
Machine-Code Generation

Cosmin Oancea
cosmin.oancea@diku.dk

Department of Computer Science
University of Copenhagen

December 2012

University of Copenhagen Department of Computer Science

Structure of a Compiler
Programme text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree Register allocation

↓ ↑
Type Checking Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code

2 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

1 Quick Look at MIPS

2 Intermediate vs Machine Code

3 Exploiting Complex Instructions

4 Machine-Code Generation in Fasto

3 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Symbolic Machine Language

A text-based representation of binary code:

more readable than machine code,

uses labels as destinations of jumps,

allows constants as operands,

translated to binary code by assembler and linker.

4 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Remember MIPS?
.data the upcoming section is considered data,
.text the upcoming section consists of instructions,

.global the label following it is accessible from outside,
.asciiz "Hello" string with null terminator,
.space n reserves n bytes of memory space,

.word w1, .., wn reserves n words.

Mips Code Example: $ra = $31, $sp = $29, $hp = $28 (heap pointer)

.data

val: .word 10, -14, 30

str: .asciiz "Hello!"

heap: .space 100000

.text

.global main

la $28, _heap_

jal main

...

stop:

ori $2, $0, 10

syscall

main:

la $8, val # ?

lw $9, 4($8) # ?

addi $9, $9, 4 # ?

sw $9, 8($8) #...

j _stop_ #jr $31

The third element of val, i.e., 30, is set to -14 + 4 = -10.
5 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

1 Quick Look at MIPS

2 Intermediate vs Machine Code

3 Exploiting Complex Instructions

4 Machine-Code Generation in Fasto

6 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Intermediate and Machine Code Differences

machine code has a limited number of registers,

usually there is no equivalent to CALL, i.e., need to implement it,

conditional jumps usually have only one destination,

comparisons may be separated from the jumps,

typically risc instructions allow only small-constant operands.

The first two issues are solved in the next two lessons.

7 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Two-Way Conditional Jumps

IF c THEN lt ELSE lf can be translated to

branch if cond lt
jump lf

If lt or lf follow right after IF-THEN-ELSE we can eliminate one jump:

IF c THEN lt ELSE lf
lt :

...
lf :

can be translated to:

branch if not cond lf

8 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Comparisons

In many architectures the comparisons are separated from the jumps:
first evaluate the comparison, and place the result in a register that
can be later read by a jump instruction.

In mips both = and 6= operators can jump (beq and bne), but <
(slt) stores the result in a general register.

arm and X86’s arithmetic instructions set a flag to signal that
the result is 0 or negative, or overflow, or carry, etc.

PowerPC and Itanium have separate boolean registers.

9 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Constants
Typically, machine instructions restrict constants’ size to be smaller
than one machine word:

MIPS32 uses 16 bit constants. For larger constants, lui is used
to load a 16-bit constant into the upper half of a 32-bit register.

ARM allows 8-bit constants, which can be positioned at any
(even-bit) position of a 32-bit word.

Code generator checks if the constant value fits the restricted size:

if it fits: it generates one machine instruction (constant operand)

otherwise: use an instruction that uses a register (instead of a ct)
generate a sequence of instructions that load the
constant value in that register

Sometimes, the same is true for the jump label.

10 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Demonstrating Constants

Fasto Implementation

fun compileExp e vtable place =

case e of

Fasto.Num (n,pos) =>

if (n < 65536)

then [Mips.LI (place, makeConst n)]

else [Mips.LUI (place, makeConst(n div 65536)),

Mips.ORI (place, place, makeConst(n mod 65536))]

What happens with negative constants?

11 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

1 Quick Look at MIPS

2 Intermediate vs Machine Code

3 Exploiting Complex Instructions

4 Machine-Code Generation in Fasto

12 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Exploiting Complex Instructions

Many architectures expose complex instructions that combine several
operations (into one), e.g.,

load/store instruction also involve address calculation

arithmetic instructions that scales one argument (by shifting),

saving/restoring multiple registers to/from memory storage,

conditional instructions (other besides jump)

In some cases: several IL instructions → one machine instruction.

In other cases: one IL instruction → several machine instructions,
e.g., conditional jumps.

13 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

MIPS Example

The two intermediate-code instructions:

t2 := t1 + 116
t3 := M[t2]

can be combined into one MIPS instruction (?)

lw r3, 116(r1)

if t2 is not used anymore. Assume we mark at intermediate-instruction
level, whenever a variable is used for the last time.

t2 := t1 + 116
t3 := M[t last2]

This marking can be accomplished by means of liveness analysis.

14 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Intermediate-Code Patterns

Need to map each il instruct to one or many machine instructs.

Take advantage of complex-machine instructions via patterns:

map a sequence of il instructs to one or many machine instructs,
try to match first the longer pattern, i.e., the most profitable one.

Variables marked with last in the il pattern must be matched
with variables that are used for the last time in the il code.

The converse is not necessary.

t := rs + k lw rt , k(rs)
rt := M[t last]

t, rs and rt can match arbitrary il variables, k can match any
constant; big constants have already been eliminated.

