
Liveness Analysis and Register Allocation

Cosmin Oancea
cosmin.oancea@diku.dk

Department of Computer Science
University of Copenhagen

December 2012

University of Copenhagen Department of Computer Science

Structure of a Compiler
Programme text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree Register allocation

↓ ↑
Type Checking Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code

2 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

3 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Problem Statement

Processors have a limited number of registers:

X86: 8 (integer) registers

ARM: 16 (integer) registers

MIPS: 31 (integer) registers

In addition, 3-4 special-purpose registers (can’t hold variables).

Solution:

Whenever possible, let several variables share the same register.

If there are still variables that cannot be mapped to a register,
store them in memory.

4 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Where to Implement Register Allocation?

Two possibilities: at IL or at machine-language level. Pro/Cons?

IL Level:

+ Can be shared between multiple architectures
(parameterized on the number of registers).

− Translation to machine code can introduce/remove
intermediate results.

Machine-Code Level:

+ Accurate, near-optimal mapping.

− Implemented for every architecture, no code reuse.

We show register allocation at IL level. Similar for machine code.

5 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Where to Implement Register Allocation?

Two possibilities: at IL or at machine-language level. Pro/Cons?

IL Level:

+ Can be shared between multiple architectures
(parameterized on the number of registers).

− Translation to machine code can introduce/remove
intermediate results.

Machine-Code Level:

+ Accurate, near-optimal mapping.

− Implemented for every architecture, no code reuse.

We show register allocation at IL level. Similar for machine code.

5 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Register-Allocation Scope

Code Sequence Without Jumps:

+ Simple.
− A variable is saved to memory when jumps occur.

Procedure/Function Level:

+ Variables can still be in registers even across jumps.
− A bit more complicated.
− Variables saved to memory before function calls.

Module/Program Level:

+ Sometimes variables can still be hold in registers
across function calls (but not always: recursion).

− More complicated alg of higher time complexity.

Most compilers implement register allocation at function level.

6 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

When Can Two Variables Share a Register?

Intuition: Two vars can share a register if the two variables do not
have overlapping periods of use.

Period of Use: From var’s first assignment to the last use of the var.
A variable can have several periods of use (live ranges).

Liveness: If a variable’s value may be used on the continuation of
an execution path passing through program point PP,
then the variable is live at PP. Otherwise: dead at PP.

7 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

8 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Prioritized Rules for Liveness

1) If a variable, var, is used, i.e., its value, in an instruction, I,
then var is live at the entry of I.

2) If var is assigned a value in instruction I (and 1) does not
apply) then var is dead at the entry of I.

3) If var is live at the end of instruction I then it is live at the
entry of I (unless 2) applies).

4) A var is live at the end of instruction I ⇔ var is live at the
entry of any of the instructions that may be executed
immediately after I, i.e., immediate successors of I.

9 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Liveness-Analysis Concepts

We number program instructions from 1 to n.

For each instruction we define the following sets:

succ[i]: The instructions (numbers) that can possibly be
executed immediately after instruction (numbered) i .

gen[i]: The set of variables whose values are read by instruct i .

kill [i]: The set of variables that are overwritten by instruction i .

in[i]: The set of variables that are live at the entry of instrct i .

out[i]: The set of variables that are live at the end of instruct i .

In the end, what we need is out[i] for all instructions.

10 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Immediate Successors

succ[i] = {i+1} unless instruction i is a GOTO, an
IF-THEN-ELSE, or the last instruction of the program.

succ[i] = {j}, if instruction i is: GOTO l
and instruction j is: LABEL l .

succ[i] = {j , k}, if instruction i is IF c THEN l1 ELSE l2,
instruction j is LABEL l1, and instruction k is LABEL l2.

If n denotes the last instruction of the program, and n is not a
GOTO or an IF-THEN-ELSE instruction, then succ[n] = ∅.

11 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Rules for Constructing gen and kill Sets

Instruction i gen[i] kill [i]

LABEL l ∅ ∅
x := y {y} {x}
x := k ∅ {x}
x := unop y {y} {x}
x := unop k ∅ {x}
x := y binop z {y , z} {x}
x := y binop k {y} {x}
x := M[y] {y} {x}
x := M[k] ∅ {x}
M[x] := y {x , y} ∅
M[k] := y {y} ∅
GOTO l ∅ ∅
IF x relop y THEN lt ELSE lf {x , y} ∅
x := CALL f (args) args {x}

12 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

13 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Data-Flow Equations for Liveness Analysis
Let us model the Liveness Rules via Equations! (Go Back 4 Slides!)

in[i] = gen[i] ∪ (out[i] \ kill [i]) (1)

out[i] =
⋃

j∈succ[i]

in[j] (2)

Exception: If succ[i] = ∅, then out[i] is the set of variables that
appear in the function’s result.

The (recursive) equations are solved by iterating to a fix point:
in[i] and out[i] are initialized to ∅, and iterate until no changes occur.

Why does it converge?

For fast(er) convergence: compute out[i] before in[i] and in[i+1]
before out[i], i.e., backward flow analysis.

