TY OF COPENHAGEN

Faculty of Science

Department of Camputer S

Liveness Analysis and Register Allocation

Cosmin Oancea

cosmin.oancea@diku.dk

Department of Computer Science
University of Copenhagen

December 2012

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Structure of a Compiler

Programme text

I

‘ Lexical analysis ‘

7

Symbol sequence

0

‘ Syntax analysis ‘

1

Syntax tree

i}
‘ Type Checking‘

7

Syntax tree

I

Binary machine code

‘ Intermediate code generation ‘ —

/[\
‘Assembly and Iinking‘
T
Ditto with named registers
T
‘ Register allocation ‘
T
Symbolic machine code
/]\
‘ Machine code generation ‘
/]\
Intermediate code °

C.Oancea: Register Allocation ~ 12/2011 2 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

@ Problem Statement and Intuition

© Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

© Liveness Analysis: Equations, Fix-Point Iteration and Interference
@ Register-Allocation via Coloring: Interference Graph & Intuitive Alg

© Register-Allocation via Coloring: Improved Algorithm with Spilling

C.Oancea: Register Allocation ~ 12/2011 3/31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Problem Statement

Processors have a limited number of registers:
X86: 8 (integer) registers
ARM: 16 (integer) registers
MIPS: 31 (integer) registers

In addition, 3-4 special-purpose registers (can't hold variables).

Solution:

@ Whenever possible, let several variables share the same register.

o If there are still variables that cannot be mapped to a register,
store them in memory.

C.Oancea: Register Allocation 12/2011 4/31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Where to Implement Register Allocation?

Two possibilities: at IL or at machine-language level. Pro/Cons?

C.Oancea: Register Allocation 12/2011 ¢ /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Where to Implement Register Allocation?

Two possibilities: at IL or at machine-language level. Pro/Cons?
IL Level:
+ Can be shared between multiple architectures
(parameterized on the number of registers).

— Translation to machine code can introduce/remove
intermediate results.

Machine-Code Level:

+ Accurate, near-optimal mapping.

— Implemented for every architecture, no code reuse.

We show register allocation at IL level. Similar for machine code.

C.Oancea: Register Allocation 12/2011 ¢ /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Register-Allocation Scope

Code Sequence Without Jumps:

+ Simple.
— A variable is saved to memory when jumps occur.

Procedure/Function Level:

+ Variables can still be in registers even across jumps.
— A bit more complicated.
— Variables saved to memory before function calls.

Module/Program Level:

+ Sometimes variables can still be hold in registers
across function calls (but not always: recursion).
— More complicated alg of higher time complexity.

Most compilers implement register allocation at function level. o

C.Oancea: Register Allocation 12/2011 ¢ /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

When Can Two Variables Share a Register?

Intuition: Two vars can share a register if the two variables do not
have overlapping periods of use.

Period of Use: From var's first assignment to the last use of the var.
A variable can have several periods of use (/ive ranges).

Liveness: If a variable's value may be used on the continuation of
an execution path passing through program point PP,
then the variable is live at PP. Otherwise: dead at PP.

C.Oancea: Register Allocation 12/2011 7/31

UNIVERSITY OF COPENHAGEN Department of Computer Science

© Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

C.Oancea: Register Allocation ~ 12/2011 8/31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Prioritized Rules for Liveness

1) If a variable, VAR, is used, i.e., its value, in an instruction, I,
then VAR is live at the entry of I.

2) If VAR is assigned a value in instruction I (and 1) does not
apply) then VAR is dead at the entry of I.

3) If VAR is live at the end of instruction I then it is live at the
entry of I (unless 2) applies).

4) A VAR is live at the end of instruction I < VAR is live at the

entry of any of the instructions that may be executed
immediately after I, i.e., immediate successors of 1.

C.Oancea: Register Allocation ~ 12/2011

9/

31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Liveness-Analysis Concepts

We number program instructions from 1 to n.

For each instruction we define the following sets:

succ[i]: The instructions (numbers) that can possibly be
executed immediately after instruction (numbered) /.

genli]: The set of variables whose values are read by instruct i.
kill[i]: The set of variables that are overwritten by instruction i.
in[i]: The set of variables that are live at the entry of instrct /.

out[i]: The set of variables that are live at the end of instruct /.

In the end, what we need is out[i] for all instructions.

C.Oancea: Register Allocation 12/2011 10/ 31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Immediate Successors

succ[i] = {i+1} unless instruction i is a GOTO, an
IF-THEN-ELSE, or the last instruction of the program.

succ[i] = {j}, if instruction i is: GOTO /
and instruction j is: LABEL /.

succli] = {Jj, k}, if instruction i is IF ¢ THEN /; ELSE b,
instruction j is LABEL /i, and instruction k is LABEL /.

