOW sets:

state NFA states int -> * $ T
0 A, C, G, K s1 g2
1 L r3 r3 r3
2 B, D, H s3 s4 acc
3 E, C, G, K s1 g5
4 I, C, G, K s1 g6
5 F, D, H s3/r1 s4/r1 r1
6 J, D, H s3/r2 s4/r2 r2

d) The conflict in state 5 on -> is between shifting on -> or reducing to pro-
duction 1 (which contains ->). Since -> is right-associative, we shift.

The conflict in state 5 on * is between shifting on * or reducing to production
1 (which contains ->). Since * binds tighter, we shift.

The conflict in state 6 on -> is between shifting on -> or reducing to pro-
duction 2 (which contains *). Since * binds tighter, we reduce.

The conflict in state 6 on * is between shifting on * or reducing to production
2 (which contains *). Since * is left-associative, we reduce.

The final table is:

16

state int -> * $ T
0 s1 g2
1 r3 r3 r3
2 s3 s4 acc
3 s1 g5
4 s1 g6
5 s3 s4 r1
6 r2 r2 r2

Exercise 2.20
The method from section 3.16.3 can be used with a standard parser generator and
with an unlimited number of precedences, but the restructuring of the syntax tree
afterwards is bothersome. The precedence of an operator needs not be known at
the time the operator is read, as long as it is known at the end of reading the syntax
tree.

Method a) requires a non-standard parser generator or modification of a gen-
erated parser, but it also allows an unlimited number of precedences and it doesn’t
require restructuring afterwards. The precedence of an operator needs to be known
when it is read, but this knowledge can be aquired earlier in the same parse.

Method b) can be used with a standard parser generator. The lexer has a rule
for all possible operator names and looks up in a table to find which token to
use for the operator (similar to how, as described in section 2.9.1, identifiers can
looked up in a table to see if they are keywords or variables). This table can
be updated as a result of a parser action, so like method a), precedence can be
declared earlier in the same parse, but not later. The main disadvantage is that the
number of precedence levels and the associativity of each level is fixed in advance,
when the parser is constructed.

Exercise 2.21
a) The grammar describes the language of all even-length palindromes, i.e.,

strings that are the same when read forwards or backwards.

b) The grammar is unambiguous, which can be proven by induction on the
length of the string: If it is 0, the last production is the only that matches. If
greater than 0, the first and last characters in the string uniquely selects the
first or second production (or fails, if none match). After the first and last
characters are removed, we are back to the original parsing problem, but on
a shorter string. By the induction hypothesis, this will have a unique syntax
tree.

17

c) We add a start production A′→ A) and number the productions:

0: A′ → A
1: A → a A a
2: A → b A b
3: A →

We note that FOLLOW (A) = {a, b, $} and make NFAs for each production:

��
��

A -A ��
��
��
��

B
0

��
��

C -a ��
��

D -A ��
��

E -a ��
��
��
��

F
1

��
��

G -b ��
��

H -A ��
��

I -b ��
��
��
��

J
2

��
��
��
��

K
3

We then add epsilon-transitions:

ε

A C, G, K
D C, G, K
H C, G, K

and convert to a DFA (in tabular form) and add accept/reduce actions:

state NFA states a b $ A
0 A, C, G, K s1/r3 s2/r3 r3 g3
1 D, C, G, K s1/r3 s2/r3 r3 g4
2 H, C, G, K s1/r3 s2/r3 r3 g5
3 B acc
4 E s6
5 I s7
6 F r1 r1 r1
7 J r2 r2 r2

18

d) Consider the string aa. In state 0, we shift on the first a to state 1. Here
we are given a choice between shifting on the second a or reducing with the
empty reduction. The right action is reduction, so r3 on a in state 1 must be
preserved.

Consider instead the string aaaa. After the first shift, we are left with the
same choice as before, but now the right action is to do another shift (and
then a reduce). So s1 on a in state 1 must also be preserved.

Removing any of these two actions will, hence, make a legal string un-
parseable. So we can’t remove all conflicts.