15 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Patterns for MIPS (part 1)

t := rs + k , lw rt , k(rs)
rt := M[t last]
rt := M[rs] lw rt , 0(rs)
rt := M[k] lw rt , k(R0)
t := rs + k , sw rt , k(rs)
M[t last] := rt
M[rs] := rt sw rt , 0(rs)
M[k] := rt sw rt , k(R0)
rd := rs + rt add rd , rs , rt
rd := rt add rd , R0, rt
rd := rs + k addi rd , rs , k
rd := k addi rd , R0, k
GOTO label j label

16 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Patterns for MIPS (part 2)

IF rs = rt THEN labelt ELSE labelf , beq rs , rt , labelt
LABEL labelf labelf :
IF rs = rt THEN labelt ELSE labelf , bne rs , rt , labelf
LABEL labelt labelt :
IF rs = rt THEN labelt ELSE labelf beq rs , rt , labelt

j labelf
IF rs < rt THEN labelt ELSE labelf , slt rd , rs , rt
LABEL labelf bne rd , R0, labelt

labelf :
IF rs < rt THEN labelt ELSE labelf , slt rd , rs , rt
LABEL labelt beq rd , R0, labelf

labelt :
IF rs < rt THEN labelt ELSE labelf slt rd , rs , rt

bne rd , R0, labelt
j labelf

LABEL label label :

17 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Compiling Code Sequences: Example

a := a + blast

d := c + 8
M[d last] := a
IF a = c THEN label1 ELSE label2
LABEL label2

18 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Compiling Code Sequences

Example:

a := a + blast add a, a, b
d := c + 8 sw a, 8(c)
M[d last] := a
IF a = c THEN label1 ELSE label2 beq a, c, label1
LABEL label2 label2 :

Two approaches:

Greedy Alg: Find the first/longest pattern matching a prefix of the
il code + translate it. Repeat on the rest of the code.

Dynamic Prg: Assign to each machine instruction a cost and find the
matching that minimize the global / total cost.

19 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Two-Address Instructions

Some processors, e.g., X86, store the instruction’s result in one of the
operand registers. Handled by placing one argument in the result
register and then carrying out the operation:

rt := rs mov rt , rs
rt := rt + rs add rt , rs
rd := rs + rt move rd , rs

add rd , rt

Register allocation can remove the extra move.

20 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Optimizations

Can be performed at different levels:

Syntax-Tree: high-level optimization: specialization, inlining,
map-reduce, etc.

Intermediate Code: machine-independent optimizations, such as
redundancy elimination, or index-out-of-bounds checks.

Machine Code: machine-specific, low-level optimizations such as
instruction scheduling and pre-fetching.

Optimizations at the intermediate-code level can be shared between
different languages and architectures.

We talk more about optimizations next lecture and in the New Year!

21 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

1 Quick Look at MIPS

2 Intermediate vs Machine Code

3 Exploiting Complex Instructions

4 Machine-Code Generation in Fasto

22 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Fasto Arrays

a 3

3 321

2 54 1 6

a 3 0 1 2

b 4

a 3 0 1 2

b 3

1 0 2 0 1 3 0 1 2

a = { {1, 2, 3},

{4, 5}, {6} }

let a = iota(3) in

let b = replicate(4, a)

fun [int] mkArr(int a)=

iota(a+1)

let a=iota(3) in

let b=map(mkArr,a) in..

Let us translate let a2 = map(f, a1), where a1,a2 : [int],
and Ra1 holds a1, Ra2 holds a2, RHP is the heap pointer.

23 / 24C.Oancea: Machine CodeGen 12/2011

University of Copenhagen Department of Computer Science

Example: Translation of let a2 = map(f, a1)

Ra1 holds a1, Ra2 holds a2, RHP is the heap pointer, a1,a2 : [int]

len = length(a1)

a2 = malloc(len*4)

i = 0

while(i < len) {
tmp = f(a1[i]);

a2[i] = tmp;

}

lw Rlen, 0(Ra1)

move Ra2, RHP
sll Rtmp, Rlen, 2

addi Rtmp, Rtmp, 8

add RHP, RHP, Rtmp

sw Rlen, 0(Ra2)

addi Rtmp, Ra2, 8

sw Rtmp, 4(Ra2)

lw Rit1, 4(Ra1)

lw Rit2, 4(Ra2)

move Ri, $0

loopbeg:

sub Rtmp, Ri, Rlen
bgez Rtmp, loopend
lw Rtmp, 0(Rit1)

addi Rit1, Rit1, 4

Rtmp = CALL f(Rtmp)

sw Rtmp, 0(Rit2)

addi Rit2, Rit2, 4

addi Ri, Ri, 1

j loopbeg
loopend:

Compiler.sml:

dynalloc generates code to allocate an array

ApplyRegs generates code to call a function on a list of arguments
(registers)

24 / 24C.Oancea: Machine CodeGen 12/2011

	Quick Look at MIPS
	Intermediate vs Machine Code
	Exploiting Complex Instructions
	Machine-Code Generation in Fasto