If n denotes the last instruction of the program, and n is not a
GOTO or an IF-THEN-ELSE instruction, then succ[n] = 0.

C.Oancea: Register Allocation 12/2011 11 /31

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Rules for Constructing gen and kill Sets

Instruction i

[genli] [KT |

LABEL / 0 0
X =y i} {x}
x =k 0 {x}
X i= unop y 2IREI
X ;= unop k 0 {x}
x := y binop z {v.z} | {x}
x := y binop k {v} | {x}
x = M[y {vt | {x}
x = Mlk 0 ix}
M[x] =y .yt | 0
MK =y {v} 0
GOTO / 0 0
IF x relop y THEN /; ELSE /¢ | {x,y} 0
x := CALL f(args) args | {x}

C.Oancea: Register Allocation ~ 12/2011

12/31

UNIVERSITY OF COPENHAGEN Department of Computer Science

© Liveness Analysis: Equations, Fix-Point Iteration and Interference

C.Oancea: Register Allocation ~ 12/2011 13/31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Data-Flow Equations for Liveness Analysis
Let us model the Liveness Rules via Equations! (Go Back 4 Slides!)

C.Oancea: Register Allocation ~ 12/2011 14 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Data-Flow Equations for Liveness Analysis
Let us model the Liveness Rules via Equations! (Go Back 4 Slides!)

in[i] = gen[i]U (out[i]\ kill[i]) (1)
outli] = |J inlj] (2)
J€succli]

Exception: If succ[i] = 0, then out[i] is the set of variables that
appear in the function’s result.

The (recursive) equations are solved by iterating to a fix point:
in[i] and out[i] are initialized to (), and iterate until no changes occur.

Why does it converge?

For fast(er) convergence: compute out[i] before in[i] and in[i+1] @
before out[i], i.e., backward flow analysis. .

C.Oancea: Register Allocation 12/2011 14 /31

UNIVERSITY OF COPENHAGEN

Imperative-Fibonacci Example

Department of Computer Science

i | succli] | genli] | kill[i] |
1: a:=0 1 2 a
2. b:=1 2 3 b
3 z:=0 3 4 z
4. LABEL loop 4 5
5. IF n =z THEN end ELSE body | 5| 6,13 n,z
6: LABEL body 6| 7
7. t:=a+b 7 8 a, b t
8 a:=>b 3 9 b 3
9 b:=t 9 10 t b
10 n:=n-—1 10 11 n n
11: z:=0 11 12 Z
12: GOTO Joop 10 4
13: LABEL end 13
o
Computes a = fib(n). What would it mean if in[1] # {n}? °

C.Oancea: Register Allocation 12/2011 15 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Fix-Point Iteration for the Fibonacci Example

Initial [teration 1 Iteration 2 [teration 3

i||out[i]|in[i]]| out[i] | inli] out[i] | in[i] out[i] | in[i]

1 n,a n n,a n n,a n

2 n,a, b n,a n,a, b n,a n,a,b n,a

3 n,z,a,b| n,a,b ||nz,a,b| na,b ||n,z,a,b| n,ab
4 n,z,a,b|n,z,a,bl||nz,a,b|nz,a,b|lnzab|nzab
5 a,b,n |n,z,a bl ab,n |nza bl ab,n |nzab
6 a,b,n | a,b,n a,b,n | a,b,n a,b,n | a,b,n
7 b,t,n | a,b,n b,t,n | a,b,n b,t,n | a,b,n
8 t,n b, t,n t,n,a | b,t,n t,n,a | b,t,n
9 n t,n n,a,b | t,n,a n,a,b | t,n,a
10 n n,a,b | nyab n,a,b | n,a b
11 n,z,a,b| na,b ||nzab| n,ab
12 n,z,a,b\n,z,a,b||nz,a,b|n,z,a,
13 a a a a a a@

Usually less than 5 iterations.
C.Oancea: Register Allocation 12/2011

UNIVERSITY OF COPENHAGEN Department of Computer Science

@ Register-Allocation via Coloring: Interference Graph & Intuitive Alg

C.Oancea: Register Allocation ~ 12/2011 17 /31

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Interference

Definition: Variable x interferes with variable y, if there is an
instruction numbered 7 such that:

@ Instruction / is not of form x := y and

@ x € kill[i] and

@ y € out[i] and

Q x#y

Two variables can share the same register iff they do not interfere
with each other!

C.Oancea: Register Allocation 12/2011 18 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Interference for the Fibonacci Example

Instruction | Left-hand side | Interferes with

1 a n
2 b n,a
3 z n,a, b
7 t b,n
8 a t,n
9 b n,a

10 n a,b

11 z n,a, b

We can draw interference as a graph:

z t

LN

A °.