Some can be removed, though, as we can see that choosing some actions
will lead to states from which there are no legal actions. This is true for the
r3 actions in a and b in state 0, as these will lead to state 3 before reaching
the end of input. The r3 action on b in state 1 can be removed, as this would
indicate that we are at the middle of the string with an a before the middle
and a b after the middle. Similarly, the r3 action on a in state 2 can be
removed. But we are still left with two conflicts, which can not be removed:

state a b $ A
0 s1 s2 r3 g3
1 s1/r3 s2 r3 g4
2 s1 s2/r3 r3 g5
3 acc
4 s6
5 s7
6 r1 r1 r1
7 r2 r2 r2

4 Exercises for chapter 3

Exercise 3.2
In Standard ML, a natural choice for simple symbol tables are lists of pairs, where
each pair consists of a name and the object bound to it.

The empty symbol table is, hence the empty list:

val emptyTable = []}

Binding a symbol to an object is done by prepending the pair of the name and
object to the list:

fun bind(name,object,table) = (name,object)::table}

19

Looking up a name in a table is searching (from the front of the list) for a
pair whose first component is the name we look for. To handle the possibility of
a name not being found, we let the lookup function return an option type: If a
name is bound, we return SOME obj, where obj is the object bound to the name,
otherwise, we return NONE:

fun lookup(name,[]) = NONE
| lookup(name,(name1,obj)::table) =

if name=name1 then SOME obj
else lookup(name,table)

Entering and exiting scopes don’t require actions, as the symbol tables are
persistent.

Exercise 3.3
The simplest solution is to convert all letters in names to lower case before doing
any symbol-table operations on the names.

Error messages should, however, use the original names, so it is a bad idea to
do the conversion already during lexical analysis or parsing.

5 Exercises for chapter 5

Exercise 5.3
We use a synthesized attribute that is the set of exceptions that are thrown but not
caught by the expression. If at S1 catch i ⇒ S2, i is not among the exceptions that
S1 can throw, we give an error message. If the set of exceptions that the top-level
statement can throw is not empty, we also give an error message.

CheckS(S) = case S of
throw id {name(id)}
S1 catch id ⇒ S2 thrown1 = CheckS(S1)

thrown2 = CheckS(S2)
i f name(id) ∈ thrown1
then (thrown1 \{name(id)})∪ thrown2
else error()

S1 or S2 CheckS(S1)∪CheckS(S2)
other {}

20

CheckTopLevelS(S) =
thrown = CheckS(S)
i f thrown 6= {}
then error()

6 Exercises for chapter 6

Exercise 6.1
New temporaries are t2,... in the order they are generated. Indentation shows
sub-expression level.

t2 := 2
t5 := t0
t6 := t1

t4 := t5+t6
t8 := t0
t9 := t1

t7 := t8*t9
t3 := CALL _g(t4,t7)

r := t2+t3

21

Exercise 6.9
a)

TransStat(Stat,vtable, f table,endlabel) = case Stat of
Stat1 ; Stat2 label1 = newlabel()

code1 = TransStat(Stat1,vtable, f table, label1)
code2 = TransStat(Stat2,vtable, f table,endlabel)
code1++[LABEL label1]++code2

id := Exp place = lookup(vtable,name(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 code1 = TransCond(Cond, label1,endlabel,vtable, f table)

code2 = TransStat(Stat1,vtable, f table,endlabel)
code1++[LABEL label1]++code2

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 code1 = TransCond(Cond, label1, label2,vtable, f table)

code2 = TransStat(Stat1,vtable, f table,endlabel)
code3 = TransStat(Stat2,vtable, f table,endlabel)
code1++[LABEL label1]++code2

++[GOTO endlabel, LABEL label2]
++code3

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

code1 = TransCond(Cond, label2,endlabel,vtable, f table)
code2 = TransStat(Stat1,vtable, f table, label1)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1]

repeat Stat1 label1 = newlabel()
until Cond label3 = newlabel()

code1 = TransStat(Stat1,vtable, f table, label3)
code2 = TransCond(Cond,endlabel, label1,vtable, f table)
[LABEL label1]++code1

++[LABEL label3]++code2

b) New temporaries are t2,... in the order they are generated. Indentation
follows statement structure.

LABEL l1
t2 := t0

22

t3 := 0
IF t2>t3 THEN l2 ELSE endlab

LABEL l2
t4 := t0
t5 := 1

t0 := t4-t5
t6 := x
t7 := 10
IF t6>t6 THEN l3 ELSE l1
LABEL l3

t8 := t0
t9 := 2

t0 := t8/t9
GOTO l1
LABEL endlab

23