14 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Data-Flow Equations for Liveness Analysis
Let us model the Liveness Rules via Equations! (Go Back 4 Slides!)

in[i] = gen[i] ∪ (out[i] \ kill [i]) (1)

out[i] =
⋃

j∈succ[i]

in[j] (2)

Exception: If succ[i] = ∅, then out[i] is the set of variables that
appear in the function’s result.

The (recursive) equations are solved by iterating to a fix point:
in[i] and out[i] are initialized to ∅, and iterate until no changes occur.

Why does it converge?

For fast(er) convergence: compute out[i] before in[i] and in[i+1]
before out[i], i.e., backward flow analysis.

14 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Imperative-Fibonacci Example

1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n − 1
11: z := 0
12: GOTO loop
13: LABEL end

i succ[i] gen[i] kill [i]

1 2 a
2 3 b
3 4 z
4 5
5 6, 13 n, z
6 7
7 8 a, b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

Computes a = fib(n). What would it mean if in[1] 6= {n}?
15 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Fix-Point Iteration for the Fibonacci Example

Initial Iteration 1 Iteration 2 Iteration 3
i out[i] in[i] out[i] in[i] out[i] in[i] out[i] in[i]

1 n, a n n, a n n, a n
2 n, a, b n, a n, a, b n, a n, a, b n, a
3 n, z , a, b n, a, b n, z , a, b n, a, b n, z , a, b n, a, b
4 n, z , a, b n, z , a, b n, z , a, b n, z , a, b n, z , a, b n, z , a, b
5 a, b, n n, z , a, b a, b, n n, z , a, b a, b, n n, z , a, b
6 a, b, n a, b, n a, b, n a, b, n a, b, n a, b, n
7 b, t, n a, b, n b, t, n a, b, n b, t, n a, b, n
8 t, n b, t, n t, n, a b, t, n t, n, a b, t, n
9 n t, n n, a, b t, n, a n, a, b t, n, a

10 n n, a, b n, a, b n, a, b n, a, b
11 n, z , a, b n, a, b n, z , a, b n, a, b
12 n, z , a, b n, z , a, b n, z , a, b n, z , a, b
13 a a a a a a

Usually less than 5 iterations.
16 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

17 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Interference

Definition: Variable x interferes with variable y , if there is an
instruction numbered i such that:

1 Instruction i is not of form x := y and

2 x ∈ kill [i] and

3 y ∈ out[i] and

4 x 6= y

Two variables can share the same register iff they do not interfere
with each other!

18 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Interference for the Fibonacci Example

Instruction Left-hand side Interferes with
1 a n
2 b n, a
3 z n, a, b
7 t b, n
8 a t, n
9 b n, a

10 n a, b
11 z n, a, b

We can draw interference as a graph:

a
HH

HH

�
�
�
�
�
�

�
�
��

b
B
B
B
B
B
B

��
��

�
�
�
�
�
�

n
A
A
AA

Q
Q
Q

Q
Q
Q

z t

19 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Register Allocation By Graph Coloring
Two variables connected by an edge in the interference graph cannot
share a register!

Idea: Associate variables with register numbers such that:

1 Two variables connected by an edge receive different numbers.

2 Numbers represent the (limited number of) hardware registers.

Equivalent to graph-coloring problem: color each node with one of n
(available) colors, such that any two neighbors are colored differently.

Since graph coloring is NP complete, we use a heuristic method that
gives good results in most cases.

Idea: a node with less-than-n neighbors can always be colored.
Eliminate such nodes from the graph and solve recursively!

20 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Register Allocation By Graph Coloring
Two variables connected by an edge in the interference graph cannot
share a register!

Idea: Associate variables with register numbers such that:

1 Two variables connected by an edge receive different numbers.

2 Numbers represent the (limited number of) hardware registers.

Equivalent to graph-coloring problem: color each node with one of n
(available) colors, such that any two neighbors are colored differently.

Since graph coloring is NP complete, we use a heuristic method that
gives good results in most cases.

Idea: a node with less-than-n neighbors can always be colored.
Eliminate such nodes from the graph and solve recursively!

20 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Register Allocation By Graph Coloring
Two variables connected by an edge in the interference graph cannot
share a register!

Idea: Associate variables with register numbers such that:

1 Two variables connected by an edge receive different numbers.

2 Numbers represent the (limited number of) hardware registers.

Equivalent to graph-coloring problem: color each node with one of n
(available) colors, such that any two neighbors are colored differently.

Since graph coloring is NP complete, we use a heuristic method that
gives good results in most cases.

Idea: a node with less-than-n neighbors can always be colored.
Eliminate such nodes from the graph and solve recursively!

20 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Graph-Coloring Using 4 Colors

a
H
HHHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

z and t have only three neighbors so they can wait.

21 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Graph-Coloring Using 4 Colors

a
H
HHHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

The remaining three nodes can now be given different colors!

21 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Graph-Coloring Using 4 Colors

a
H
HHHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

z and t can now be given a different color!

21 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Graph-Coloring Using 4 Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
��
�

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

But what if we only have three colors (registers) available?

21 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

22 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Improved Algorithm

Initialization: Start with an empty stack.