C.Oancea: Register Allocation ~ 12/2011

19 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Register Allocation By Graph Coloring

Two variables connected by an edge in the interference graph cannot
share a register!
Idea: Associate variables with register numbers such that:

© Two variables connected by an edge receive different numbers.

@ Numbers represent the (limited number of) hardware registers.

C.Oancea: Register Allocation 12/2011 20 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Register Allocation By Graph Coloring

Two variables connected by an edge in the interference graph cannot
share a register!
Idea: Associate variables with register numbers such that:

© Two variables connected by an edge receive different numbers.

@ Numbers represent the (limited number of) hardware registers.

Equivalent to graph-coloring problem: color each node with one of n
(available) colors, such that any two neighbors are colored differently.

Since graph coloring is NP complete, we use a heuristic method that
gives good results in most cases.

C.Oancea: Register Allocation 12/2011 20 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Register Allocation By Graph Coloring

Two variables connected by an edge in the interference graph cannot
share a register!
Idea: Associate variables with register numbers such that:

© Two variables connected by an edge receive different numbers.

@ Numbers represent the (limited number of) hardware registers.

Equivalent to graph-coloring problem: color each node with one of n
(available) colors, such that any two neighbors are colored differently.

Since graph coloring is NP complete, we use a heuristic method that
gives good results in most cases.

Idea: a node with less-than-n neighbors can always be colored. °
Eliminate such nodes from the graph and solve recursively! °

C.Oancea: Register Allocation 12/2011 20 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Graph-Coloring Using 4 Colors

RN

z and t have only three neighbors so they can wait.

C.Oancea: Register Allocation 12/2011 = /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Graph-Coloring Using 4 Colors

RN

The remaining three nodes can now be given different colors!

C.Oancea: Register Allocation ~ 12/2011 21/ 31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Graph-Coloring Using 4 Colors

a\\b//n

z and t can now be given a different color!

C.Oancea: Register Allocation ~ 12/2011 21/ 31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Graph-Coloring Using 4 Colors

a\\b//n

But what if we only have three colors (registers) available?

C.Oancea: Register Allocation ~ 12/2011 21/ 31

UNIVERSITY OF COPENHAGEN Department of Computer Science

© Register-Allocation via Coloring: Improved Algorithm with Spilling

C.Oancea: Register Allocation ~ 12/2011 22 /31

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Improved Algorithm

Initialization: Start with an empty stack.

Simplify: 1. If there is a node with less than n edges (neighbors):
(i) place it on the stack together with the list of edges,

and (ii) remove it and its edges from the graph.
2. If there is no node with less than n neighbors, pick

any node and do as above.

3.

select:

1
2
3.
4

Continue until the graph is empty. If so go to select.

. Take a node and its neighbor list from the stack.
. If possible, color it differently than its neighbor's.

If not possible, select the node for spilling (fails).

. Repeat until stack is empty.

The quality of the result depends on (i) how to chose a node in
simplify, and (ii) how to chose a color in select.

C.Oancea: Register Allocation

12/2011

23 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Coloring the Graph with Three Colors

z t

a\\b//,,

No node has < 3 neighbors, hence choose arbitrarily, say z.

Node | Neighbours | Colour

4 a’ b’ n C.Oancea: Rdgister Allocation ~ 12/2011

24 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Coloring the Graph with Three Colors
t

a\\b//,,

There are still no nodes with < 3 neighbors, hence we chose a.

Node | Neighbours | Colour

a b,n,t °

C.Oancea: Rdgister Allocation ~ 12/2011

24 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Coloring the Graph with Three Colors
t

\\b// ’

b has two neighbors, so we choose it.

Node | Neighbours | Colour

b t,n ®
a b,n,t °
z a, b’ C.Oancea: Rdgister Allocation ~ 12/2011

24 /31

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example: Coloring the Graph with Three Colors

t

~\

Finally, choose t and n.

Node | Neighbours | Colour
n
t n
b t,n
a b,n,t
z a,b,n

C.Oancea: Régister Allocation

12/2011 54 /3

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example: Coloring the Graph with Three Colors

~_\

n has no neighbors so we can choose 1.

Node | Neighbours | Colour
n 1
t n
b t,n
a b,n,t
z a, b’ n C.Oancea: Rdgister Allocation

12/2011

24 /31

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example: Coloring the Graph with Three Colors

~\

t only has n as neighbor, so we can color it with 2.

Node | Neighbours | Colour
n 1
t n 2
b t,n
a b,n,t
z a, b’ n C.Oancea: Rdgister Allocation

12/2011

24 /31

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example: Coloring the Graph with Three Colors

t

~\

b has t and n as neighbors, hence we can color it with 3.

Node | Neighbours | Colour
n 1
t n 2
b t,n 3
a b,n,t
z a, b’ n C.Oancea: Rdgister Allocation

12/2011

24 /31

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example: Coloring the Graph with Three Colors

t

~

a has three differently-colored neighbors, so it is marked as spill.

Node | Neighbours | Colour
n 1
t n 2
b t,n 3
a b,n,t spill
z a, b’ n C.Oancea: Rdgister Allocation

12/2011 54 /3

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example: Coloring the Graph with Three Colors

t

~

z has colors 1 and 3 as neighbors, hence we can color it with 2.

Node | Neighbours | Colour
n 1
t n 2
b t,n 3
a b,n,t spill
z a, b’ n C.Oaftea: Rdgister Allocation

12/2011

24 /31

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example: Coloring the Graph with Three Colors

z

t

~

We are now finished, but we need to spill a.

Node | Neighbours | Colour
n 1
t n 2
b t,n 3
a b,n,t spill
z a, b’ n C.Oaftea: Rdgister Allocation

12/2011 54 /3

UNIVERSITY OF COPENHAGEN Department of Computer Science

Spilling

Spilling means that some variables will reside in memory (except for
brief periods). For each spilled variable:

1) Select a memory address addr,, where the value of x will reside.

2) If instruction i uses x, then rename it locally to x;.

3) Before an instruction i, which reads x;, insert x; := M[addry].
4) After an instruction /i, which updates x;, insert M[addr,| = x;.
5) If x is alive at the beginning of the function/program, insert

Ml[addry] := x before the first instruction of the function.

6) If x is live at the end of the program/function, insert
x = M]laddr,] after the last instruction of the function.

Finally, perform liveness analysis and register allocation again. ®

C.Oancea: Register Allocation 12/2011 25 /31

UNIVERSITY OF COPENHAGEN

Spilling Example

1:

>

10:
11:
12:
13:

S

Department of Computer Science

ay &= 0

M|[address,| := a;

b:=1

z:=0

LABEL /loop

IF n = z THEN end ELSE body

LABEL body

a7 := M[address,]

t:=a;+b

ag .= b

M{address,] := ag

b:=t

n:=n-—1

z:=0

GOTO loop

LABEL end o
a := M[address,] '

C.Oancea: Register Allocation 12/2011 26 /31

UNIVERSITY OF COPENHAGEN

Department of Computer Science

After Spilling, Coloring Succeeds!

as

ai n

ava — b

C.Oancea: Register Allocation ~ 12/2011

27 /31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Heuristics

For Simplify: when choosing a node with > n neighbors:
@ Chose the node with fewest neighbors, which is
more likely to be colorable, or

o Chose a node with many neighbors, each of them
having close to n neighbors, i.e., spilling this node
would allow the coloring of its neighbors.

For Select: when choosing a color:

@ Chose colors that have already been used.

o If instructions such as x := y exist, color x and y
with the same color, i.e., eliminate this instruction.

C.Oancea: Register Allocation 12/2011 28 /31

SRSITY OF COPENHAGEN Department of Computer Science

Dead-Function Elimination

Partial Pseudocode for live_funs

fun live_funs (

exp : Fasto.Exp,
livefs : string list,
ftab : (string * Fasto.FunDec) list

) : string list =
case exp of

C.Oancea: Register Allocation 12/2011 g

/31

UNIVERSITY OF COPENHAGEN Department of Computer Science

Dead-Function Elimination: Recursive-Scan of

Expressions

Partial Pseudocode for live_funs

fun live_funs (

exp : Fasto.Exp,
livefs : string list,
ftab : (string * Fasto.FunDec) list

) : string list =
case exp of
Plus (el, e2, p) =>
live_funs(e2, live_funs(el, livefs, ftab), ftab)

C.Oancea: Register Allocation

12/2011

UNIVERSITY OF COPENHAGEN Department of Computer Science

Dead-Function Elimination: Scan any Reachable Ca

Partial Pseudocode for live_funs

fun live_funs (

exp : Fasto.Exp,
livefs : string list,
ftab : (string * Fasto.FunDec) list

) : string list =
case exp of
Plus (el, e2, p) =>
live_funs(e2, live_funs(el, livefs, ftab), ftab)

| Map(fid, e, t1, t2, p) =>
let val elives = live_funs(e, livefs, ftab)
in if(fid <4s already %n elives) then elives
else live_funs(fid’s body, fid::elives, ftab)

V.
-

C.Oancea: Register Allocation 12/2011 31/

31

	Problem Statement and Intuition
	Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets
	Liveness Analysis: Equations, Fix-Point Iteration and Interference
	Register-Allocation via Coloring: Interference Graph & Intuitive Alg
	Register-Allocation via Coloring: Improved Algorithm with Spilling