Simplify: 1. If there is a node with less than n edges (neighbors):
(i) place it on the stack together with the list of edges,
and (ii) remove it and its edges from the graph.

2. If there is no node with less than n neighbors, pick
any node and do as above.

3. Continue until the graph is empty. If so go to select.

select: 1. Take a node and its neighbor list from the stack.

2. If possible, color it differently than its neighbor’s.

3. If not possible, select the node for spilling (fails).

4. Repeat until stack is empty.

The quality of the result depends on (i) how to chose a node in
simplify, and (ii) how to chose a color in select.

23 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

No node has < 3 neighbors, hence choose arbitrarily, say z .

Node Neighbours Colour

z a, b, n
24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

There are still no nodes with < 3 neighbors, hence we chose a.

Node Neighbours Colour

a b, n, t
z a, b, n

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

b has two neighbors, so we choose it.

Node Neighbours Colour

b t, n
a b, n, t
z a, b, n

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

Finally, choose t and n.

Node Neighbours Colour
n
t n
b t, n
a b, n, t
z a, b, n

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

n has no neighbors so we can choose 1.

Node Neighbours Colour
n 1
t n
b t, n
a b, n, t
z a, b, n

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

t only has n as neighbor, so we can color it with 2.

Node Neighbours Colour
n 1
t n 2
b t, n
a b, n, t
z a, b, n

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

b has t and n as neighbors, hence we can color it with 3.

Node Neighbours Colour
n 1
t n 2
b t, n 3
a b, n, t
z a, b, n

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

a has three differently-colored neighbors, so it is marked as spill.

Node Neighbours Colour
n 1
t n 2
b t, n 3
a b, n, t spill
z a, b, n

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

z has colors 1 and 3 as neighbors, hence we can color it with 2.

Node Neighbours Colour
n 1
t n 2
b t, n 3
a b, n, t spill
z a, b, n 2

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

We are now finished, but we need to spill a.

Node Neighbours Colour
n 1
t n 2
b t, n 3
a b, n, t spill
z a, b, n 2

24 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Spilling

Spilling means that some variables will reside in memory (except for
brief periods). For each spilled variable:

1) Select a memory address addrx , where the value of x will reside.

2) If instruction i uses x , then rename it locally to xi .

3) Before an instruction i , which reads xi , insert xi := M[addrx].

4) After an instruction i , which updates xi , insert M[addrx] := xi .

5) If x is alive at the beginning of the function/program, insert
M[addrx] := x before the first instruction of the function.

6) If x is live at the end of the program/function, insert
x := M[addrx] after the last instruction of the function.

Finally, perform liveness analysis and register allocation again.

25 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Spilling Example

1: a1 := 0
M[addressa] := a1

2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body

a7 := M[addressa]
7: t := a7 + b
8: a8 := b

M[addressa] := a8
9: b := t

10: n := n − 1
11: z := 0
12: GOTO loop
13: LABEL end

a := M[addressa]

26 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

After Spilling, Coloring Succeeds!

a8 XXXXXXXXXXXX

��
��

��
���

a1

a7
���

���
���

���

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
a z t

27 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Heuristics

For Simplify: when choosing a node with ≥ n neighbors:

Chose the node with fewest neighbors, which is
more likely to be colorable, or

Chose a node with many neighbors, each of them
having close to n neighbors, i.e., spilling this node
would allow the coloring of its neighbors.

For Select: when choosing a color:

Chose colors that have already been used.

If instructions such as x := y exist, color x and y
with the same color, i.e., eliminate this instruction.

28 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Dead-Function Elimination

Partial Pseudocode for live funs

fun live_funs (

exp : Fasto.Exp,

livefs : string list,

ftab : (string * Fasto.FunDec) list

) : string list =

case exp of

29 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Dead-Function Elimination: Recursive-Scan of
Expressions

Partial Pseudocode for live funs

fun live_funs (

exp : Fasto.Exp,

livefs : string list,

ftab : (string * Fasto.FunDec) list

) : string list =

case exp of

Plus (e1, e2, p) =>

live_funs(e2, live_funs(e1, livefs, ftab), ftab)

| ...

30 / 31C.Oancea: Register Allocation 12/2011

University of Copenhagen Department of Computer Science

Dead-Function Elimination: Scan any Reachable Call

Partial Pseudocode for live funs

fun live_funs (

exp : Fasto.Exp,

livefs : string list,

ftab : (string * Fasto.FunDec) list

) : string list =

case exp of

Plus (e1, e2, p) =>

live_funs(e2, live_funs(e1, livefs, ftab), ftab)

| ...

| Map(fid, e, t1, t2, p) =>

let val elives = live_funs(e, livefs, ftab)

in if(fid is already in elives) then elives

else live_funs(fid’s body, fid::elives, ftab)

31 / 31C.Oancea: Register Allocation 12/2011

	Problem Statement and Intuition
	Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets
	Liveness Analysis: Equations, Fix-Point Iteration and Interference
	Register-Allocation via Coloring: Interference Graph & Intuitive Alg
	Register-Allocation via Coloring: Improved Algorithm with Spilling

